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A B S T R A C T   

A method for fatigue damage quantification in composite materials, based on experimental stiffness degradation 
data for composite laminates subjected to cyclic load is proposed. Discrete damage mechanics theory is used to 
calculate crack density vs. number of cycles from elastic moduli-reduction data obtained during fatigue exper
iments. The calculated crack density simplifies fatigue testing by diminishing the need for counting cracks during 
testing. Accurate results are achieved and reported. The defect-nucleation rate, which controls the fatigue 
damage rate, is also obtained from processing the modulus-reduction data. It is observed that the defect- 
nucleation rate has a small scatter and is independent of applied load magnitude. Furthermore, the onset of 
delamination observed in the experiments correlates very well with the onset of deviation between the predicted 
and experimental curves of elastic moduli-reduction versus accumulated crack density. An additional parameter, 
the defect-nucleation threshold, is here proposed to further characterize the fatigue performance of the com
posite material under stress-controlled fatigue loading, in contrast to thermal fatigue results from the literature. 
Furthermore, the difference in damage nucleation rate between strain-controlled and stress-controlled was 
observed and discussed.   

1. Introduction 

Polymer composite materials (PCM) have become popular for 
weight-sensitive applications such as aerospace, automotive, marine, 
sport, and others. Meanwhile, for the PCM structures to be cost- 
competitive, reliable, and as safe as those fabricated using traditional 
materials, such as metals, it is necessary to develop reliable methods for 
predicting the behavior of PCM structures so that they can be efficiently 
designed [1]. Such methods must include the quantification of the 
changes in the material that occur during service, such as damage 
accumulation. 

From a strength and fracture toughness point of view, the weak link 
of PCM is the matrix, with matrix cracking being the dominant early 
form of damage, which is the precursor for other, more severe forms of 
damage, such as fiber breaks and delaminations. The role of matrix 
cracking is even more critical when the structure is subjected to long- 
term cyclic loading under various environmental conditions. For 
example, moisture condensation may contribute to damage accumula
tion and consequent loss of hermeticity [2,3]. On the other hand, 

conventional in-service methods for damage detection, such as non- 
destructive evaluation (NDE), may be ineffective for matrix cracking 
monitoring because the crack planes are normal to the laminate surface, 
and thus difficult to detect with NDE techniques [4,5]. 

Experimental work and associated models for predicting matrix 
cracking in carbon-fiber reinforced plastics (CFRP) have been reported 
[6–11]. In those, one of the key features regarding the appearance and 
accumulation of matrix cracking was found to be its regularity, i.e., 
vertical through-layer-thickness cracks are positioned evenly, and the 
rate of crack’s propagation in the thickness direction is nearly instan
taneous [12]. This observation served as a reasonable and fruitful hy
pothesis, later implemented in damage mechanics models. Models 
developed based on direct (visual) observations of defect-progression 
have shown to be very accurate [13–21]. 

Due to the cost and difficulties of parameter identification, models 
that require a single material property to predict both initiation and rate 
are advantageous. For example, mode I intra-ply fracture toughness has 
been shown to be very effective in predicting a wealth of experimental 
data [16,18,19,23]. To validate model predictions, measurement of 
crack densification has been reported. For example, with X-ray 
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contrasting methods [20,21,24,25], acoustic emissions [11,24,26], to
mography [9], automated image processing [7,8], and so on. 

One such model, discrete damage mechanics (DDM) [18], has been 
validated with experimental data from quasi-static mechanical-loading 
tests on several material systems and laminate stacking sequences (LSS). 
DDM is a synergistic method, combining analytical micromechanics of 
damage at the lamina-level with continuum damage mechanics at the 
laminate-level to predict damage initiation and evolution as a function 
of applied strain using a single material property, i.e., the fracture 
toughness GIc of the lamina, which is measured by matching the pre
dicted with the measured crack density as a function of strain. 

The extension of DDM for fatigue requires an additional parameter, i. 
e., the defect-nucleation ratio, which was obtained using data from 
thermal-fatigue tests [27, Ch. 11]. The validation of the DDM framework 
[16–18] for mechanical fatigue has not been studied yet. Such validation 
requires measuring crack-density accumulation and laminate stiffness 
reduction as a function of the number of cycles. 

There are different approaches for crack density measuring during 
fatigue testing. The in-situ method typically employs a camera to cap
ture the edges of the specimen, that are painted in white color before 
testing, to provide better contrast for cracks visualization [7,8]. The 
method is convenient, but the damage state on the edges might not be 
the same as the damage state in the interior section of the specimen, so 
crack density value may become ill-informed in this case. 

Meanwhile, it is reported that when the cracking lamina is suffi
ciently thick, cracks from the edges immediately span all the width of 
the specimen and thus, there are equal crack densities on the edges and 
in the central part of the specimen [7,8]. Full field fatigue cracking 
detection in a specimen is often done by tomography, which necessitates 
multiple removals of the specimen from the testing device. The ex-situ 
measuring of the internal damage by tomography has been shown to 
affect the posterior accumulation of cracks during loading and fatigue 
life [28,29]. 

In contrast to physically based models, such as DDM [18], 
phenomenological models circumvent the need for non-destructive 
crack-density extraction during fatigue testing by relying on residual 
strength or residual stiffness measurements as a function of number of 
fatigue cycles [30–33,38,39]. For the residual-stiffness model, obtaining 
the empirical relationship between elastic properties and the number of 
load cycles requires a set of typical strain-measurement devices, such as 
strain gauges, extensometers, optical strain sensors, etc. [34,35]. The 
thus obtained dependencies give approximated laws of stiffness degra
dation described by several empirical parameters. 

The required data for phenomenological fatigue damage models is 
easy to collect, but the more universal and accurate the model is, the 
more experiments it requires, which results in massive testing cam
paigns. See for example [36]. It must be noted that parameter identifi
cation may require new or additional testing for each material system 

and each laminate stacking sequence (LSS). 
This work proposes a method, using only stiffness degradation data, 

to obtain the damage and fatigue properties needed for physically based 
fatigue models such as DDM [18]. The proposed framework employs 
analytical DDM equations combined with residual fracture toughness 
equations. A Nelder-Mead [37] minimization algorithm is used to obtain 
the fatigue properties from standard stiffness-degradation experimental 
data. The proposed methodology is demonstrated using fatigue data 
from the literature [7,8]. 

2. Discrete damage mechanics 

The objective of this section is to present the equations used to 
calculate the reduced modulus Ex as a function of crack density λ. The 
equations are then used to fit experimental Ex

Ex0
(λ) data and thus to obtain 

the crack density corresponding to each experimental value of Ex. Spe
cifically, the crack density corresponding to each experimental value of 
Ex is calculated. It is then possible to use another equation to calculate 
the Energy Release Rate (ERR, GI) as a function of crack density λ that 
allows such values of crack density to occur. Furthermore, the calculated 
ERR GI, which decreases with the number of cycles, can then be used to 
calculate the defect-nucleation function f(N) that characterizes the fa
tigue phenomenon. Additionally, when deviations from calculated vs. 
experimental modulus data are noted, it is possible to detect when de
laminations appear. 

The scope of the present study includes symmetrical, balanced 
laminates, subjected to in-plane load. It is shown elsewhere [12,16,19], 
that for such a case, matrix cracks grow parallel to the fiber direction, 
and they are approximately equally spaced. Thus, it is assumed that the 
cracks are spaced regularly. This allows us to consider a representative 
volume element (RVE) of the laminate region between neighboring 
cracks. The crack density in the lamina is defined as: 

λi =
1
2l

(1) 

Nomenclature 

List of symbols: 
λ crack density, mm− 1 

GI energy release rate, N/mm 
GIc critical value of energy release rate, initial fracture 

toughness, N/mm 
GÍc fatigue fracture toughness, N/mm 
l half distance between cracks 
ε⌢x average laminate deformation 
σ̂x stress applied to the boundary of the RVE 
u0(x) fundamental homogenous solution 
ui

1(x,z) perturbations produced by the intralaminar cracks 

τxz interlaminar stresses 
[A] eigenvalues 
[V] eigenvectors 
δjs Kronecker delta 
f(N) defect-nucleation function 
β defect-nucleation rate 
Ex0 initial longitudinal elastic modulus, MPa 
Ex fatigue longitudinal elastic modulus, MPa 
Eexp

x longitudinal elastic modulus from experiment 
EDDM

x longitudinal elastic modulus obtained with DDM 
N cycle number 
R mean squared error  

Fig. 1. RVE with cracks [16].  
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where 2l is the distance between cracks. (Fig. 1) shows the RVE with 
dimension 2l× 2h× 1, where 2h – the thickness of laminate. 

The initial value of crack density λi is assumed to be a small value 
about 0.01 mm− 1. The inclusion of such initial defects is justified by the 
physical material state after fabrication, where some small defects are 
always present. Also, the computational model of DDM doesn’t work 
without any crack density prescribed. The initial crack density doesn’t 
affect elastic modulus, which is verified by comparison of DDM pre
dictions to CLT result for Ex modulus. 

In case of pure mechanical loading (temperature increment is absent: 
ΔT = 0), the unit stress applied on the boundary of the RVE σ̂x = 1 
serves to find the effective elastic moduli of the laminate Ex as a function 
of the crack density λi [16]: 

Ex =
1
ε⌢x

(2)  

ε⌢x =
u⌢(l)

l
(3)  

where ε⌢x is average laminate deformation, resulting from a unit stress 
σ̂x = 1 applied at the boundary of the RVE, and u⌢(l) is the average 
displacement on the boundary of RVE. The average displacement 
calculation is based on following assumptions:  

1. Lines initially normal to the middle surface remain incompressible 
(εz = 0).  

2. Small deformations and infinitesimal strains.  
3. For narrow plates and beams, σy = 0. 

Taking all these assumptions together, results in the following ki
nematics: 
⎧
⎪⎪⎨

⎪⎪⎩

ui = ui(x, z) = u0(x) + ui
1(x, z)

vi = 0, or vi = v0(y)
wi = 0

(4)  

where u0(x) is the fundamental homogenous solution and ui
1(x, z) are 

perturbations produced by the intralaminar cracks. 
Next, it is possible to calculate the displacements (4) using a 1D 

formulation, which allows for an analytical solution for all the un
knowns. If one lamina is damaged, the stress on other laminas should 
increase. At the same time, at both ends of the RVE (Fig. 1), the cracked 
lamina does not carry axial stress. However, due to the bonding with 
other laminas, interlaminar stresses τxz appear to ensure continuity of 
displacements at the interface between laminas. For a symmetric lami
nate, the displacements must be symmetric. The interlaminar stresses 

must be antisymmetric with respect to the middle surface and null at the 
middle surface (Fig. 2). The interlaminar stresses are assumed to be 
linear across the thickness, so the average displacement depends on a 
single independent variable x. However, interlaminar stresses can be 
refined by subdividing the cracking lamina through the thickness [16]. 

The above considerations lead to the following equation for the step 
difference between the interlaminar stresses τxz (5): 

τi,i+1
xz − τi− 1,i

xz =
∑N− 1

j=1

[
H− 1

i,j − H− 1
i− 1,j

]
[û(j + 1) − û(j) ] (5)  

where Hi,j is the coefficient matrix [16]. Then, using the equilibrium 
equations (6): 

∂σ̂x

∂x
+

τi,i+1
xz − τi− 1,i

xz
hi

= 0

σy = C(x)

σz = 0

(6)  

the system of ordinary differential equations can be obtained (7): 
{

üi

}

+ [D]{ui} = 0 (7) 

After rewriting [D] in terms of eigenvalues [A] and eigenvectors [V] we 
get an uncoupled system of ordinary differential equations (8): 
{

Z̈i

}

+ [A]{Zi} = 0 (8) 

A detailed derivation of the equations can be found in [16]. 
At that point the 1D problem is reduced to a characteristic equation, 

the solution of which results in a linear combination for the average 
displacements in lamina i: 

u⌢i =
∑N

j=1
VijZj (9)  

where 

Zi = riexp
(

x
̅̅̅̅̅̅̅̅̅
− Ai

√ )
+ siexp

(
− x

̅̅̅̅̅̅̅̅̅
− Ai

√ )
(10)  

where ri and si are constants to be found in terms of the boundary 
conditions, Ai are the eigenvalues, and Vij are the eigenvectors in (8). In 
(10), all eigenvalues Ai are negative, so (10) it can be written as 

Zi = pisinh
(

x
̅̅̅̅̅̅̅̅̅
− Ai

√ )
i = 1…N (11)  

where pi = 2ri. 

Fig. 2. Interlaminar stress distribution [16].  
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Let’s consider one of the Zi components, as shown on Fig. 3. 
Fig. 3 shows that ZS represents a homogeneous deformation (con

stant strain) for the case of a small eigenvalue AS. It can be seen that in 
the interval − l < x < l, the plot is almost linear. Thus, for this particular 
component ZS, the deformation (strain) is nearly homogeneous (con
stant). For the sinh function to become linear in the range − l < x < l , 
the eigenvalue AS must be very small and the amplitude pS very large, 
which leads to numerical problems. To solve this issue, the homoge
neous deformations is approximated by a zero eigenvalue and a linear 
function ZS = x. Then, the average displacements become: 

u⌢i =
∑N

j=1

(
1 − δjs

)
VijZj + ε0

xx (12)  

where ε0
x is the constant strain corresponding to the homogeneous 

deformation. 
In order to use the average displacement equation (12), it is neces

sary to obtain the constants pi and ε0
x , which is done using the following 

boundary conditions for the RVE: 

1. Homogeneous deformation on the boundary: The average displace
ment in every lamina (m) except for the cracking lamina (k), must be 
the same 

u⌢m( ± l) = u⌢r( ± l); ∀m ∕= k (13)  

where any lamina r without cracks is taken as reference.  

2. Stress free crack surface: The cracking lamina (k) is subjected to zero 
stress because the cracks are on the boundary of the RVE at ±l 
(Fig. 1) 

∫ 1
2

−
1
2

σ⌢k
x(l)dy = 0 (14)  

where the integration limits represent the length in the y-direction (90◦- 
fiber direction) for the RVE.  

3. External load: The load is applied to the entire laminate except for 
the cracking lamina, because there is a free surface at x = ±l (Fig. 1) 

∑N

i=1
(1 − δik)hi

∫ 1
2

−
1
2

σ⌢i
x(l)dy = Nx = hσ⌢x (15)  

where h =
∑N

i=1hi is the thickness of the symmetric half of the laminate, 
k is the cracking lamina (90◦-fiber direction in this case), δ is the Kro
necker symbol, and σ⌢x without a superscript is the average stress applied 
to the laminate. 

Once the average displacement is found, the reduced stiffness Ex can 
be calculated using (2). The calculated reduced stiffness is used to obtain 
the crack density λ. 

For a crack to grow, the Griffith/Irwin condition must be met [18]: 

GI(λ)⩾GIc (16)  

where GIc is the critical value of the Energy Release Rate (ERR) in mode 
I. 

The value of the Energy Release Rate (ERR) for the case of uniaxial 
loading is obtained by [22, Eq.18]. 

GI =

(

−
t
hk

ΔE
2Δλ

)

ε2
x (17)  

where t is the thickness of the laminate, hk is the thickness of the 
cracking lamina, and ΔE = E(2λ) − E(λ) is the difference between 
degraded laminate moduli for two successive crack states:λ and 2λ. The 
ERR GI(N) as a function of number of cycles can thus be calculated using 
(17). Then, the ERR can be used to characterize the damage-nucleation 
function f(N) that represents the state of the material with respect to 
fatigue. 

3. Fatigue analysis framework 

Quasi-static damage in the laminate takes place either after the first 
fatigue cycle (N1) or after a finite number of cycles (Ni). At that point in 
the life Ni of the specimen, the material reaches an equilibrium state 
where the applied energy release rate (GI) is equal to the critical ERR GIc 
(i.e., the quasi-static fracture toughness). Any repetition of the load 
excursion does not lead to further damage because, as soon as the ma
terial damages, the ERR becomes less than the associated fracture 
toughness GIc of the material. In other words, the damage activation 
condition (16) is no longer met. 

Under fatigue loading, even at constant amplitude, new defects arise 
and coalesce into new cracks. This process is controlled by hydrostatic 
stress in vicinity of micro-level defects. In this way, the crack-densities 
keep on growing during cycling, and for modelling purposes, this may 
be interpreted as degradation of the fracture toughness GIc of the ma
terial. The proposed equation for degradation of fracture toughness with 
cyclic loads application is [27, (11.7), (11.9)] is: 

Gʹ
Ic = GIcf(N); 0 < f(N) < 1 (18) 

In equation (18), Gʹ
Ic is the fatigue fracture toughness, N is the 

number of cycles, and f(N) is the defect-nucleation function, controlled 
by stress. 

At any given number of cycles N during fatigue loading, the increase 
in crack densities requires the Griffith/Irwin condition to be met: GÍc =

GI. The current fracture toughness GI can be evaluated at any known 
crack-density λ using (17) and then, the defect-nucleation function f(N)

can be derived [27, Ch. 11] as the quotient of the fatigue fracture 
toughness and the quasi-static fracture toughness values: 

f(N) =
Gʹ

Ic
GIc

(19) 

Using experimental data for thermal fatigue, processed through 
equation (19), the defect-nucleation function f(N) for thermal fatigue 
was approximated by [(11.9) in [27]] in terms of the defect-nucleation 
rate β: 

f(N) = 1 − βlogN; β > 0 (20) 

The fatigue analysis framework developed in [27] applies to com
posite materials loaded by temperature cycles only. In the present study, 
the fatigue analysis framework from [27] is applied to the case of 
composite materials under stress-controlled loading cycles. Application 
to a stress-controlled situation requires modification of the equations in 
[27], which impacts the results (see Section 5.2), as follows: 

f(N) = 1;N < Nth
f(N) = a − βlog(N); N⩾Nth

(21)  

where Nth is the defect-nucleation threshold, indicating the number of 
cycles when defect-nucleation begins, and a is the ordinate at the origin 

Fig. 3. Elemental function of ZS for small eigenvalue AS.  
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of the defect-nucleation function. This is similar to metal fatigue, where 
the High Cycle Fatigue (HCF) S-N line runs above the Low Cycle Fatigue 
(LCF) line. Furthermore, Nth is similar to the transition life NT where the 
LCF and HCF lines intersect in the S-N diagram. 

4. Material identification procedure 

The input data for the identification procedure is based on modulus 
degradation data Ex(N) (Fig. 4). 

The purpose of the identification procedure is to obtain a set of crack 
densities for all laminas that corresponds to a laminate modulus in the 
direction of load EDDM

x that approximates the experimental value Eexp
x for 

the entire range of fatigue life N. The objective function is chosen as 
follows: 

Ri =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

EDDM
x,i − Eexp

x,i

Eexp
x,i

)2
√
√
√
√ (22)  

where i = 1…n, and n is the number of experimental data points (Fig. 4). 
The proposed minimization procedure can be described as follows:  

1. Get the first experimental value of laminate moduli Eexp
x1 .  

2. Assume a crack density λ1,1 for the first iteration.  
3. Evaluate the elastic modulus of the laminate EDDM

x1 using DDM 
equations (2), (13)–(15).  

4. Calculate the objective function R (22). If its value is within the 
prescribed tolerance, then advance to step 6. If not, the optimizer 
must reevaluate the crack density for the next iteration using Nelder- 
Mead algorithm [37]. Then, repeat steps 2–5 until the objective 
function becomes smaller than a predetermined tolerance 
(R⩽0.005). The positive aspect of the Nelder-Mead algorithm is that 
the function to be minimized doesn’t need to have a derivative of any 
order, which is the case for DDM-based objective function in Eq. 
(22). The negative aspect of the Nelder-Mead algorithm is that it may 
require more attempts to converge in comparison with gradient 
based methods. In this work, no such convergency issues were found 
during data processing using the Nelder Mead algorithm.  

5. Converged values of crack densities for the current experimental 
point are selected as the minimum possible crack-density value for 
the next iteration.  

6. The next experimental point Eexp
x2 is taken. The iterative process to 

find the crack density λ2 is conducted as in steps 2–5, with minimum 
possible crack density evaluated at step 6, until the required level of 
minimization of the objective function is achieved.  

7. The minimum possible crack density is updated.  

8. The rest of experimental points are processed using steps 1–8 until 
the optimum crack densities for all n experimental points are 
obtained. 

The calculated crack densities λ are used to calculate the fatigue 
fracture toughness GÍc using equation (17), and then, the defect- 
nucleation rate β is calculated using a linear approximation of f(N)

with respect to N in the form shown in (21). The applied strain ε to be 
used in equation (16) is calculated using the applied known experi
mental stress σ and the degraded modulus Ex(λ) calculated for each point 
in the loading history. 

For the considered lay-up, crack density accumulation is dominated 
by the defect-nucleation phenomenon, which has a physical meaning. 
Therefore, crack density accumulation is directly related to elastic 
modulus degradation. 

5. Validation 

5.1. Experimental data 

To illustrate the proposed method, recently published experimental 
results were used [7,8] that provide comprehensive experimental data 
for the fatigue process in CFRP cross-ply specimens, including S-N 
curves, E-N curves, crack density versus number of cycles, and crack 
density versus stiffens degradation. 

The first dataset [7], includes seven specimens made of unidirec
tional (UD) Prepreg Hexply F6376c-HTS(12K)-5–35 % with [02/904]s 
lay-up. These were tested under tension–tension fatigue loading with 
stress ratio R = 0.1. UD lamina properties are shown in Table 1. 

The fatigue tests were performed at room temperature, with sinu
soidal loading with peak stress of 507 MPa (70 % of ultimate tensile 
strength (UTS)), stress ratio R = 0.1, and frequency 5 Hz. At the end of 
each 500-cycle interval of loading–unloading, a ramp with a rate of 19 
kN/s was applied to measure stiffness degradation. To measure crack 
density, the edge surface of each specimen was covered with white paint 
and shot by two cameras. Obtained photos were processed with MAT
LAB image-analyses code to count cracks in 90-degree plies. 

The second dataset [8] included [02/904]s and [0/902]s layups. The 
dimensions and material were identical to those of the first set. Speci
mens with [02/904]s lay-up were subjected to peak stress levels at 74, 
70, 66, 63 % of UTS and specimens with [0/902]s lay-ups at 77, 70, 63 % 
of UTS. UTS was obtained experimentally from quasi-static tests con
ducted before the fatigue tests. The fatigue testing conditions were the 
same as for the first test. 

Digital image correlation (DIC), acoustic emission (AE), and camera 
shooting systems were used together to collect data about crack density, 
as well as delamination onset and evolution. Also, stiffness degradation 
and Poisson’s ratio evolution data were collected. 

For validation of the proposed method, data of specimens with [02/ 
904]s lay-up from both datasets are used in this work. 

Fig. 4. Example experimental Ex(N) curve. Data from [7], labelled “data-3” in 
Figs. 5 and 6. 

Table 1 
Monolayer material properties [7].  

Parameter Value 

Longitudinal modulus E11T = 142GPa 
Transverse modulus E22T = E33T = 9.1GPa 
In-plane shear modulus G12 = G13 = 5.2GPa 
Transverse shear modulus G23 = 3.5GPa 
Longitudinal strength XT = 2274MPa,Xc = 1849MPa 
Transverse strength YT = 102MPa,YC = 255MPa 
In-plane shear strength S12 = S13 = 63MPa 
Transverse shear strength S23 = 35MPa 
In-plane Poisson ratio ν12 = ν13 = 0.27 
Ply thickness t = 0.125mm  
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5.2. Results and discussion 

The key part of the validation is to first assure that the DDM 
framework presented above is capable of mimicking the degaradation of 
elastic modulus as a function of crack density Ex

Ex0
(λ) from experimental 

data. The results are shown on Fig. 5. 
It can be seen in Fig. 5 that the analytical DDM solution closely 

follows the trend of the experimental data up to a point, sometimes for 
the entire range of crack density (data-3, data-19, etc.) but sometimes 
only from zero to some intermediate value of crack density. However, 
for most specimens, a threshold is observed beyond which the experi
mental Ex

Ex0
(λ) values start to deviate significantly from the DDM pre

diction (straight line). This can be explained by the initiation and 
propagation of delaminations, which were captured and reported in the 
experiments. Indeed, the comparison with experimental data for 
delamination onset shows (see Table 2), that in most cases, the deviation 
of experimental Ex

Ex0
(λ) data from DDM prediction corresponds to the 

onset of delamination. In Table 2, the value of the crack density λ, at 
which deviation starts (visually estimated from Fig. 5), was used to find 
the cycle number (delamination onset Nd) at which this crack density 
was achieved in the experiment [7,8]. Then, interlaminar crack ratio, 
defined in [7,8] as the average of maximum observed delamination 
lengths on the left and right sides of the specimen divided by the gauge 
length (~80 mm), was used to define the delamination onset cycle 
number from the experiment. 

Next, the procedure for cyclic damage quantification proposed in the 
current study is further applied to the specimens having the most pro
longed and close to analytical DDM Ex

Ex0
(λ) prediction range. The selected 

data are shown on Fig. 6. 
After the confirmation step described above, the proposed procedure 

for cyclic damage quantification using DDM is implemented. At first, the 
crack densities for the corresponding elastic moduli from one of the 
experiments (Figs. 5 and 6, Experimental data-19) were derived using 
the proposed minimization procedure, as explained in Section 5. The 
results of the minimization, including R, are summarized in Table 3. 

Experimental Eexp
x (N) for the “data-19” dataset is shown in Fig. 4. For 

the same dataset, the calculated crack density in the 90-degree lamina is 
shown in Fig. 7. The increase in crack density versus N is gradual and 
then it becomes faster, in the case of Fig. 7 at N ≈ 58000 when the crack 

density λ is about 1.25 mm− 1. In Fig. 7, the number N was taken from 
experiment, and the crack density is calculated by the proposed 
methodology. 

The results on Fig. 7, supported by Table 3, aim only to show an 
example of the proposed methodology used to calculate the elastic 
moduli as proposed in this work. In Table 3, it can be seen that predicted 
and experimental values of laminate modulus agree for the whole range 
of fatigue life (N = 0–66,386). Also, it can be seen in Table 3 and Fig. 7 
that, for the available range of experimental crack density data (N =
0–17,301), comparison between prediction and experimental data is 
good. The quality of the predicted crack density all the way up to the 
highest life N = 66,386 is advocated on the fact that DDM provides a bi- 
univocal relationship between laminate E and laminae crack densities. 
Such accuracy is supported by comparison to quasi-static experiments in 
[16–19,22–24,27]. DDM’s accuracy is based on its analytical solution of 
the deformation in all laminas, including the perturbations introduced 
by each crack. 

Next, the experimental fatigue performance of the selected speci
mens is considered. The defect-nucleation function is obtained using Eq. 
(18), (19), (21) and the results are shown on Fig. 8. The crack-density λ is 
known, as calculated by the minimization procedure. The applied strain 
ε was calculated using applied stress σ(constant, from experiment) and 
degraded modulus Ex(λ) calculated by the proposed methodology, for 
each point in the loading history. Finally, the ERR GI, and the defect- 
nucleation function f(N) can all be calculated using (18), (19), (21). 

Fig. 5. Comparison of DDM informed and experimental normalized stiffness degradation of the laminate Ex
Ex0 

with respect to accumulated crack density λ[1/mm]

during stress-controlled fatigue experiments. 

Table 2 
Comparison of delamination onset cycles from experiment and method valu
dation data.  

Experimental 
data 

Lay- 
up 

Maximum 
cyclic stress, 
MPa 

N at delamination 
onset from 
comparison of 
DDM and 
experimental 
E
E0

(λ), cycles 

N at 
delamination 
onset from 
experiment 

[7,8] cycles 

7 [02, 
904]s 

507 21,966 25,068 
15 453 61,812 57,086 
17 507 9310 12,827 
2 507 12,397 11,197 
11 480 24,726 27,913  
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As Fig. 8 suggests, the defect-nucleation function f(N), and hence the 
fatigue fracture toughness GIc, is nearly constant (equal to one) up to 
N ≈ 3 × 103…4 × 104 depending on the specimen. The upper limit of 
the number of load cycles Nth quoted above could be called “defect- 
nucleation threshold”, to highlight the threshold number cycles after 
which the quasi-static fracture toughness GIc starts to degrade under 
stress-controlled cyclic loading. 

Such performance differs from earlier observation for thermal fa
tigue [27], where the defect-nucleation function f(N) started to decrease 
after just a few cycles. The observed phenomenon in this work, namely a 
retardation of the defect-nucleation function f(N) evolution may be 
explained as follows. 

Thermal cycling produces thermal strain cycles, and the magnitude 
of the thermal strain decreases with modulus reduction that invariably 
happens as the crack density increases. Such reduction of thermal strain 
precludes further crack density growth. Thus, in thermal fatigue, crack 
density can increase only due to defect-nucleation, as defect-nucleation 
reduces the fatigue fracture toughness. In other words, under thermal 
cycling (or strain driven fatigue tests for that matter) no crack density 
growth can happen unless the defect-nucleation increases. Thus, the 

defect-nucleation function starts to increase (β is negative in (20)) as 
soon as the first crack appears. 

On the contrary, stress driven fatigue (as in [7,8]) does increase the 
strain immediately with any modulus reduction caused by increased 
crack density. Since stress is constant, any damage results in modulus 
reduction and immediate strain increment. Then, as long as the strain is 
increasing, it is not absolutely necessary to rely on defect-nucleation to 
produce new cracks. Thus, the defect-nucleation may remain null (β =

0) while crack density is increasing, but only to a point, which is 
denoted by the proposed defect-nucleation threshold (Nth). 

In the region 0 < N < Nth, using (17), the calculated ERR is GI = is 
0.472 N/mm for the test data chosen (data-19). Due to the assumption 
explained in Section 4, this value is equal to the quasi-static critical 
energy release rate GIc. After Nth cycles, the only way to fit the data in 
Fig. 8 is to let the defect-nucleation increase (beta negative). In the 
proposed analytical model, the region of increase in defect-nucleation 
function is approximated by a linear dependency between f(N) and 
base 10 logN. 

The defect-nucleation rate β was obtained for several specimens from 
the selected datasets. Only data before delamination is used. Only three 
datasets were amenable for analysis with (21) and thus reported in 
Table 4. The remaining datasets terminate abruptly before defect- 
nucleation rate β can be detected. 

As it follows from Table 4, the defect-nucleation rate β values have a 
scatter of about 4 % and no strong dependency on load, which advocates 
it as a proper material parameter to describe the fatigue related pro
cesses in composite materials. 

Also, the results confirm the ability of the proposed method to 
describe cyclic damage with suitable parameters. 

It is also noted from Table 4 that the form of damage nucleation 
function f(N) is different from the one from for thermal fatigue study 
(20), i.e., strain controlled. This result is a direct consequence of stress- 
controlled fatigue loading, with consequent identification of the defect- 
nucleation threshold Nth. 

Furthermore, due to appearance of delaminations, the damage 
nucleation function f(N) for stress-controlled loading should be used 
only in its effective range of cycles N = [0,Nd]. 

The proposed method calculates crack density λ by minimizing the 
error between the modulus calculated by DDM EDDM

x and the experi
mental value Eexp

x obtained during fatigue testing. Ply material proper
ties and LSS are also needed. Furthermore, the defect-nucleation 

Fig. 6. Selected experimental data for the analysis of cyclic damage quantification using the proposed framework.  

Table 3 
Eexp

x is the longitudinal elastic modulus from experiment, EDDM
x is obtained using 

the proposed minimization procedure, λexp is the crack density from experiment, 
λDDM is obtained using the proposed minimization procedure, and R is the 
objective function value (22).  

Point 
# 

N, 
cycles 

Eexp
x , 

MPa 
EDDM

x , 
MPa 

R λexp, 
mm− 1 

λDDM, 
mm− 1 

1 0 53,385 53,367  0.000345 0  0.010 
2 885 53,295 53,295  4.33E− 10 0.027  0.016 
3 4460 52,833 52,833  1.04E− 10 0.120  0.087 
4 8930 52,245 52,245  3.26E− 10 0.208  0.179 
5 12,831 51,711 51,711  4.55E− 10 0.265  0.265 
6 17,301 51,141 51,141  2.89E− 10 0.314  0.361 
7 21,770 50,661 50,661  1.91E− 10 − 0.449 
8 26,321 50,200 50,200  1.82E− 10 − 0.543 
9 31,766 49,775 49,775  1.88E− 10 − 0.644 
10 37,048 49,331 49,331  9.03E− 11 − 0.773 
11 44,687 48,825 48,825  1.20E− 10 − 0.969 
12 51,920 48,526 48,526  4.55E− 11 − 1.131 
13 58,340 48,255 48,255  2.85E− 11 − 1.334 
14 66,386 47,857 47,857  2.45E− 11 − 1.859  
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function f(N) (21) with parameters β and Nth are needed and obtained 
from the same experimental data, recast into Fig. 8. Also in Fig. 8, at N→ 
0, f(0)→1, and GÍc = GIc, so that (19) provides the quasi-static fracture 
toughness GIc. Furthermore, in Fig. 8, defect-nucleation starts at Nth, 
thus allowing to find Nth from the same experimental data. 

There are no material parameters adjusted during minimization. 
Minimization is used only to predict crack density λ(N) excluding the 
necessity to measure it during fatigue testing. Through minimization, 

the crack density is calculated and results in predicted stiffness degra
dation that will match the experimental stiffness degradation. The 
calculated and experimental values of both Ex and λ are compared in 
Figs. 5 and 6. The deviation of calculation from experiments in Fig. 5 
allows us to detect when delaminations occur, as reported in Table 2. 

In its current state, the proposed fatigue analysis framework cannot 
be used directly to model crack density accumulation for cases where 
delamination damage mode dominates, such as delamination during 

Fig. 7. Crack density accumulation λ(N) calculated by the proposed methodology.  

Fig. 8. Defect-nucleation function f(N) during fatigue loading.  

Table 4 
Defect-nucleation rates, thresholds, and functions, for selected specimens.  

Experiment # Lay-up Maximum cyclic stress, MPa Defect-nucleation threshold, 
Nth, cycles 

Defect-nucleation rate, β Defect-nucleation function, f(N) (21) 

3 [02,904]s 507 6 × 103  1.134 5.58–1.134logN 
15 453 2 × 104  1.123 6.25–1.123logN 
19 507 6 × 103  1.203 5.88–1.203logN  
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compression after impact [40] and delamination onset [41]. Further 
development of the proposed analysis method will be addressed in 
future work. 

6. Conclusions 

In this study, a method for damage quantification based on experi
mental stiffness degradation data for composite laminates subjected to 
fatigue load is proposed. The framework of discrete damage mechanics 
is shown to provide valid predictions of crack density corresponding to 
experimental values of elastic moduli degradation. Furthermore, the 
framework provides an analytical expression to calculate the initial 
(quasi-static) fracture toughness and then, the fatigue fracture toughness 
as a function of life N and applied strain, even when such strain is 
calculated from the available experimental data of stress using the 
modulus data. Knowing the quasi-static and fatigue fracture toughness, 
it is then possible to calculate the fatigue-controlled defect-nucleation 
rate. Furthermore, an additional parameter is proposed in this study to 
identify the threshold life at which the defect-nucleation starts to occur. 
And finally, delamination onset can be detected by analyzing the devi
ation of the modulus-reduction experimental data from the linear 
decrement predicted by the analytical solution. 

The procedure of minimization, based on Nelder-Mead algorithm, 
provides accurate results in finding the crack-density after known stiff
ness degradation for a range of points, where matrix cracking was the 
dominant damage mechanism. This fact simplifies the experimental 
work to just measuring modulus reduction rather than counting cracks, 
thus avoiding the experimental hurdles that the latter entails. 

An additional parameter was introduced to characterize the fatigue 
performance of composite material, namely the number of cycles until 
the start of fracture toughness degradation, which was named “defect- 
nucleation threshold”. This parameter appears to be a peculiarity of 
stress-controlled fatigue loading, unlike strain-controlled loading where 
the defect-nucleation in the material initiates at the very beginning of 
the load history. 

The defect-nucleation rates that were obtained in this study have a 
small scatter, thus advocating the defect-nucleation rate as a reasonable 
property for characterization of fatigue behavior of composite materials 
subjected to cyclic loading. 

The effect of the delamination on the fatigue life of composites will 
be studied in future research. In the present form, fatigue crack density 
accumulation characterization by the proposed methodology can be 
achieved in the number of cycles ranging up to delamination onset. 
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