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Abstract

A methodology to predict thermal-fatigue damage in laminated composites is presented. Limited
data is used to characterize the material system. It is reported that a small number of parameters
are enough to characterize the fracture-controlled transverse cracking phenomena and the stress-
driven fatigue damage due to defect nucleation and related phenomena. A fatigue damage-initiation
criterion and a kinetic equation for fatigue-damage growth are proposed. Further, it is found that
Paris Law applies for constant thermal ratio, and that it can be further generalized into a Master
Paris Law applicable to arbitrary thermal ratio. These findings form the basis for a methodology
to extrapolate available data.

Introduction

A broad variety of composite structures are subjected to thermal fatigue, leading to delaminations,
fiber-matrix debonding, loss of hermeticity, and fibers exposure to corrosive environments. Aircraft
sit on the tarmac at +60oC and fly at -60oC. With a typical flight schedule of four takeoff and
landings/day, they accumulate 1,460 cycles/yr. Low Earth Orbit satellites operating between -
156 and 123oC with 90 min orbits, accumulate 5,760 cycles/yr. Windmill blades can be subjected
to daily temperature variations up to 57oC plus highly variable wind loads. On the other hand,
available thermal fatigue data are limited to only 500 cycles with a few exceptions up to 4000 cycles.
Data is scarce because thermal fatigue tests are slow (4–5 cycles/hr); thus, they are performed
for few cycles, at few values of thermal ratio, for few laminate stacking sequences. To aggravate
matters, the materials properties are temperature dependent1, thus requiring additional testing
effort. Intralaminar transverse cracking in one or more laminas is quantified by the lamina crack
density [cracks/mm], which is measurable by various techniques2 and becomes the state variable
for the simulation. Therefore, a methodology is needed to help us design a short yet meaningful
testing program, and to extrapolate the data to other situations with confidence.

Experimental observations3–8 for both quasi-static and mechanical-fatigue loading reveal what
crack density rate (dλ/dN) is fast at the onset of intralaminar damage and tapers off to nearly
zero at some point in life N , at a value of crack density λ that is called characteristic damage state
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(CDS). Similar behavior is observed at stress raisers such as in OHT and OHC quasi-static tests.9–12

At CDS, crack density stops growing either because of relaxation of the stress concentration or by
the relaxation induced by the onset of delaminations.13,14

Crack density evolution studies of mechanical fatigue of laminated composites15–19 point out
that CDS seems to be a function of laminate stacking sequence (LSS) and material properties, but
apparently independent of loading conditions. Also, experimental data showing similar values of
CDS for both, quasi-static and mechanical fatigue up to 4000 cycles is presented in14. However,
very few studies reach 4000 cycles of thermal fatigue due to the difficulty of achieving high number
of thermal cycles in a reasonable time, and for those that reach that number, the data does not
seem to support reaching CDS at that early number of cycles.9,10,20–22

Ample experimental evidence shows that thermal fatigue, as well as mechanical fatigue, reveals
itself in the form of transverse cracks, and only at later stages in the “life” of the specimen,
other modes of failure such as fiber failure and delaminations may appear. This work investigates
thermal fatigue using data available in the literature and attempts to develop a simulation based
on intralaminar matrix cracking phenomena. Since delaminations are not included in the proposed
formulation, applicability of the predictions maybe limited by onset of delaminations at late stages
when the number of cycles is sufficiently large.

The temperature ranges used in this manuscript are not related to specific applications but to
the availability of experimental data. Viscous effects have not been taken into consideration.

The present formulation is a constitutive model that has been incorporated as a user subroutine in
Abaqus®. The constitutive model calculates the damage and reduced stiffness for any temperature
and number of cycles. The host Finite Element software (Abaqus in this case) calculates the stress
and strain at every Gauss point to maintain equilibrium with the external loads and boundary
conditions. The effect of structural boundary conditions are incorporated through the stress/strain
field calculated iteratively by the Finite Element software.

The Quasi-Static Problem

In this section we explain how quasi-static fracture mechanics, codified into the Discrete Damage
Mechanics Software (Ch. 8 in23, Ch. 9 in24), is used to obtain values for the temperature-dependent
fracture toughness* GIC in terms of available experimental data of crack density vs. temperature
under quasi-static (no fatigue) conditions.

The bibliography on distributed damage in composite laminates is extensive.25,26 Among the
multitude of damage models available, discrete damage mechanics (DDM) is attractive for this
study because, in addition to the usual elastic properties, it requires at most two values of fracture
toughness GIc and GIIc (usually just one needed) to predict both damage initiation and evolution
due to transverse and in-plane shear stresses for general laminates subjected to general loads.27

Since for most materials GIC < GIIC , and for most laminates loaded under usual conditions the
Energy Release Rates (ERR) are such that GI > GII , only GIC is usually necessary. This is even
more true for thermal loading, as show in Fig. 1.

DDM is an objective (mesh independent) constitutive model, meaning that when implemented
in FEM software, it does not require guessing of characteristic length Lc in order to reduce mesh

∗Although GIC is a critical energy release rate, with units [kJ/m2], the abbreviated term “fracture toughness” is

often used in the composites literature, not to be confused with the classical fracture toughness KIC used for isotropic
materials.
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Figure 1. ERR GI and GII vs. temperature during one thermal cycle for P75/1962 [0/± 45/90]S in the range
[-156, 121oC], with stress free temperature SFT=177oC. 1

dependency.28 DDM is available as a plugin for Abaqus24 and ANSYS29, and it has been extensively
validated.

DDM is based on an analytical solution30 of the displacement field inside a representative volume
element (RVE, Fig. 2) encompassing the laminate thickness t with N laminas, a unit length along
the fiber direction x1 of the cracking lamina k = c, and a distance 2` = 1/λc in the transverse
direction x2. Homogenization of the damaged stiffness of the N laminas, coupled with an iterative
procedure allows all laminas k = 1 . . . N in a laminate to be cracking simultaneously with different
crack density λk values at a given time. For a given damage state λ = {λk}T and applied 2D
thermomechanical field ε = {ε1, ε2, γ6,∆T}T at a Gauss integration point of a shell element, DDM
determines the local 3D displacement field ui(xj) analytically, with i, j = 1 . . . 3, from which it
calculates the local strain field and stress field including intralaminar stresses, as well as damaged
lamina [Q], damaged laminate stiffness matrices, and energy release rates (ERR) in modes I and
II, GI , GII . The later are used in an interacting damage initiation and evolution criterion

g = (1− r)

√
GI(λ, ε,∆T )

GIc
+ r

GI(λ, ε,∆T )

GIc
+
GII(λ, ε,∆T )

GIIc
− 1 ≤ 0 (1)

with r = GIC/GIIC . Note that the fracture toughness GIC and GIIC are the only material
properties needed to predict both initiation and evolution of crack density under quasi-static
conditions, and usually only GIC is necessary. Fatigue loading requires at most two additional
parameters, which are the defect nucleation rates βI , βII , as explained later in this paper. No
hardening exponents or any other damage evolution material properties are needed to describe the
kinetic evolution of damage. The ERR values GI , GII in modes i = I, II are calculated as

Gi =
Ui,a − Ui,b

∆Ac
(2)
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Figure 2. Representative volume element for Discrete Damage Mechanics (DDM).

where UI,a, UI,b, UII,a, UII,b are the elastic strain energies in modes I and II, for crack densities λa
and λb = 2λa, and ∆A is the increment of crack area when a new crack propagates (Sect. 8.4.7
in23). Mode decomposition is achieved by splitting the strain energy U into mode I (opening) and
II (shear) and adding the contribution of each lamina k = 1 . . . n as follows

UI =
VRV E

2h

n∑
k=1

tk(ε2 − α̃(k)
2 ∆T )Q

(k)
2j (εj − α̃(k)

j ∆T ) (3)

UII =
VRV E

2h

n∑
k=1

tk(ε6 − α̃(k)
6 ∆T )Q

(k)
6j (εj − α̃(k)

j ∆T ) (4)

where h =
∑n

k=1 tk, ε6 = γ12, and α̃(k) are the undamaged CTE of lamina k. Equation (3) is cast in
the coordinate system of the cracking lamina k so that ε2 is mode I (crack opening) and ε6 is mode
II (crack shear). Laminate ultimate failure is predicted by a fiber damage and failure criterion.31

DDM assumes local uniformity of crack spacing and linear distribution of intralaminar stresses
in each lamina. Despite these assumptions, predicted results correlate extremely well with available
data for a broad variety of material systems (Carbon and Glass reinforced composites), laminate
stacking sequences (LSS)32, and loading conditions including open hole tension data up to
failure.12,31,33,34

Since the size of the RVE (1× t× 1/λk) is dictated by the crack density λk, not by the element
size, and the solution is in terms of displacements, not stress or strain, the predictions of the
DDM constitutive model are mesh-density and element-type independent. The only effect of mesh
density is on the quality of the stress/strain field, as it is well known for the finite element method.
Mesh/element-type insensitivity (i.e., model objectivity) is a remarkable advantage with respect
to cohesive zone constitutive models that produce results that are mesh-density and element-type
dependent.

Thermal fatigue produces intralaminar matrix cracking, resulting in stiffness reduction, stress
redistribution that may induce fiber failure, delaminations, and loss of hermeticity. For each fatigue
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cycle, intralaminar matrix cracking can be predicted with DDM, which provides a solution for crack
density λ [1/mm] in lamina k that can be summarized as follows

λ = λ(GI , GIC) ; GI = GI(ε,∆T,Q) ; Q = Q(λ) (5)

where the function λ() calculates the crack density as a function of energy release rate (ERR)
GI and fracture toughness GIC ; the function GI() calculates the ERR as a function mechanical
strain ε (if applied), temperature range ∆T = Tmin − Tmax, and laminate stiffness Q; and finally
the function Q() calculates the laminate stiffness as a function of crack density.

Although DDM can be summarized by (5), it is implemented in software, and thus it can also
calculate GI implicitly as a function of λ, for a given set of GIC ,∆T, ε, which is useful for the
formulation of the fatigue model explained later in this paper. In other words, we can think of the
DDM code as capable of solving (5) implicitly for any single variable in (5).

In DDM, an embedded iterative process finds λ for all laminae k = 1 . . . N , as a function of
applied strain and temperature. It solves for λ inside a representative volume element (RVE) with
volume V = 2LH, where 2L = L/λ, and H is the laminate thickness.23 The quasi-static version of
DDM is available as a plugin for Abaqus24 and ANSYS29, and it has been extensively validated.
A plugin for the thermal fatigue version of Discrete Damage Mechanics (DDM6TM) is available in
http://barbero.cadec-online.com/feacm-abaqus/sourceCode.html.

DDM requires only one material property, the fracture toughness GIC to predict initiation,
accumulation, and saturation crack density in a laminate subjected to quasi-static thermal
and/or mechanical loading. Thermal stress and temperature-dependent material properties are
incorporated. Fatigue effects are added in this work.

Matrix cracking of laminates under thermal stress is controlled by the in-situ fracture toughness
GIC of the material system. GIC data can be obtained indirectly in terms of the effects of matrix
cracking, such as modulus reduction or crack density. Due to the high stiffness of carbon fibers,
modulus reduction due to matrix cracks is small and difficult to measure because the modulus
reduction in the direction normal to cracks is obscured by the high modulus of non-cracking
laminae. Therefore, in this work we use crack density data, which is always measurable by optical,
tomography, or acoustic emissions methods, allowing us to simply count the cracks as a function of
applied mechanical or thermal strain.2

The quasi-static fracture toughness GIC is adjusted from crack density data at each temperature
by minimizing the error D

D =
1

N

√√√√ N∑
j=1

(λj − λdj )2 (6)

between crack density λj predicted with (5) and experimental λdj crack density data at each
temperature. The temperature-dependent results are then fitted as a function of temperature with
a quadratic polynomial

GIC = a+ bT + cT 2 (7)

with parameters a, b, c shown in Table 1. A temperature-independent (average) value of GIC can be
obtained by using all the data for all temperatures at once in (6), with values shown on the next to
last column of Table 1. The results are plotted in Fig. 3, where it can be seen that the temperature-
dependence of GIC is not strong. This is due to the compensating effects of the material becoming
more brittle but with a lower CTE at low temperature.1
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Table 1. Temperature dependent fracture toughness for Carbon/Epoxy P75/1962 adjusted from crack density
data vs. temperature.

Material Vf Temperature a b c GIC Ref.
range [oC]

P75/934 0.65 [-160,20] 50.0561 -4.3006 10−2 6.3749 10−4 53.4050 35

P75/1962 0.52 [-160,-15] 77.8054 9.6211 10−2 1.3948 10−3 84.4808 10

AS4/3501-6 0.64 [-190,20] 61.9052 -1.6097 10−1 -5.0412 10−4 68.0664 9

Figure 3. GIc vs. temperature for P75/934, P75/1962, and AS4/3501-6.

The First Cycle of a Fatigue Test

This section provides background for the fatigue phenomenon presented in the following section.
We introduce the concept of crack propagation being initiated at large enough defects such as voids
and crazes. Such propagation is governed by energy considerations rather than stress.

The Griffith/Irwin fracture criterion is used in this work as damage-initiation criterion, taking
into account that a single intralaminar matrix crack does not by itself causes fracture of the whole
laminate, but rather contributes to the deterioration of the laminate in the form of damage. The
Griffith/Irwin fracture criterion states that when the Energy Release Rate (ERR) GI exceeds the
fracture toughness GIC , a new crack appears, i.e.,

ξ =
GI

GIC
≥ 1→ new intralaminar crack (8)

According to Irwin, inelastic dissipation at the crack tip is included in GIC , because the polymer
is quasi-brittle and the plastic zone is small with respect to the crack dimensions, which is satisfied
for this problem because the crack size is equal to the lamina thickness, and thus much larger than
the plastic zone.30 Therefore, quasi-static DDM23,24,29 can be used to calculate crack density as a
function of applied strain and/or temperature, or alternatively ERR as a function of crack density
for fixed strain and temperature. The stress intensity KI and ERR can be written (Ch. 6 in36) as
KI = βσ

√
πtk or

GI(λ) = β2tk(1− ν2)E(λ)ε2 (9)
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where tk is the thickness of lamina k, ε is the applied thermo-mechanical strain, and β is a geometric
coefficient that accounts for the geometry of the crack and the domain. DDM calculates the degraded
material properties ν(λ), E(λ) and the geometric coefficient β. The strain is α∆T . Therefore the
fracture problem is solved if we know the fracture toughness GIC .

For the first cycle (N=1) of a thermal fatigue test, we use the classical fracture toughness GIC of
the material (Table 1). Note that crack density is driven by energy considerations, specifically by
energy release rate. If sufficient energy is available to propagate a crack, the Griffith/Irwin criterion
states that the crack will actually propagate. It has nothing to do with stress. Furthermore, the
energy required for crack formation (twice Griffith’s surface energy plus Irwin’s crack-tip dissipation
effects) comes from the entire laminate, no just from the lamina that is cracking. This energy
becomes available due to the relaxation caused by the propagation of the crack itself. This is in
contrast to the fatigue problem, which is driven by stress, as we shall see in the next section.
Also, there are no long-range dissipation effects such as fiber bridging because intralaminar cracks
propagate mostly in the matrix.

For N=1, cracks propagate at all locations where initial defects are large enough. Once those
defects propagate into cracks, no more defects remain that are large enough to propagate into
cracks, unless the mechanical or thermal strain are increased, or some other physical phenomenon,
such as fatigue, produces new large enough defects that can grow into cracks, as explained in
next section. Note that under constant amplitude mechanical or thermal fatigue, the applied strain
(mechanical or thermal) remains constant. All the defects that are large enough to grow into cracks
are used during the first cycle, and on the next cycles there are no sites that can propagate into
cracks, unless fatigue manages to nucleate small defects into large enough defects that can act as
viable sites for crack propagation.

When crack density increases, the stiffness E(λ) and coefficient of thermal expansion (CTE) α(λ)
decrease.1 The strain ε = α∆T decreases because the CTE decreases while ∆T is constant, and the
ERR GI decreases as per (9) with both E and ε decreasing. Once the ERR and strain decreases,
no more cracks can appear unless either the strain increases or the fracture toughness decreases.
The strain cannot increase because the temperature range is constant, and the fracture toughness
is an invariant material property (Table 1). For fatigue damage to occur when N > 1, the fatigue
fracture toughness must decrease, as discussed next.

Fatigue Damage Criterion

In this section we propose a fatigue damage criterion using separation of variables to describe
fatigue-damage as the product of an energy-controlled fracture problem times an stress-controlled
void and defect nucleation problem.

Thermal fatigue is caused by cyclic, repetitive oscillation of temperature T in the range
Tmin < T < Tmax, with amplitude ∆T = Tmin − Tmax < 0, thermal strain ε = α∆T and thermal
ratio defined as R = Tmin/Tmax.

Since the quasi-static fracture toughness GIC is an invariant material property, the fatigue effect
must be represented separately. In this work we propose to use separation of variables to write the
fatigue fracture toughness G′IC as the product of the quasi-static fracture toughness GIC times the
proposed defect nucleation function f(N), as follows

G′IC = GIC · f(N) ; 0 < f(N) < 1 (10)
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Figure 4. As λ grows, E(λ) decreases, GI(λ) decreases, and no new cracks can be propagated unless f(N)
decreases, which requires N > 1, thus fatigue loading.

Then, generalizing (5) for fatigue

λ = λ(GI , G
′
IC) ; GI = GI(ε,∆T,Q) ; Q = Q(λ) (11)

we can calculate crack density for every cycle with N > 1.

To explain the sequence of events during thermal fatigue loading, let’s look at Fig. 4. For N = 1,
the material is pristine, thus f(N) = 0, and the Griffith/Irwin condition (8) means that ∆T must
be large enough to produce enough thermal strain to propagate a crack from the largest existing
defect in the material. If ∆T is not large enough, more cycles N > 1 are needed to grow the existing
defects, for example by void/craze nucleation, so that a critical size is reached and the first crack
can be propagated.

Once a crack is propagated, λ grows, E(λ) decreases, and GI(λ) decreases. Since GIC is constant,
no new cracks can be propagated unless f(N) decreases, which requires N > 1, thus fatigue loading.

With GIC constant, as f(N) reduces due to defect nucleation, fatigue toughness G′IC = GIC f(N)
can decrease sufficiently to catch up with decreasing ERR GI(λ) and thus, fatigue can take place.

The physical justification is as follows. In the absence of new cracks, cyclic load (mechanical
or thermal) results in nucleation of voids and crazes in the polymer. Crazes are broken polymer
branches and chains that occur due to stress.37,38 They multiply and coalesce into larger defects,
driven by hydro-static stress.37,38 When the void or craze is large enough, a crack can propagate.

Thus, fatigue is a stress-driven phenomenon, not an energy-driven phenomenon. This provides
justification for separating the fatigue phenomenon into an energy-driven quasi-static fracture
toughness GIC and a stress-driven defect nucleation function f(N).

The defect nucleation function f(N) can be characterized using low-cycle experimental data
as follows. Crack density vs. number of cycles can be obtained from experimental data (shown
by symbols in Fig. 5). For those cracks to be present, the Griffith/Irwin criterion demands that
GI = G′IC . DDM can calculate GI given λ and ∆T . Therefore, using Eq. (11), DDM calculates
the fatigue ERR GI that corresponds to any set of known crack density λ, temperature range ∆T ,
and life N . Using the fracture criterion GI = G′IC , we immediately know what the value of G′IC is.
Then, discrete values for the defect nucleation function f(N) can be obtained from (10) by dividing
G′IC by the constant GIC (from Table 1). The resulting discrete values of f(N) are displayed by
square symbols Fig. 6.

The relationship between f(N) and log(N) seen in Fig. 6 can be approximated by

Prepared using sagej.cls



9

Figure 5. Experimental crack density vs. number of cycles (N=1...3500) with thermal ratio R = −156/121 oC,
for Carbon/Epoxy P75/1962 [(0/90)2]S , data from 10,21,22.

Figure 6. Characterization of the defect nucleation function f(N) using experimental data from Fig. 5. The
linear fit has a slope β = 2.04.

f(N) = 1− β logN (12)
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Figure 7. Paris Law. All data has the same thermal ratio R = −156/121 oC and Tmin = −156oC.

with β > 0. The defect nucleation function f(N) is decreasing with N , so that with constant quasi-
static fracture toughness GIC , the fatigue fracture toughness G′IC in (10) becomes a decreasing
function of N , thus allowing for the fatigue phenomenon to be represented.

Master Paris Law

In this section we propose a kinetic equation for fatigue-damage growth extending the modified Paris
Law39� to define the Master Paris Law. This exercise provides further insight into the kinetics of
fatigue damage in laminated composites, leading to a procedure that not only describes the data but
also allows us to propose and extrapolation method for laminate stacking sequences (LSS), thermal
ratio R, and life N beyond the limitations of the experimental data. While only experimental data
may someday prove or disprove the proposed method, numerical results agree with experimental
data that is available only for a modest range of number of cycles.

Using experimental data λ(N), such as that available in Fig. 5, we calculate the crack-growth
rate dλ/dN as the slope of the data. Then, use (11) to calculate ∆GI = GI(Tmin)−GI(Tmax) for
each value of dλ/dN , and finally plot dλ/dN vs. ∆GI as in Fig. 7.

The resulting data in Fig. 7 can be approximated accurately by a linear equation, which is known
as modified Paris Law:

dλ

dN
= a [∆GI(λ,∆T )]

b
(13)

with parameters a, b.
The outlier data (dark symbols) deviate from the modified Paris Law, thus suggesting particular

events that can be attributed to damage initiation and crack saturation. Damage initiation is evident

†Modified means that crack density and energy release rate substitute crack length and stress intensity KI in the
original Paris Law.
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Figure 8. Master Paris Law for multiple thermal ratios R = −156/121,−101/66, and −46/10oC, all shifted
with their value of Tmin

at the top-right of Fig. 7, where both ∆GI and dλ/dN are large. Crack saturation is evident at the
bottom-left of Fig. 7, where ∆GI and dλ/dN are small.

On Fig. 7, the thermal ratio R is the same for all data. But data with different thermal ratio does
not fit the modified Paris Law, as shown by the dark symbols in Fig. 8. To solve this problem, we
note that a constant slope in log scale suggest Arrhenius phenomena. Therefore, taking a clue from
the time-temperature superposition principle,40 we propose to normalize (shift) ∆GI by GIC(Tmin),
as shown in Fig. 8, which can be described by the proposed Master Paris Law equation:

dλ

dN
= A

[
∆GI(λ,∆T )

GIC(Tmin)

]b
(14)

with recalculated parameter A. For a given data set, parameter b is unaffected by the shift. Thus,
equation (14) is proposed here as a kinetic equation for damage growth-rate during thermal fatigue
of laminated composites.

Note that in log scale, a quotient is a shift. The quasi-static fracture toughness at the lowest
temperature GIC(Tmin) is chosen as the shift factor because maximum crack propagation takes
place at temperature Tmin, where the thermal stress is maximum and the polymer is most brittle.
After the shift, all data fits in the 90% confidence interval regardless of thermal ratio.

Master Paris Law (MPL) works as the temperature-time superposition principle (TTSP). We
can find the parameters a and b by testing with low thermal ratio, such as R = −46/10 and
R = −101/66, which is are easy tests, then shift the data (dark symbols in Fig. 8) to Tmin = −156
and have a Paris Law for any situation with Tmin = −156oC.

Comparison of predicted crack density vs. number of cycles λ(N) with experimental data is
presented in Fig. 5, for R=-156/121, for which most thermal fatigue experimental data is available.
On the other hand, Fig. 7 shows how the data for thermal ratio R=-156/121 can be represented by
Paris Law. Note that for data at a single thermal ratio, there is no need to invoke the Master Paris
Law, but just Paris Law is enough. However, once multiple thermal ratios are considered, Paris
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Figure 9. Determination of constant A in Master Paris Law.

Law is not enough. Fig. 8 shows how the shifted data for all thermal ratios (namely R=-156/121,
-101/66 and -46/10) aligns itself along the Master Paris Law line. Once the shifting procedure is
proven, the Master Paris Law line can be shifted to any temperature. That is, the Master Paris
Law line can be shifted and then used for analysis at any temperature.

Since the shift temperature Tmin is our choice, we can actually have a Paris Law for any
temperature. Further, note that Tmax does not participate in the shifting process, but instead
is taken into account by DDM during calculation of ∆GI .

Since ∆GI is a function of life N and temperature range Tmin, Tmax, we can calculate damage
rate dλ/dN for any set of values N,Tmin, Tmax, regardless of what temperature range was used
to obtain the material properties a, b. Since a is a function of the shift temperature Tmin and the
slope b is a constant, independent of shift temperature, we can derive a formula for the constant A
in MPL. With reference to Fig. 9 we have

A = a+ b · s with shift s = logGIC(Tmin) (15)

The only constraints on the applicability of shifting are Damage Initiation (DI) and Crack
Saturation (CS), as illustrated in 7, where the applicable region is bracketed by DI on the top-
right and CS on the bottom-left. The proposed formulation accounts for this bracketing implicitly.
Nothing special has to be coded in the software to account for it.

For a situation characterized by N,Tmin, Tmax, all of which are independent variables for the
analysis, DDM will correctly calculate damage initiation, so that the portion of the MPL on the
right of “damage initiation” is unused (see Fig. 8). If damage initiation were not to occur at N = 1,
the software tries for higher N until f(N) decreases enough to allow the first crack to propagate.
In either case, the portion of the MPL on the right of “damage initiation” is unused.

Similarly, for sufficiently large values of N , DDM predicts that ∆GI → 0, because E(λ)→ 0, so
the left portion of the MPL will not be used (see Fig. 8). This can be seen in Fig. 10 at n = 105, where
it is evident that after crack density reaches a maximum, the material is damaged so much that
the ERR GI that would be released as a result of another crack is insufficient to exceed the fatigue
fracture toughness G′IC = GICf(N) even though G′IC is decreasing because f(N) is decreasing
with increasing N . In Fig. 8, at N = 105 the predicted crack density drops, but in reality damage is
irreversible, so the software detects it and keeps the crack density constant at the maximum value.
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Figure 10. Predicted crack saturation at N ≈ 105.

Thermal and Fatigue Damage Prediction

The current implementation of DDM, called DDM6TM (version 6, thermomechanical) can analyze
two situations, as follows:

Monotonic Cooling simulates cooling of the material from Stress Free Temperature (SFT) down
to the coldest analysis temperature (Tmin) for cycle one (N=1); that is, no fatigue phenomenon
is apparent (f(N) = 1). The total temperature excursion ∆T = Tmin − SFT is divided in
1oC increments. Crack density is calculated at the end of each increment. The temperature-
dependent properties at the beginning of the increment are used. Ply-by-ply stress and strain
components, energy release rate (ERR), and crack density are calculated at each temperature.

For example, crack density at Tmin in the center ply of a [(0/90)2]S laminate, clamped all
around, is shown in Fig. 11. The fiber direction is vertical for the 902 center lamina. When
the material cools and shrinks, thermal contraction imposes tensile stress across the fibers
that is maximum at the edge of the hole (blue color, left figure), causing maximum damage
at the edge of the hole (red color, right figure).

Thermal Fatigue Damage occurs when the temperature is cycled with constant thermal ratio
R = Tmin/Tmax with Tmin < Tmax ≤ SFT and ∆T = Tmin − Tmax. Since the maximum
crack density in each cycle occurs at Tmin, the crack density is calculated at temperature
Tmin.

The reduction of fatigue toughness G′IC with number of cycles and temperature is accounted
for by two parameters, the quasi-static fracture toughness GIC and the defect nucleation
function f(N). The temperature-dependent, quasi-static fracture toughness is a material
property that can be obtained from quasi-static testing (at N = 1) as explained in1. The
defect nucleation function can inferred from experimental data as explained in this work. For
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Figure 11. Left: SDV44=σ22 at Tmin = 57oC in the center lamina of a [(0/90)2]S laminate clamped all
around, SFT=177oC. Right: SVD37=crack density. 1/4 model shown. σ22 is smaller where the damage is
higher.

every cycle N , the software calculates crack density, ply-by-ply stress and strain distributions,
and energy release rate (ERR). Crack density vs. life N is compared to experimental data in
Fig. 5 (solid line).

For a laminate with n laminas, the proposed methodology finds the crack density that is
compatible with the Griffith/Irwin condition GI = G′IC with G′IC = GIC f(N), GIC constant, and
f(N) decreasing with N as shown in Fig. 6.

Comparison of crack density vs. number of cycles predicted with the proposed methodology
and experimental data10,21,22 for [(0/90)2]S is shown in Fig. 5. Data is only available for exterior
[0] and interior [902] laminas. From quasi-static studies, these laminas are known to crack earlier
and proceed with slower crack growth rate than thinner, interior laminas (Fig. 7.9 in23). Data is
not available for the interior [0] and [90] single-ply laminas, but the predicted values for interior
laminas (dash line) are consistent with previous experimental and analytical results for laminates
are subjected to quasi-static, strain-controlled loading, that show that interior laminas crack later
and proceed with faster crack-growth rate. Thus, the fatigue crack-growth rates shown in Fig. 5
are consistent with previous quasi-static data. For the exterior [0] and interior [902] laminas, the
agreement between prediction and data is good.

Agreement with experimental data is demonstrated in Fig. 5 up to 3500 cycles. Beyond that, there
is no experimental data available, but the proposed methodology is able to predict the response
as shown in Fig. 10. A crack density peak is predicted at approximately N = 105 when the crack
saturation (CS) is reached. Since crack density is so high, ERR is very small, and the only way
to satisfy the Griffith/Irwin condition is for the software to unrealistically lower the crack density.
Thus, the onset of a negative rate of crack density evolution can be used to detect CS. After that
number of cycles, the crack density remains constant, as show by the grey line in Fig. 10. This
type of behavior is consistent with experimental observations under mechanical fatigue loads for
a different LSS and material system,14 but thermal loads seem to tolerate higher values of crack
density. Note however, that the current formulation does not account for delaminations, which may
lower the CS significantly.
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Implementation

The independent variables for the analysis are N,Tmin, Tmax. The range for N and values for
Tmin, Tmax are to be provided as input to the software.

The dependent variables are the crack density λ(k) in each lamina k, and from that, it is possible
to calculate the ERRs GI , GII, that produced such crack density, as well stress components in each
lamina. These variables constitute the output of the software.

The material properties are temperature dependent. The quasi-static fracture toughness
GIC , GIIC , are quadratic in temperature, with three coefficients a, b, c, for each property, as in
(7). They can be adjusted to crack density data for monotonic cooling (N=1) as described in1.

The elastic properties E1, E2, G12, ν12, ν23 are quadratic in temperature, with three coefficients
a, b, c, for each property, representing the constant, linear, and quadratic terms, respectively. They
can be adjusted to available data as described in1.

Each cycle of a thermal fatigue problem starts at SFT, cooling the material down to Tmax. Then,
further cooling to Tmin and back up to Tmax, thus completing one cycle. The analysis must begin
at SFT so that residual thermal stresses are accounted for. Therefore, three temperatures must be
specified at the onset of the analysis: SFT, Tmax, Tmin.

The CTE values α1, α2, are cubic in temperature, with four coefficients a, b, c, d, for each property,
representing the constant, linear, quadratic, and cubic terms, respectively. They can be adjusted to
available data as described in1.

Fiber failure is monitored using the model in31, which requires the lamina tensile and compression
strength in the fiber direction F1T , F2C , as well as the Weibull modulus of the fiber.23 The lamina
compression strength in the transverse direction F2C is included in the script in anticipation of
future work, but that aspect is still not implemented.

Finally, the defect nucleation function for transverse mode I and shear mode II are represented
by one coefficient each, βI , βII , as in (12). Since mode II ERR is small for thermal loads (Fig. 1),
it is assumed that the mode II component of ERR does not play a significant role. Therefore, only
GIC data is usually needed, but the software implements the mode II as well in case it becomes
necessary in the future. The parameters βI , βII , are not necessary for thermomechanical analysis
during the first cycle (N=1) but they are necessary for thermal fatigue predictions. Similarly to
GIIC , the defect nucleation rate βII is usually not needed when the laminate is subjected to thermal
loads.

The input parameters can be provided to Abaqus using an Abaqus Python script or through the
.inp file. An Abaqus script is provided as supplemental material, available on the Journal’s website.
The provided script includes additional code for tasks that are usually performed with the graphical
user interface (CAE), such as mesh generation and specification of boundary conditions, so that all
the code to execute and example is available in a single file. The script is set up to perform either
monotonic cooling or fatigue calculations.

Fig. 11 is made with Abaqus/CAE using the results saved by the DDM6TM plugin via SDV’s.
In Abaqus, SDV’s are meant to store state variables (e.g., crack densities for all laminas, at each
Gauss point), but we also use them to store derived quantities, such as stress and ERR’s, to allow
for visualization.

For each lamina we save 12 values:

SDV1 Crack density λk in lamina k with k = 1 . . . n/2 for a symmetric laminate, with k = 1 at
the bottom of the laminate.

SDV2 Longitudinal tensile damage activation g1t
31
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SDV3 Longitudinal compression damage activation g1c (not implemented)

SDV4 Longitudinal tensile damage D1t, derived from SDV231,24 (9.32)

SDV5 Transverse damage D2, derived from SDV124 (9.32)

SDV6 Shear damage D3, derived from SDV124 (9.32)

SDV7 Longitudinal stress in lamina c.s.

SDV8 Transverse stress in lamina c.s.

SDV9 Shear stress in lamina c.s.

SDV10 Transverse damage activation function g2t
23 (8.24)

SDV11 Energy Release Rate mode I, GI(λ) (present work,23 (8.43))

SDV12 Energy Release Rate mode I, GII(λ) (present work,23 (8.44))

Upon completion of the Abaqus Job, the SDVs can be used for visualization within Abaqus/CAE.

Conclusions

Separation of variables highlights the multi physics of fatigue degradation, with damage
onset controlled by fracture toughness and kinetics controlled by defect nucleation. Besides
temperature-dependent material properties (modulus, and CTE), predicting fatigue damage
requires characterization of one temperature-dependent fracture toughness (mode I) and the
constant defect nucleation rate (beta I). The former can be obtained from a quasi-static cooling test
and the later from a low-cycle thermal fatigue test. Both tests involve counting transverse cracks as
a function of either temperature or number of cycles. The fatigue data is also used calculate the two
coefficients (a,b) in Master Paris Law, which provides the kinetic equation describing crack growth
rate. New cracks appear at the lowest temperature, where the material is most brittle and thermal
stress maximum. Master Paris Law allows for data extrapolation to various LSS and thermal ratios
R=Tmin/Tmax, potentially allowing for extrapolation to number of cycles N larger than the largest
number of cycles of the experimental data. Predictions are consistent with observed phenomena.

Supplemental materials

Abaqus script The Abaqus scripts to reproduce the results displayed in this paper, both
thermal-only and thermal-fatigue analyses, are available at http://barbero.cadec-online.com/

feacm-abaqus/Examples/Chapter_9/Ex_9.2/.

Link for downloading the Abaqus plugin A plugin for the thermal fatigue version of Discrete Damage
Mechanics (DDM6TM) is available at http://barbero.cadec-online.com/feacm-abaqus/

sourceCode.html.
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