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Abstract
The objective of this work is to develop a methodology to predict matrix damage
initiation and evolution in laminated composites subjected to monotonic cooling
using discrete damage mechanics and a careful characterization of the required
temperature-dependent material properties. Since prediction of thermo-mechanical
damage requires precise knowledge of the temperature-dependent properties of the
material, back-calculation of fiber and matrix properties from different sources is
included. The proposed methodology is flexible in that it can be adapted to the
availability of experimental data. A compilation of literature data is developed to
estimate the properties of several fiber and matrix systems. Prediction of lamina
and laminate temperature-dependent properties are compared with available data.
Furthermore, temperature-dependent fracture toughness of four material systems
are estimated from available crack density data. For the material systems studied,
it is found that temperature-independent fracture toughness is satisfactory for
prediction of damage initiation, evolution, and saturation.
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Introduction

A broad variety of composite structures, such as aircraft, satellites,
thermoelectric generators, cryogenic storage, and so on, are subjected to
thermally induced stress and strain that may result in damage and eventual
failure. Due to accumulation of damage, these structures may loose their ability
to sustain loads, or to transfer stress between their constituents, diminishing
their efficiency, or loosing their hermeticity, or compromising their ability to
contain liquids and gases, etc. Matrix cracking also jeopardizes the integrity
of the reinforcements since cracks provide access to corrosive environmental
attack. Therefore, the objective of this work is to predict damage initiation and
evolution up to crack saturation in laminated composites subjected to monotonic
cooling.

Due to difference in coefficient of thermal expansion (CTE) among laminas
with different orientations, thermal stress and strain are induced, which
often cause transverse matrix cracking of the laminas. Prediction of thermo-
mechanical damage requires precise knowledge of the temperature-dependent
properties of the material, including elastic and fracture properties. Temperature
ranges of interest include Low Earth Orbit (LEO [-100 to 66 C])1, Geostationary
Earth Orbit (GEO [-156 to 121])2–8, and cryogenic tanks (Liquid Nitrogen,
Oxygen, Helium, CO2, Hydrogen, etc.). Waste Heat Recovery devices [24 to
200 C] are also susceptible to matrix cracking when cooling down from their
operating temperature9,10.

The material properties of polymer matrix composites change with
temperature, mainly due to the temperature-dependent properties of the
polymer. Measurement of strength and thermal expansion of laminated
composites as a function of temperature is reported for example in11–16.
Temperature dependence of lamina properties are reported for example in17–22.

Since temperature-dependent data for most material systems is scarce,
micromechanics is often used to predict lamina data from fiber and matrix
data. Temperature-dependent properties for fiber and matrix are also difficult
to find, but once lamina data for a few material system are found, the fiber and
matrix properties can be back calculated, then used to predict lamina properties
for other combinations of fiber/matrix at similar, yet different, values of fiber
volume fraction. Although many micromechanics models exist, most have been
derived for isotropic fibers, although carbon fibers are transversely isotropic.

The lamina properties that are most sensitive to temperature are the matrix
dominated properties, namely E2(T ), G12(T ), and α2(T ). Prediction of these
properties are affected by the transverse properties of the fiber ET , GT , αT as
well as those of the polymer. Therefore, it is important to use a micromechanics
model that accounts for transverse isotropy of the fiber. Furthermore, it is
advantageous to use a micromechanics model that can predict all five properties
of the transversely isotropic lamina using a unified formulation and that yields
accurate predictions without requiring adjustable parameters such as stress
partitioning23, etc. The periodic microstructure model (PMM) satisfies all of
the aforementioned requirements and it has been extensively validated for
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elastic and creep/relaxation behavior of unidirectional composites24–26. PMM
is described in App. 2 of23 and implemented in27.

For isotropic fibers, the transverse CTE of the lamina can be estimated by the
rule of mixtures23,28. Strife and Prewo29 proposed a modification to account for
transversely isotropic properties of the fiber. Their modification is not derived
from mechanics or physical principles but just a substitution of νA, αT for
νf , αf in the rule of mixtures formula28. Predictions using either28 or29 are
somewhat accurate for some materials such as Kevlar/Epoxy but no so for
other materials29. The model proposed by Levin30,31 (see eq. (9) in Section
“Coefficients of Thermal Expansion”) is intrinsically exact and able to calculate
the three CTE values for an orthotropic lamina, but relies on the estimated
elasticity tensor for the lamina. Therefore, the accuracy of Levin’s method is
only limited by the accuracy of the estimate for the elasticity tensor. Levin’s
work was extended in32 for three-phase composites and used in an extensive
study of thermal properties of composite materials in3,33.

The matrix is always assumed to be isotropic with elastic properties
Em(T ), νm(T ), and αm(T ), were T is the temperature. On the other
hand, the fibers are assumed to be transversely isotropic with properties
EA, ET , GA, νA, νT , αA, αT . Carbon fibers are reported to be almost
temperature independent2–8 in the temperature ranges for LEO [-100–66] C
and GEO [-156–121] C.

Poisson’s ratio νm of polymers is influenced by the free volume available in
the material. At high temperatures, the polymer chains become rubbery and the
Van der Waals forces, which control the inter-chain bonds, are weaker leading
to higher Poisson’s ratio. Conversely, at low temperatures, the polymer becomes
brittle with lower Poisson’s ratio. Some authors report Poisson’s ratio almost
constant with temperature for composite laminas with epoxy resins34,35. Others
bracket the Poisson ratio’s of polymer at low temperatures between 0.29 and
0.3936.

Below the glass transition temperature Tg, the molecular structure of
polymers transitions from a rubbery to glassy state, and becomes more and
more rigid and brittle at lower temperatures. The elastic modulus Em increases
markedly and the strain to failure εmu decreases37–40 at colder temperatures,
culminating at cryogenic liquid nitrogen (LN2) temperature (-196 C)41, which
is the lowest limit considered in this work.

Carbon-fiber composite data has been used to demonstrate the applicability
of the proposed methodology. The material systems used in this study are: Cytec
P75/934, Amoco P75/1962, Narmco T300/5208, and Hexcel AS4/3501-6. Some
material property data that are necessary for thermo-mechanical analysis are
unavailable in the literature and the type of data missing is not the same for
every material system. For example, the transverse CTE of AS4 and T300 fibers
are not available. The temperature range of lamina and matrix data varies
drastically among different sources. Sometimes there is a single data point
available at low temperature using liquid Helium (−231 C)39,42 or the range
of temperature is too narrow37,38,43. Some experimental data show no higher
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Figure 1. Representative volume element for Discrete Damage Mechanics (DDM).

rigidity at cryogenic temperature44, or even softening45. No definite conclusion
is available in the literature about rigidity below −200 C.

Since availability of material properties are different for each fiber, matrix,
and material system (lamina), the proposed methodology must be flexible
to adapt to the availability of data. Consequently, a generic outline of the
proposed methodology is presented first in Sections “Constituent Properties,”
“Coefficients of Thermal Expansion,” and “Critical Energy Release Rates,”
followed by detailed, self-contained descriptions of the complete process for each
fiber, matrix, and composite material system (lamina). In an effort to have
complete descriptions of the parameter estimation process for each material,
some repetition of calculation steps is unavoidable.

Discrete Damage Mechanics

The bibliography on distributed damage in composite laminates is
extensive46,47. Among the multitude of damage models available, discrete
damage mechanics (DDM)48 is attractive for this study because, in addition
to the usual elastic properties, it requires only two values of critical energy
release rate (critical ERR), GIc and GIIc, to predict both damage initiation
and evolution due to transverse and in-plane shear stresses for general
laminates subjected to general loads49. DDM is an objective (mesh independent)
constitutive model, meaning that when implemented in FEM software, it
does not require guessing of characteristic length Lc in order to reduce mesh
dependency. Furthermore, DDM is available as a plugin for Abaqus50 and
ANSYS51, and it has been extensively validated.

DDM is based on an analytical solution48 of the displacement field inside
a representative volume element (RVE, Fig. 1) encompassing the laminate
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thickness t with N laminas, a unit length along the fiber direction of the cracking
lamina k = c, and a distance 2` = 1/λc. Homogenization of the damaged stiffness
of the N laminas, coupled with an iterative procedure allows all laminas
k = 1 . . . N in a laminate to be cracking simultaneously with different crack
density λk values at a given time. For a given damage state λ = {λk}T and
applied 2D strain field ε = {ε1, ε2, γ6}T at a Gauss integration point of a shell
element, DDM determines the local 3D displacement field ui(xj) analytically,
with i, j = 1 . . . 3, from which it calculates the local strain field and stress
field including intralaminar stresses, as well as damaged lamina [Q], damaged
laminate stiffness matrices, and energy release rates (ERR) in modes I and II,
GI , GII . The later are used in an interacting damage initiation and evolution
criterion

g = (1− r)

√
GI(λ, ε)

GIc
+ r

GI(λ, ε)

GIc
+
GII(λ, ε)

GIIc
− 1 ≤ 0 (1)

with r = GIc/GIIc. Note that critical ERR GIc, GIIc are the only material
properties needed to predict both initiation and evolution of crack density. No
hardening exponents or any other damage evolution material properties are
needed to describe the kinetic evolution of damage. The ERR values GI , GII in
modes i = I, II are calculated as

Gi =
Ui,a − Ui,b

∆Ac
(2)

where UI,a, UI,b, UII,a, UII,b are the elastic strain energies in modes I and II, for
crack densities λa and λb = 2λa, and ∆A is the increment of crack area when
a new crack propagates (Sect. 8.4.7 in23). Mode decomposition is achieved by
splitting the strain energy U into mode I (opening) and II (shear) and adding
the contribution of each lamina k = 1 . . . n as follows

UI =
VRV E

2h

n∑
k=1

tk(ε2 − α̃(k)
2 ∆T )Q

(k)
2j (εj − α̃(k)

j ∆T ) (3)

UII =
VRV E

2h

n∑
k=1

tk(ε6 − α̃(k)
6 ∆T )Q

(k)
6j (εj − α̃(k)

j ∆T ) (4)

where h =
∑n

k=1 tk, ε6 = γ12, and α̃(k) are the undamaged CTE of lamina k.
Equation (3) is cast in the coordinate system of the cracking lamina k so that
ε2 is mode I (crack opening) and ε6 is mode II (crack shear). Laminate ultimate
failure is predicted by a fiber damage and failure criterion52.

DDM assumes local uniformity of crack spacing and linear distribution of
intralaminar stresses. Despite these restrictions, predicted results correlate
extremely well with available data for a broad variety of material systems
(Carbon and Glass reinforced composites)53,54, laminate stacking sequences
(LSS)49,55–61 and loading conditions including open hole tension data up to
failure52,62–64.
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Table 1. Carbon fiber properties.

Property AS4 T300 P75
EA [GPa] 231.000 231.000 517.000
ET [GPa] 23.453 26.864 11.158
GA [GPa] 15.764 81.662 10.636

νA 0.253 0.156 0.269
νT 0.371 0.287 0.306

αA [10−6/ C] -0.630 -0.600 -1.46
αT [10−6/ C] 5.997 11.086 12.500

Since the size of the RVE (1× t× 1/λk) is dictated by the crack density λk,
not by the element size, and the solution is in terms of displacements, not stress
or strain, the predictions of the DDM constitutive model are mesh-density and
element-type independent. The only effect of mesh density is on the quality of the
stress/strain field. This is a remarkable advantage with respect to cohesive zone
constitutive models, which produce results that are mesh-density and element-
type dependent, as shown in53,65,66.

Constituent Properties

The methodology used to calculate the properties of the constituents (fiber
and matrix) is presented in this section. If not available in the literature, the
elastic properties of the constituents (fiber and matrix) are, in this work, back
calculated using periodic microstructure micromechanics (PMM, App. 2 in23).

Properties of carbon fibers used in this work are shown in Table 1. The
longitudinal modulus EA and CTE αA are collected from manufacturer
data sheets67–69. The rest of fiber properties (ET , GA, νA, νT ) and transverse
fiber CTE αT are back calculated as explained in this section and Section
“Coefficients of Thermal Expansion”, respectively.

Temperature-dependent properties of Epoxy are shown in Tables 2, 3, 4, and 5,
back calculated from unidirectional lamina data, as explained in this section and
Section “Coefficients of Thermal Expansion”. In all cases, the matrix properties
(Em, νm, αm) are represented by a quadratic polynomial

P (T ) = Pa + Pb T + Pc T
2 (5)

where P is the property, T is the temperature, and Pa, Pb, Pc are the
coefficients. In order to get reliable values, experimental data at low, room,
and high temperatures are necessary. The back calculation method provides
the property P (T ) at various temperatures so that the predicted lamina
properties fit available experimental data as explained in this section and
Section “Coefficients of Thermal Expansion”. Then, property values at various
temperatures are subsequently fitted with (5). Quadratic polynomial were used
also by3,13,19,33,70–72.

Fiber properties (ET , GA, νA, νT ) and matrix properties (Em, νm) (5) are
adjusted so that the lamina properties (E1, E2, G12, ν12, ν23) predicted using
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Table 2. Quadratic temperature-dependent properties of Epoxy 3501-6 in the range
[180,−200]o C.

Property Pa Pb Pc

Em [MPa] 4580.4836 -10.6103 0
νm 0.3812 3.8564 10−5 0

αm [10−6/ C] 38.3445 0.1224 0

Table 3. Quadratic temperature-dependent properties of Epoxy 934 in the range
[−156, 120]oC.

Property Pa Pb Pc

Em [MPa] 5032.7732 -16.7561 0.0251
νm 0.3659 -1.1108 10−4 -8.6080 10−7

αm [10−6/ C] 38.7655 0.1524 -1.32553 10−4

Table 4. Quadratic temperature-dependent properties of Epoxy ERL 1962 in the range
[−156, 120]oC.

Property Pa Pb Pc

Em [MPa] 5032.7732 -16.7561 0.0251
νm 0.3659 -1.1108 10−4 -8.6080 10−7

αm [10−6/ C] 49.3143 0.1594 -4.5090 10−4

Table 5. Quadratic temperature-dependent properties of Epoxy 5208 in the range
[−156, 120]oC.

Property Pa Pb Pc

Em [MPa] 4828.7124 -5.4846 -5.2164 10−3

νm 0.4072 -3.3332 10−4 7.9119 10−7

αm [10−6/ C] 36.6598 0.1887 -9.5441 10−5

PMM fit available experimental lamina data (Ed
1 , E

d
2 , G

d
12, ν

d
12) available in the

literature. The properties are adjusted at each temperature by minimizing the
error D calculated as follows

D =
1

N

√√√√ N∑[(
E1 − Ed

1

Ed
1

)2

+

(
E2 − Ed

2

Ed
2

)2

+

(
G12 −Gd

12

Gd
12

)2

+

(
ν12 − νd12
νd12

)2
]

(6)
where N is the number of lamina data points at a given temperature, and
superscript d means data. In order to give the same weight to all properties, each
term is normalized as shown. Elastic properties from literature or manufacturer
data sheet, if available, are used as initial guess for the minimization algorithm.

Denoting by x the value of any of the material properties of interest, and by
D the error (6), the value of property x is found when the error D is less than
the function tolerance (i.e., error tolerance)73 tolfun = 10−8 and the change in
property ∆x is less than the step size tolerance tolx = 10−8.

Not all material systems can be characterized exactly with the procedure
described above. Variations in the procedure are necessary to make use of the
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available data, which varies from material to material. In the following, four
matrices and four fibers are characterized, illustrating how to adapt the proposed
procedure to make best use of the available data.

Epoxy 3501-6

A large amount of experimental elastic data (Ed
1 , E

d
2 , G

d
12, ν

d
12) exists at room

temperature (RT) and high temperature (HT) for AS4/3501-6 unidirectional
lamina4,14,15,17,22,74–76 but at low temperature, only longitudinal modulus
data Ed

1 at -54 C is available77. No matrix-dominated (Ed
2 , G

d
12, ν

d
12) could

be found at low temperature. Back calculation of Em(−54C) and νm(−54C)
from Ed

1 (−54C) is not possible because E1 is a fiber dominated property but
Em, νm are matrix dominated properties. Therefore, the temperature-dependent
properties Em, νm for Epoxy 3501-6 were adjusted based on available neat
resin data78,79. In this way, matrix coefficients (5) for Em, Gm of Epoxy 3501-
6 are obtained by interpolation in the range [150,24 C] of the data available
in78,79. Linear interpolation is sufficiently accurate in this case. The Poisson’s
ratio νm is calculated in terms of Em, Gm using the isotropic relationship
νm = Em/(2Gm − 1). In this paper, temperature ranges are given from hot to
cold because that is the way cooling takes place.

Calculated values of Poisson’s ratio νm turn out to be virtually constant with
temperature. Since the temperature-dependent properties are linearly fitted,
based on neat resin data, and they vary smoothly with temperature, they are
extrapolated to the whole temperature range of study [180,-200 C] as shown in
Figure 2. For predictions, the temperature range in this paper starts at 180 C
because that is the most common glass transition temperature of the materials
studied. The coldest temperature is -200 C for illustrative purposes only.

Epoxy 934

Elastic properties Em, νm of Epoxy 934 at high (121 C) and room temperature
(RT) are taken from the experimental neat resin data in80. Then, the elastic
properties Em, νm at low temperature (−156 C) of Epoxy 934 are obtained
by minimizing the error (6) between T300/934 lamina data (Ed

1 , E
d
2 , G

d
12, ν

d
12)

available in20 and predicted lamina properties (E1, E2, G12, ν12, ν23) calculated
using PMM micromechanics. The methodology used is illustrated in Figure 3
by a flowchart. The tolerance73 used is tolx = tolfun = 10−8.

T300 fiber properties used as input data in PPM are taken from Table 1. Once
the elastic properties at room, high, and low temperature have been obtained,
the coefficients (5) are calculated by a quadratic interpolation in the range
[121,−156 C] and reported in Table 3. The values found for these coefficients
are very close to the values reported in3. The resulting plot is shown in Figure 4.
Unlike Figure 2, the curves in Figure 4 are not linear and thus extrapolation
outside of the range of the experimental data may yield exaggerated values.
Therefore, for calculation of crack density outside the temperature range of
the experimental data from which the temperature dependence is found, the
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Figure 2. Estimated temperature-dependent modulus Em (top) and CTE (bottom) for
Epoxy 3501-6 extrapolated to the whole temperature range of study [180,-200 C].

matrix properties are assumed to be constant and equal to the end values of the
experimental data, as shown in Figure 4.

Epoxy ERL 1962

Epoxy ERL 1962 is similar to Epoxy 934 with added rubbery particles
to increase fracture toughness. Lamina data from the literature21,81–83 for
composites using these two resins (934 and ERL 1962) and the same type of
fiber have almost identical properties. Only a slightly lower modulus for ERL
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Input Data
EA,ET ,GA,

νA, νT

Predicted lamina
E1, E2, G12
ν12, ν23

Tolerance

Matrix
Properties
Em, νm,
at Ti

Experimental
data
E1, E2
G12, ν12

Initial guess
Eom, ν

o
m

+ PMM Error YES

NO

+

+

Figure 3. Back calculation method to obtain the temperature-dependent matrix
properties at any temperature Ti.

1962 than Epoxy 934 was reported in81. Lacking experimental data revealing
temperature-dependent properties for neat resin or unidirectional laminas using
ERL 1962 matrix, the temperature-dependent elastic properties of Epoxy ERL
1962 are assumed in this study to be equal to those of Epoxy 934, but
temperature-dependent CTEs are still adjusted to experimental data as shown
in Section “Material system: P75/1962”.

Epoxy 5208

Elastic properties Em, νm, of Epoxy 5208 are back calculated from lamina elastic
data in11,12 at cryogenic, room, and high temperatures (−156, 24, and 121
C). The Poisson’s ratio reported in12 is so high that leads to νm > 0.5 for
temperatures below -100 C. Such values are incoherent for isotropic polymers
at low temperature35,36. For this reason, the lamina Poisson’s ratio νd12 = 0.24
at RT was taken from13 and assumed equal to 0.3 at cryogenic temperature
(-156 C), which are typical values for brittle epoxy polymers at very low
temperatures36.

Once the experimental data are collected, the elastic properties Em, νm of
Epoxy 5208 at each temperature (-156, 24, and 121 C) are back calculated by
minimizing the error (6) between experimental lamina data (Ed

1 , E
d
2 , G

d
12, ν

d
12)

available in12,13,70 and predicted lamina properties (E1, E2, G12, ν12, ν23) using
PMM micromechanics. The procedure is illustrated in Figure 3 by a flowchart,
with tolerance73 tolx and tolfun = 10−8. The T300 fiber properties used as
input data in PMM are taken from Table 1. Finally, the matrix coefficients (5)
of Epoxy 5208 are obtained by a quadratic interpolation of the values obtained
at −156, 24, and 121 C, then reported in Table 5 and depicted in Figure 5.
Similarly to Figure 4, the curves in Figure 5 are nonlinear. Therefore, outside
the range of the experimental data from which the temperature dependence is
found, the matrix properties are assumed to be constant and equal to the end
values of the experimental data, as shown in Figure 5.
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Figure 4. Estimated temperature-dependent modulus (top) and CTE (bottom) for
Epoxy 934 and ERL 1962.

AS4 Fiber

The longitudinal modulus EA of AS4 fiber is obtained from manufacturer data
sheet69,84. The remaining elastic properties of AS4 fiber are back calculated from
material system AS4/3501-6 using a set of experimental data at room (RT) and
high (121oC) temperature. The matrix properties Em, νm of Epoxy 3501-6 at
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Figure 5. Estimated temperature-dependent modulus (top) and CTE (bottom) for
Epoxy 5208.

room and high temperature are obtained from78,79. The rest of elastic fiber
properties (ET ,GA,νA,νT ) are back calculated using set of experimental data at
both temperatures by minimizing the error (6) between unidirectional lamina
data (Ed

1 , E
d
2 , G

d
12, ν

d
12) of AS4/3501-6 in75 and predicted lamina properties

(E1, E2, G12, ν12, ν23) using PMM micromechanics. The methodology used is
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Input Data∑N
i=1(Em, νm)

and EA
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+ PMM Error YES
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+

+

Figure 6. Back calculation method to obtain the fiber properties using set of
experimental data at various temperatures (N).

shown in Figure 6 by a flowchart with tolerance73 tolx and tolfun = 10−8. The
final AS4 fiber properties are reported in Table 1.

T300 Fiber

The longitudinal modulus EA of T300 fiber is obtained from manufacturer
data sheet68. The remaining elastic properties of T300 fiber are back
calculated from material system T300/5208 at room temperature. The matrix
properties Em, νm, of Epoxy 5208 at room temperature are obtained from85.
The rest of elastic fiber properties (ET ,GA,νA,νT ) are back calculated
at room temperature by minimizing the error (6) between unidirectional
lamina data (Ed

1 , E
d
2 , G

d
12, ν

d
12) of T300/5208 in12,13,70 and lamina properties

(E1, E2, G12, ν12, ν23) predicted with PMM. The procedure is illustrated in
Figure 6 by a flowchart. The resulting properties for T300 fiber are reported
in Table 1.

P75 Fiber

The average fiber modulus reported in the literature for (unsized)
P7521,81,84,86–91 and (sized) P75S92 is EA = 517 GPa. Using the longitudinal
modulus EA = 517 GPa and the properties of Epoxy 934 (Table 3), the
rest of elastic properties (ET , GA, νA, νT ) for P75 fiber are back calculated
by minimizing (6) between unidirectional lamina data (Ed

1 , E
d
2 , G

d
12, ν

d
12) of

both P75/934 and P75/1962 available in19,21,81,83,93 and lamina properties
(E1, E2, G12, ν12, ν23) predicted using PMM micromechanics. All the properties
of P75 are back calculated using data from literature at room temperature. The
procedure is illustrated in Figure 6 by a flowchart, with tolerance73 tolx and
tolfun = 10−8. The resulting values are reported in Table 1.

Summary Constituent Properties

Once the fiber and matrix properties are adjusted, one can predict elastic
lamina properties using PMM micromechanics and compare with available
experimental data. Comparison between model predictions and experimental
data for transverse modulus E2 as a function of temperature are shown in
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Figure 7. Comparison between predicted and experimental data of transverse modulus
E2 for P75/934, AS4/3501-6, T300/934, and T300/5208 lamina.

Figure 7. Comparison between model predictions and experimental data for
in-plane shear modulus G12 as a function of temperature are shown in Figure 8.

Since fiber properties are assumed to be temperature-independent, the
adjusted properties (ET , GT , νA, νT ) are constant values that minimize the
error between prediction and experimental data at several temperatures. In
other words, the constant fiber properties are found in such a way that the
deviation from predicted lamina data is as small as possible over the entire
data set that may include data for several temperatures. On the other hand,
matrix properties Em(T ), νm(T ) are temperature-dependent, and thus adjusted
to fit the temperature-dependent data. For matrix properties, different values of
Em(T ), νm(T ) are found at each temperature, and then fitted with the quadratic
polynomial (5), as a function of temperature.

Coefficients of Thermal Expansion

The coefficients of thermal expansion (CTE) in the longitudinal and transverse
directions of a lamina are defined as

αi =
∂εi
∂T

with i = 1, 2 (7)

where εi are the components of strain and T is the temperature. In this work
αi denote tangent CTEs (also called instantaneous CTE). The secant CTE is
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Figure 8. Comparison between predicted and experimental data of transverse modulus
G12 for P75/934, AS4/3501-6, T300/934, and T300/5208 lamina.

defined as follows

ᾱi =
1

T − SFT

∫ T

SFT

αi dT (8)

where SFT is the stress free temperature. Equation (7) is useful because it
directly relates the experimental thermal strain data of a unidirectional lamina
with its CTE at any temperature without the need for specifying a reference
temperature.

Levin30,31 derived an exact solution for effective CTEs of a composite with
two-phases: transversely isotropic (TI) fiber and isotropic matrix. Levin’s Model
(LM) relates volume average 〈·〉 stresses and strains in a representative volume
element (RVE) to obtain the effective CTEs as follows

αi = αij = 〈αij〉+ (αf
ij − α

m
ij )(Sf

ijkl − S
m
ijkl)

−1(Sijkl − 〈Sf
ijkl〉) with i = j (9)

where Sijkl are the elastic compliances, αij are the CTEs, and the subscripts
f and m denote fiber and matrix, respectively. Equation (9) requires the
effective elastic compliance Sijkl as a function of temperature, which in this
work is obtained using PMM. Hence, the elastic properties of the constituents
as a function of temperature must be obtained before calculating the thermal
properties. For isotropic matrix and TI fibers, αij = 0 for i 6= j, and a single
subscript suffices for all components of CTE.

Since the type of experimental data available varies from material to material,
there are cases for which the CTE values for fiber αA, αT , and/or matrix αm(T )
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are available from experimental data for fiber and/or matrix. However, in most
cases they are not directly available, and thus they have to be adjusted by
minimizing the error function

DT =
1

N

√√√√ N∑[(
αi − αd

i

αd
i

)2
]

with i = 1, 2 (10)

between experimental lamina CTE αd
i data (available in the literature) and

lamina CTE αi predicted using (9). The subscripts i = 1, 2 denote longitudinal
and transverse CTE, respectively, and N is the number of data values available.
In order to give the same weight to all properties, the error function is normalized
for each term.

Since longitudinal CTE α1 is a fiber dominated property, the volume fraction
is chosen to match the predicted longitudinal CTE with experimental data αd

1

at room temperature, which is available in the literature for all material systems
considered in this study.

The CTE of matrix αm(T ) are always back calculated using the transverse
lamina CTE αd

2 because the later is matrix dominated. Once the CTE αm(T )
are obtained at various temperatures using (10), a quadratic interpolation is
carried out to obtain the polynomial’s coefficients in (5). Manufacturer values
of αm(RT ), if available, are used as initial guess for the error minimization
algorithm.

Denoting by x the value of any CTE of interest, and by DT the error (10),
the value of property x is found when the error DT is less than the function
tolerance (i.e., error tolerance)73 tolfun = 10−8 and the change in property ∆x
is less than the step size tolerance tolx = 10−8.

Since availability of data varies among material systems, not all material
systems can be characterized exactly with the procedure described above. In
fact, variations in the procedure are necessary to make use of the available data,
which varies from material to material. In the following, five material systems
(T300/5208, P75/934, T300/934, P75/1962, and AS4/3501-6) are characterized,
illustrating how to adapt the proposed procedure to make best use of the
available data.

Material system: T300/5208

The axial CTE αA of T300 fiber is obtained from literature3,94 and manufacturer
data sheet68. Data for transverse CTE αT of T300 fiber is not available.
Therefore, for this material system only, the transverse CTE αT of T300 fibers
and temperature-dependent CTE αm(T ) of Epoxy 5208 are back calculated in
three steps.

First, the transverse CTE αT of T300 fiber and the RT CTE of the matrix
α0
m(RT ) are back calculated by minimizing the error (10) using both the

longitudinal and transverse lamina CTEs at RT. In this way, the transverse
CTE αT of T300 fiber and the RT CTE of the matrix α0

m(RT ) can be adjusted
so that the lamina CTEs α1, α2, predicted using (9) match experimental CTEs
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Figure 9. Back calculation method to obtain the fiber and matrix CTE values.

αd
1, α

d
2, for T300/5208 lamina from3,11,70. The matrix CTE at RT from85 is used

as initial guess for α0
m(RT ). The methodology used is illustrated in Figure 9.

Tolerances used73 are tolx = tolfun = 10−4. At the end of this first step, the
CTEs of T300 fiber are reported in Table 1.

Second, the temperature-dependent CTE αm(T ) of Epoxy 5208 is back
calculated at various temperatures (in the temperature range [120,-130 C]) by
minimizing the error (10) between experimental lamina CTE in the transverse
direction αd

2 for T300/5208 lamina in3 and predicted lamina CTE α2 using
micromechanics (9). The procedure is illustrated by a flowchart in Figure 10.
The matrix CTE previously calculated at room temperature α0

m(RT ) is used as
initial guess. A schematic of the procedure is shown in Figure 10. Tolerance73

used are tolx = tolfun = 10−8.

Third, once the temperature-dependent CTE αm(T ) of Epoxy 5208 is
calculated for a large number of temperature data points, the coefficients in
(5) are obtained by a quadratic interpolation of those results. Then, the CTE
of Epoxy 5208 as function of temperature is reported in Table 5.

Material system: P75/934 and T300/934

The CTE values αA, αT , of P75 fiber are obtained from literature and
manufacturer data sheet3,67,87,95. Identical values were found in various literary
resources and thus they are assumed to be valid for this study. Temperature-
dependent CTE of Epoxy 934 could not be calculated using the data for P75/934
in19 due to lack of experimental data points at cryogenic temperatures. Instead,
data for material system T300/934 in3 with temperature range [121,−156oC] is
used to calculate the temperature-dependent CTE of Epoxy 934. Therefore, the
temperature-dependent CTE αm(T ) of Epoxy 934 are back calculated at various
temperatures by minimizing the error (10) between experimental lamina CTE in
the transverse direction αd

2 for T300/934 lamina in3 and predicted lamina CTE
α2 using micromechanics (9). The methodology used is illustrated in Figure 10
using tolerance73 tolx = tolfun = 10−8.

Once the matrix properties αm(T ) of Epoxy 934 are calculated for a large
number of temperature data points, the coefficients in (5) are obtained by a
quadratic interpolation of those results. The CTE of Epoxy 934 as function of
temperature is reported in Table 3. The predicted values α1, α2, as a function
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Figure 10. Back calculation method to obtain the matrix CTE at any temperature (Ti).

of temperature for P75/934 lamina are plotted in Section “Finite Element
Analysis”.

Material system: P75/1962

The temperature-dependent properties αm(T ) of Epoxy ERL 1962 are back
calculated at various temperatures by minimizing the error (10) between
experimental lamina CTE in the transverse direction αd

2 for P75/1962 lamina
in21,77, and lamina CTE α2 predicted by micromechanics (9). The procedure is
illustrated by a flowchart in Figure 10 using tolerance73 tolx = tolfun = 10−8.

The CTEs values of P75 fiber used in (9) are already reported in Table 1. Due
to the availability of thermal strain data εi for this particular material system
(P75/1962 lamina),21,77 the CTE αd

2 data is calculated from thermal strain
data εi using (7). Since εi data is quadratic in the temperature range [120,-150
C], the resulting CTE is also quadratic in the same temperature range. Once
the temperature-dependent CTE αm(T ) of Epoxy ERL 1962 has been back
calculated for a large number of temperature data points, the coefficients in (5)
are obtained by a quadratic interpolation of those results. Then, the CTE of
Epoxy ERL 1962 as function of temperature is reported in Table 4.

Material system: AS4/3501-6

The axial CTE αA of AS4 fiber is obtained from manufacturer data sheet69. The
temperature-dependent properties αm(T ) of Epoxy 3501-6 are taken from6,17,96

in the temperature range [150,-90 C], which can be represented well by a
linear function of temperature. Since the transverse CTE αT of AS4 fiber is
not available, it is back calculated by minimizing the error (10) between the
predicted lamina CTE α2 using micromechanics (9), and experimental lamina
CTE αd

2 for AS4/3501-6 lamina available in17. The procedure used is shown in
Figure 11 using tolerance73 tolx = tolfun = 10−8. The transverse CTE of AS4
fiber is reported in Table 1.

Summary CTE

Once the matrix CTE are adjusted, one can predict lamina CTE using (9) and
compare with available experimental data (from sources cited above for each
material system). Comparison between predicted lamina CTE using (9) and
experimental data αd

1, α
d
2 is shown in Figures 12–13. The comparison in Figure 12
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Figure 11. Back calculation method to obtain the transverse CTE of the fiber from
transverse lamina CTE as function of temperature.

Figure 12. Comparison of transverse lamina CTE α2 predicted with Levin’s model (9)
vs. experimental data for T300/934 with Vf = 0.57, AS4/3501-6 with Vf = 0.67, and
P75/1962 with Vf = 0.52.

is excellent with α2 in the range [5–45] 10−6/C. In Figure 13, predicted and
experimental values of α1 do not match so well, except at room temperature.
The deviation may be attributed to possible temperature-dependence of the
transverse CTE of the fibers αT (T ), but such temperature dependency is
impossible to ascertain without additional experimental data, which is not
available.

Finite Element Analysis

In this section, the effective CTEs as function of temperature for a composite
lamina are calculated using finite element analysis (FEA). The results are used
to asses the accuracy of the micromechanics model (9) for CTE. A summary
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Figure 13. Comparison between longitudinal lamina CTE α1 predicted with Levin’s
model (Eq. 9) and experimental data for T300/5208 with Vf = 0.68 and P75/934 with
Vf = 0.51.

of the methodology is included, and comparison between micromechanics and
FEA predictions is presented.

To obtain the effective CTEs for the whole temperature range, monotonic
cooling is simulated from the stress free temperature (SFT) of the composite
(approximated by the glass transition temperature Tg of the polymer) down to
cryogenic temperatures (-200 C).

To represent a transversely isotropic lamina with 3D solid elements, the
microstructure is assumed to have the fibers arranged in an hexagonal array, and
from that microstructure a representative volume element (RVE) limited by a
cuboid is represented, as it can be seen in Figures 6.3–6.5 in50. The dimensions
of the RVE are calculated to achieve the desired volume fraction Vf , as explained
in Example 6.2 in50.

Periodic boundary conditions (PBC) are imposed to the RVE in order to
enforce continuity of displacements. To avoid over constraining at edges and
vertices, master nodes (MN), one for each face of the RVE in x1, x2, and x3
directions, are used to couple the DOF through constraints equations. The BCs
thus become

symmetry uniform displacements

u1(0, x2, x3) = 0; u1(a1, x2, x3) = u
MNX1
1

u2(x1, 0, x3) = 0; u2(x1, a2, x3) = u
MNX2
2

u3(x1, x2, 0) = 0; u3(x1, x2, a3) = u
MNX3
3

(11)
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where MNX1 ,MNX2 and MNX3 are the master nodes (reference points) in
x1, x2 and x3 directions, respectively. The RVE occupies the volume with
dimensions: 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2, and 0 ≤ x3 ≤ a3. The MNs are tied
to surfaces defined by x = a1, y = a2, z = a3. No displacements or loads are
specified at the MN, so that the RVE is free to expand/contract with
thermal expansion but subject to compatibility conditions with the surrounding
continuum.

The temperature-dependent properties of the matrix Em, νm, αm, are defined
as a set of N temperature-property data pairs as (T1, P1), (T2, P2),..., (TN , PN ).
The values are obtained using (5) and Tables 2–5. These values are discretized
with ∆T = 1 C to simplify the computations and interpretation of results.
Outside the range [-156,120] for which experimental data is available, the
properties of the matrix are assumed to be constant and equal to the first (or
last) experimental data pair (Figures 4,5).

Two python scripts (‘ParameterIntegrator.py’ and
‘Excelproperties.py’) are used to create the input property tables for
the matrix material. All Python scripts are available as supplemental materials
on the publisher’s website. Since the matrix properties are defined by piece-wise
functions (Figures 4,5), the resulting lamina properties are also piece-wise
functions (Figures 14–16). The transversely isotropic properties of the fibers
are assumed to be constant over the entire temperature range. Curing-induced
shrinkage of the epoxy resin is not taken into account.

FEA analysis was performed with Abaqus 6.14, using small displacement,
linear elastic material, and 3D elements C3D8R. A Python script
(‘LaminaName.py’) is used to generate the FEA model. A mapped mesh
was constructed providing identical mesh on opposite surfaces. The PBC are
implemented as constraints equations between master nodes and surfaces with
normals along the x, y, z directions, respectively. A Python script (‘PBC.py’) is
used to automate such process. Symmetric BC were applied to surfaces defined
by x = 0, y = 0, z = 0.

Finally, a Python script (‘Epsilonrecover.py’) is used to calculate the
accumulated thermal strains at temperature T via volume averages from mesh
elements j as

ε(T ) =
1

VRV E

∫
VRVE

ε̂(x, y, z) dV =
1

VRV E

elements∑
j=1

ε̂j V j
i (12)

Computational micromechanics is used in this section as described in Ch. 6
in50. In this way, constituent properties can be assigned separately to the
constituents (fiber and matrix) and the FEA model can be subjected to a
variation of temperature. Then, FEA calculates the strain ε̂(x, y, x) at all Gauss
integration points inside the representative volume element (RVE) and the
average strain over the RVE is easily computed as in (12).

The tangent CTE α(T ) is a function of temperature in (7) and the secant CTE
ᾱ(T ) is also a function of temperature (8), using the stress-free temperature
(SFT) as reference temperature. For each increment of temperature T , Abaqus
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calculates the accumulated strain in terms of the secant CTE (as stated in97)
i.e.,

εacc(T ) = ᾱ(T )× (T − SFT ) (13)

and the user has to calculate tangent CTE by differentiation in (7).

Both αm and ᾱm are smooth continuous functions in the interval [T1, T2] for
which experimental data exists (see labels T1, T2 in Figs. 4 and 5), but they
are constant outside that range, i.e. in the ranges [−200, T1] and [T2, SFT ].
Recall that the properties are assumed constant outside the range for which
experimental data exist, as shown in Figures 4–5. Since a piece-wise function is
not differentiable at the transition points T1 and T2, (7) cannot be used and the
tangent CTE at those temperatures is undefined.

To solve the indetermination, we propose to provide Abaqus with the tangent
rather than the secant, i.e., substitute α(T ) for ᾱ(T ) in (13). In this situation,
Abaqus calculates a fictitious strain εacc∗(T ), as per the following equation

εacc∗(T ) = α(T )× (T − SFT ) (14)

which is not the actual accumulated strain but a fictitious value. However,
dividing this fictitious value by the temperature interval (T − SFT ), i.e.,
rewriting (14) as

α(T ) =
εacc∗(T )

(T − SFT )
(15)

the desired result is obtained, namely the tangent CTE, while avoiding the
differentiation (7), and thus a potential error is eliminated.

Using the aforementioned procedure, effective CTEs α1, α2 are calculated
using FEA and then compared with experimental data and with predicted
lamina CTE using (9) for all the material systems considered in this study.
Comparison between FEA-calculated and experimental values α1 and α2 at
room temperature from3,11,19,21,70,96 are reported in Table 6 and 7. The
predictions compare very well with experimental data for all the material
system studied. The only anomaly observed is for longitudinal lamina CTE
for T300/934 shown in Table 6, which may be due to a slight deviation in the
fiber volume fraction. Longitudinal lamina CTE is very sensitive to fiber volume
fraction. For example, just increasing fiber volume fraction by 2%, the predicted
value drops to 0.069 10−6/C, thus reducing the difference.

Comparison between predicted lamina CTE using (9) and FEA is shown
in Figures 14–16. The CTE predictions by both methods are very close.
Longitudinal CTE is compared in Figure 14 and transverse CTE is compared
Figures 15–16. It can be seen that Levin’s model is as accurate as FEA. Since
Levin’s model is analytical, it is then used for all remaining calculations in this
work.
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Table 6. Comparison of experimental and FEA-calculated longitudinal lamina CTE α1 at
24 C.

Experimental FEA
% Error ReferenceMaterial Vf α1 α1

System [%] [10−6/ C] [10−6/ C]
T300/5208 68 -0.113 -0.113 0.1 3 & Fig. 13
T300/5208 70 -0.166 -0.163 1.8 11,70

T300/934 57 -0.001 0.151 111.9 3

P75/934 51 -1.051 -1.071 1.8 19

P75/1962 52 -0.987 -0.984 0.3 21

AS4/3501-6 67 - -0.194 - 96 & Fig. 11

Table 7. Comparison of experimental and FEA-calculated transverse lamina CTE α2 at
24 C.

Experimental FEA
% Error ReferenceMaterial Vf α2 α2

System [%] [10−6/ C] [10−6/ C]
T300/5208 68 25.236 24.960 1.1 3 & Fig. 13
T300/5208 70 23.327 23.752 1.7 11,70

T300/934 57 29.340 29.170 0.6 3

P75/934 51 34.531 34.061 1.4 19

P75/1962 52 40.405 40.493 0.21 21

AS4/3501-6 67 21.212 21.335 0.6 96 & Fig. 11

Figure 14. Comparison micromechanics and FEA predictions of tangent and secant
longitudinal CTE α1 for P75/934 (Vf = 0.51) and T300/5208 (Vf = 0.68).
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Figure 15. Comparison micromechanics and FEA predictions of tangent and secant
transverse CTE α2 for P75/934 (Vf = 0.51) and T300/5208 (Vf = 0.68).

Critical Energy Release Rates

To a first approximation, intralaminar cracking of unidirectional laminated
composites can be described by the modified Griffith’s criterion98,99 for brittle
materials undergoing small plastic deformations and blunting of the crack tip.
Refinements to this approximation increase the complexity of the model to
achieve more accuracy100. However, the modified Griffith’s criterion has been
extensively validated for predicting initiation and accumulation of damage in the
form of intralaminar cracks for a variety of material systems47,59,61,83,101,102.
As it was commented in the Introduction, polymers become brittle at low
temperature, and thus the onset and development of new cracks can be described
by Linear Elastic Fracture Mechanics, whose crack initiation is controlled by
fracture toughness KIc. Once the crack starts, it suddenly propagates up to
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Figure 16. Comparison between micromechanics and FEA predictions of tangent and
secant transverse CTE α2 for P75/1962 (Vf = 0.52), and AS4/3501-6 (Vf = 0.67).

adjacent laminas. Assuming the width much larger than the thickness (plane-
strain), the critical ERR GIc can be related to the fracture toughness as follows

GIc =
K2

Ic

E
(1− ν2) (16)

KIc = σtα
√
πa (17)

where E is the Young’s modulus, ν the Poisson’s ratio, σt the tensile strength,
α a parameter to account for the geometry of the specimen, and a the crack
length.

Looking at (16), it would appear that GIc should be temperature dependent
because E and ν are temperature dependent. In fact E increases with cooling
(Figure 7) while ν may decrease slightly or remain virtually constant. However,
it remains to ascertain the temperature dependence of KIc. If both E and K2

Ic

were to increase/decrease at the same rate, thenGIc would be virtually constant.
According to the literature, KIc generally increases at cryogenic temperatures

for a large variety of polymers39,103–105 and specifically for epoxy42,44,106,107.
The physical phenomenon that can explain this increment is reported
in36,107,108. On one hand, the specific heat conduction of plastics is very small
at low temperature38,40,106,109,110, behaving as insulating material. Thus, heat
conduction is impaired and the crack tip, which is subject to approximately
adiabatic conditions. On the other hand crack propagation is unstable, reaching
high speeds, up to 1/3 of the transverse sound velocity in brittle materials
such as epoxy at low and cryogenic temperatures. Due to crack propagation
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speed, friction, chain scissions, and high-rate deformation, heat is generated
that causes temperature to rise at the crack tip under adiabatic conditions.
High temperature induces a plastic zone at the crack tip that absorbs energy
and arrests the crack until additional external load and deformation increases
the ERR sufficiently to start the crack again. This is corroborated by arrest
lines40 that can be observed, which are left behind the path followed by the crack
propagating through the material in this fashion. This provides justification for
the increment of KIc with cooling.

The rate of growth of KIc with cooling could be ascertained from (17) in
terms of the tensile strength σt, which increases at low temperatures106, while
the tensile strain εt decreases37–40. However, lacking experimental data for KIc

and σt at low and cryogenic temperatures for the polymers of interest (Epoxies
3501-6, 5208, 934, and 1962), an alternative method is needed to estimate the
critical ERR GIc. Therefore, in this work, the critical ERR values are adjusted
so that the DDM damage model predicts the same crack density as available
experimental crack density data λd by minimizing the following error D function

D =
1

N

√√√√ N∑
j=1

(
λj − λdj

)
(18)

where N is number of data points at a given temperature, and λj is the crack
density.

In order to study the temperature dependence of GIc, two different
approximations are used in this section. In the first approximation, the critical
ERR GIc is assumed to be temperature dependent and thus adjusted by
minimizing the error D (18) at each temperature for which experimental data is
available. Then, a polynomial such as (5) is adjusted though the values of GIc

obtained at those temperatures. To adjust a polynomial over the temperature
range of interest [-200,180 C], only data for material systems that have been
tested at several temperatures over that range can be used. For example,
data that only exists for a single temperature cannot be used to characterize
temperature-dependence.

In the second approximation, the critical ERR GIc is assumed to be
temperature independent (constant). Therefore, all data λd can be used
regardless of whether data from a given source is available for just one or
for multiple temperatures. Furthermore, if it could be shown that a constant
(temperature independent) value of critical ERR GIc is sufficiently accurate to
predict crack density vs. temperature, then the amount of testing needed to
characterize a material system could be reduced with respect to GIc being a
function of temperature.

The specific details of both procedures are described next.
Assuming temperature-dependent GIc, the critical ERR GIc is adjusted

by minimizing the error D (18) between the predicted crack density λ and
experimental crack density data λd for each temperature for which experimental
data is available70,76,82,83. Prediction of crack density is performed using the
Discrete Damage Mechanics (DDM) formulation (Ch. 8 in23).
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Figure 17. GIc vs. temperature for P75/934 (V f =0.65), P75/1962 (V f =0.52), and
AS4/3501-6 (Vf =0.64). Two outliers data, at −18 C for AS4/3501-6 and at −21 C for
P75/1962, not used.

Table 8. Critical ERR GIc [J/m2], temperature [◦C], see eq. (5).

Temp. dependent Temp.

Material Pa Pb Pc Range [oC] independent

P75/934 50.0561 -4.3006 10−2 6.3749 10−4 [-160,20] 53.4050

P75/1962 77.8054 9.6211 10−2 1.3948 10−3 [-160,-15] 84.4808

AS4/3501-6 61.9052 -1.6097 10−1 -5.0412 10−4 [-190,20] 68.0664

GIc values for material systems P75/934 [02/902]S , P75/1962 [02/452/902/−
452]S , and AS4/3501-6 [04/454/904/− 454]S , obtained at discrete temperatures
are then fitted with a quadratic polynomial as shown in Figure 17. Material
system T300/5208 [02/902]S undergoes negligible cracking until -156 C70, so it
is not included in the figure. The coefficients of the quadratic polynomial (5)
for temperature-dependent GIC are reported in Table 8.

Some outlier data points are reported for AS4/3501-6 and P75/1962 around
-18 C and 23 C, respectively. These outliers correspond to data with a
large scatter so they were not used in this study. For all cases, a quadratic
interpolation was found to accurately represent GIc(T ) as a function of
temperature. According to Figure 17, GIc at low temperature increases between
26.91 % and 39.46 % with respect RT.

Assuming temperature-independent GIc, the critical ERR GIc is
adjusted using all sets of experimental crack density λd available. Values of
constant GIc are reported on the last column in Table 8. A comparison between
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Figure 18. Crack density data vs. Temperature for laminates [02/902]s P75/934 and
[02/452/902/− 452]s P75/1962.

the predicted crack density and experimental data subjected to monotonic
cooling is shown in Figures 18–19 using both constant GIc and temperature-
dependent GIc(T ). Only constant GIc was used for T300/5208 due to lack
of experimental data at low temperatures for this material system. However,
temperature dependence of the constituents is taken into account for all cases.
Prediction of crack density vs. temperature are quite good with either constant
GIc or temperature-dependent GIc for all materials systems except P75/934
and P75/1962, for which accuracy at cryogenic temperature improves when
temperature-dependent GIc is used.

For P75/934, P75/1962, and T300/934, the experimental data was measured
at the edge of the specimens70,76,82,83. For AS4/3501-6, experimental data was
measured at both the edge and the interior of specimens76. GIc is calculated
from interior data for AS4/3501-6 but edge data is also shown in Figure 19 for
comparison. Interior data was used, if available, because the agreement between
predicted and experimental crack density is better, and X-ray data (used to
detect interior cracks) is usually more reliable that optical edge inspection.

Saturation crack density is here defined as the asymptotic value of crack
density as temperature approaches extremely low temperature. Saturation crack
density is shown in Figures 18–19 to illustrate the expected behavior at lower
temperatures than those for which experimental data is available.
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Figure 19. Crack density data vs. Temperature for laminates [04/454/904/− 454]s
AS4/3501-6 and [02/902]s T300/5208.

It can be seen in Figures 18–19 that the rate of damage with cooling, defined
as

λ̇ = − ∂λ
∂T

(19)

decreases over the whole temperature range. That is, less and less damage
is induced by the same decrement of temperature ∆T as the temperature
decreases. This is due to four factors. First, damage accumulation reduces the
transverse stiffness E2, thus larger strains can occur at the same stress level
in the cracking lamina. Second, E2 increases with cooling (Figure 7), which
works opposite to the previous effect. Third, the transverse CTE α2 decreases
with cooling (see Figures 15–16), so larger reductions of temperature can be
tolerated with the same increment of damage. When these three effects are
combined, it seems that constant GIc is the answer, with the reduction of
damage rate at lower temperature being captured quite well by the model,
although some differences can be observed at cryogenic temperature for P75/934
and P75/1962. The fourth factor is the increase of critical ERR with cooling
depicted in Figure 17, where it can be seen that the temperature dependence
of GIc is more pronounced for P75/934 and P75/1962. For the other materials
systems, the temperature dependence is less pronounced and thus predictions
of crack density with constant GIc are better. Note that an increase of GIc with
cooling (Figure 18) further reduces the rate of damage at lower temperatures.
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Conclusions

Since elastic and CTE properties of polymers are temperature-dependent, they
induce temperature-dependency on all the effective properties of laminas and
laminates. However, the temperature dependency of fiber-dominated properties
is small because the fiber-properties are virtually independent of temperature.

The temperature dependence of polymer properties can be accurately
represented by a quadratic function and in some cases the variation is so slight
that a linear function suffices.

Although the experimental data is scarce, non-existent in some cases, and
displays great scatter in other cases, a systematic procedure was developed and
applied to extract in situ properties for both fibers and polymers encompassing
four composite material systems while taking into account their temperature
dependence.

Finite element analysis confirms the accuracy of the analytical micromecha-
nics model selected for this study. Once the fiber and polymer are characterized,
micromechanics allows computation of all lamina effective properties for the
temperature range of interest. However, care should be taken not to extrapolate
outside the temperature range of the experimental data used for material
characterization, particularly when nonlinear equations are used to model the
data. Predictions outside this range are thus made assuming constant values for
all properties outside the temperature range of the experimental data.

When laminates are mechanically loaded, damage initiation and accumulation
up to crack saturation are characterized by two values of critical ERR in modes I
(opening) and II (shear). However, cooling of quasi-isotropic laminates produces
only mode I cracking because the thermal contraction is the same in every
direction, and cross-ply laminates crack in mode I only because there is no
shear induced. Therefore, only GIC was characterized and used in this study.

The critical ERR is easily obtained by minimizing the error between crack
density prediction and available data. A constant value of critical ERR produces
satisfactory approximation of crack density vs. temperature. To eliminate
the small discrepancy on saturation crack density at cryogenic temperature
requires adjusting the critical ERR with a quadratic equation. From a practical
point of view, being able to produce satisfactory estimates of damage with a
constant value of critical ERR is advantageous because it reduces the amount
of experimentation needed to adjust the critical ERR.

Some of the experimental crack-density data is inconclusive about crack
saturation for some material systems, namely AS4/3501-6 and T300/5208.
In other words, for those material systems the temperature at which data is
available is not low enough to show crack density leveling off. However, model
predictions clearly show that crack saturation is likely in all cases. This is
because the critical ERR does not change much with cooling, but transverse
CTE drops significantly with cooling (Figures 15–16), thus depriving the system
from the main driver for thermo-mechanical matrix cracking.
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Supplemental material

Supplemental material is available on the publisher’s website. A brief
explanation about its use is included in this section.

First, some libraries such as Numpy, Math and Xlsxwriter are needed to
perform elemental and advanced math operations required to run the attached
Python Scripts. Installation of these or other libraries to extend Abaqus
functionality is described in detail on111. Note that the Numpy or Math library
are already installed in Abaqus by default, so these library versions cannot be
changed. However, Xlsxwriter library is required to handle or create new tables
using an Excel file extension, and it must be installed as follows:

• Determine the Phyton version (� import sys) using the windows
command from the installed Abaqus version.

• Install the correct Python version determined previously. Onwards, any
necessary library to be used by Abaqus except Numpy or Math library
must be first installed in the Python folder.

• Install the Xlsxwriter module in the Python folder. Check Xlsxwriter com-
patibility in112 for Python version installed. Once the Xlsxwriter library is
already installed in Python folder, it must be copied/moved to the Abaqus
library folder, similar to the following path: C:\SIMULIA\Abaqus\6.14-2\
tools\SMApy\python2.7\Lib\site-packages. This procedure can be
followed for any other type of library if needed.

Once all the libraries needed are properly installed, the FEA model can be
run keeping in the same folder the following scripts:

a) LaminaName.py : creates a RVE with identical mesh through the thickness
in order to apply the PBC as well as material properties, steps, thermal loads
and job.

b) PBC.py : a function script which detects a basic geometry (it can be another
one such as cube, polygonal shape,...) and creates the PBC constraints. This
script is good because you can apply PBC independently of the RVE shape
(may be not to much complicate).

c) ParameterIntegrator.py : special function with 4 sub-functions which can
calculate the value of a function, the integral of a second order polynomial,
and the accumulated thermal strain given the tangent lamina CTE, typically
as one can find in the literature.

d) ExcelProperties.py : script to obtain an Excel table with the temperature-
dependent properties

e) Epsilonrecover.py : script to obtain the accumulated thermal strain once the
FEA model has been submitted.

The FEA model can be run as follows:
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• Run this script with the constituent properties and settings

a) Set your work directory and run LaminaName.py

b) Select ‘Part-1’ in Part section to see the RVE

c) Go to ‘Interaction’ section to check that all the PBC have been
created. The PBC must be shown as small yellow circles.

d) Go to ‘Job’ section and submit the Job

• Once ‘Job-1’ has been completed successfully, run the ‘Epsilonrecover.py’
script

• Wait until appear the message ‘All calculations finished’, on Message Area
• In current folder, the excel file with the accumulated thermal strain should

appear as ‘Alpha.xlsx’
• The excel file with matrix properties is optional. You can run

‘Excelproperties.py’ once LaminaName.py script has been run.
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