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Abstract

Matrix cracks are the first type of degradation observed in most polymer matrix composites.
The Discrete Damage Mechanics (DDM) model has been added to ANSYS R© as a user
material (UserMAT) to enable prediction of initiation and evolution of matrix cracks in
laminated composites. Besides the usual material properties that describe the elasticity
and strength of a ply, DDM uses two, in situ, critical energy release rates (GIc and GIIc)
to provide accurate predictions of intralaminar cracking. No standard test method exists
to determine these properties in situ, in a finished laminate. Therefore, a methodology is
proposed herein to evaluate these properties in terms of experimental stiffness-degradation
data from specimens made with two different laminate stacking sequences. Experimental
data for other stacking sequences of the same material system are used to validate the
methodology. Comparison with other model-results are also presented. The objectivity of
the constitutive model is evaluated by performing both p- and h-refinement.

1 Introduction

Crack initiation and propagation in composite materials are of particular importance for
the design, production, certification, and monitoring of an increasingly large variety of
structures. In [1], the response of each lamina is obtained from a meso-model that couples
the behavior of a single layer and an interlaminar layer. The first layer uses a damage
model that takes into account the effects of transverse matrix crack. The second layer
uses a damage model that takes into account delaminations. Parameter identification and
validation with open-hole tensile tests on quasi-isotropic laminates is described in [2].
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Another approach to simulate the onset and propagation of transverse matrix cracking,
as well as other failure mechanisms, is serial-parallel mixing theory [3–5]. This formula-
tion obtains the composite response from the constitutive performance of its constituents,
usually matrix and fiber, each one of them simulated with its own constitutive law. With
this theory it is possible to use any given non-linear material model, such as damage or
plasticity, to characterize the composite components.

Most of the models developed specifically to address the phenomenon of transverse
matrix cracking establish a relation between the available strain energy of the material
and the density of matrix cracks [6–12]. Following this approach, [13] uses finite fracture
mechanics to obtain the energy release rate required to double the crack density, with the
apparition of a new crack between two existing cracks. This model was improved with
the concept of incremental and continuous variation of crack density [10]. Similarly, the
equivalent constrained model (ECM) [11, 14], defines a law that provides the evolution of
stiffness as matrix crack density increases.

Some of the above mentioned formulations provide analytical expressions that can be
used to obtain the mechanical response for simple geometry and load configurations. Ho-
wever, it is often necessary to include the constitutive model into Finite Element Analysis
(FEA) software. Some models have been included in commercial FEM software [15, 16].
Others that are available as plugins for existing FEA software [17,18], or as user program-
mable features, including UMAT, UGENS and UserMAT [19].

The discrete damage mechanics (DDM) material model can be incorporated as a user
material [19, UserMAT] in ANSYS Mechanical APDL (MAPDL) [20, Ch. 9]. Further-
more, ANSYS Workbench allows optimization of any set of variables to any user defined
objective defined in a MAPDL by importing the APDL script into Workbench and using
Design Explorer (DE) tools [21]. In this way, DDM is available for Design Exploration,
where the designer can optimize the structure taking into account crack initiation, stress
redistribution, stiffness degradation, and crack density evolution (which may affect the
permeability of the laminate). In this way, design optimization and sensitivity of various
performance metrics to any design variable can be easily done while taking into account
the response of the cracked structure.

Although elastic moduli are available for many composite material systems, the inva-
riant material properties required by DDM model are only available for a few material
systems. However, laminate modulus and Poissons ratio degradation of laminated compo-
sites as a function of applied strain are available for several material systems [22,23]. This
study shows how to use available data to infer the material properties required by DDM
model. Specifically, the main purpose of this study is to find the in situ critical value of the
energy release rate (ERR) in opening mode GIc and critical value of ERR in shear mode
GIIc from macro-scale tensile data, which is easy to obtain. Once GIc, GIIc, are known
for the material system (composite lamina) of interest, DDM can be used in ANSYS to
predict intralaminar cracking initiation and evolution of laminated composite structures
built with the same material system.
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The stated objective is achieved by minimizing the error between DDM model pre-
dictions and available experimental data. Once the input properties GIc and GIIc are
found, the accuracy of DDM predictions is checked by comparing those predictions with
experimental data for other laminates that have not been used to fit the input properties.
Although the input properties are fitted using a specific mesh (one element) and type of
element (PLANE 182), the DDM user material constitutive model is mesh- and element-
type insensitive; that is, the DDM constitutive model posses objectivity. Mesh sensitivity
is assessed in this work by performing both p- and h-refinement.

2 Model Formulation

The discrete damage mechanics (DDM) model is a semi-analytical linear-elastic fracture
mechanics (LEFM) model [24]. The model is able to predict the crack density λ = 1/2l,
simultaneously in all laminas of a laminate, where 2l is the distance between each pair of
cracks, as shown in Figure 1.

Figure 1: Representative Volume Element used by Discrete Damage Mechanics.

By increasing the strain εx, DDM updates the state variables (crack density λ), and
calculates the shell stress resultants N,M, and tangent stiffness matrix AT , BT , DT , as
functions of crack density. Thus, the state variable of the constitutive model is an array
containing the crack density for all laminas at an integration point of the shell element.
Since energy release rates (ERR) are used to predict damage initiation, DDM does not need
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in situ correction of strength. In fact, the critical ERR values can be used to calculate the
in situ strength [25, (4.99),(4.113)]. Determination of in situ critical ERR values using
macro-scale test data is the main the objective of this work.

In laminated composites, matrix cracks grow parallel to the fiber orientation due to
the inability of the crack front to break the fibers. These cracks reduce the stiffness of the
cracked lamina, which then sheds its share of the load onto the remaining laminas. Since
the actual geometry of the cracks is modeled, the formulation is called discrete damage
mechanics (DDM).

The basic ingredients of the DDM model for transverse tension and in-plane shear
damage are listed below:

i. In each lamina, the state variable is the crack density λ.

ii. The independent variable is the midsurface strain ε = {ε1, ε2, γ6}T .

iii. The damage activation function is

g = (1− r)

√
GI(λ, ε)

GIc
+ r

GI(λ, ε)

GIc
+
GII(λ, ε)

GIIc
− 1 ≤ 0

r =
GIc
GIIc

(1)

iv. The damage threshold is represented by the material properties GIc, GIIc. Before
cracking starts, λ = 0 and (1) is a damage initiation criterion [26]. With λ = 0,
the strain for which g reachs zero is the strain for crack initiation. Once cracking
starts, (1) becomes a damage activation function by virtue of the automatic hardening
described below (v).

v. For a given value of strain, the calculated values of energy release rate GI(λ), GII(λ)
are monotonically decreasing functions of λ, as it can be inferred from (14–15) because
Q(k) are monotonically decreasing functions of λ. Therefore, as soon as λ grows,
g < 0, stopping further damage until the strain is increased.

vi. By virtue of (v), no damage evolution function is needed. The crack density λ is thus
adjusted to set the laminate in equilibrium with the external loads for the current
strain while satisfying g = 0, using a return mapping algorithm [27, Chapter 8].

vii. Crack density grows until saturation, defined as λlim = 1/tk, where tk is the thickness
of lamina k.

The solution begins by calculating the reduced stiffness of the laminate [C] = [A]/h for
a given set of crack densities λ, where [A] is the in-plane laminate stiffness matrix, and
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h is the thickness of the laminate. For a symmetric laminate under membrane loads and
assuming the laminas to be thin, we have

∂wi

∂x
=
∂wi

∂y
= 0

σiz = 0 (2)

where u(x, y, z), v(x, y, z), w(x, y, z), are the displacements of a point in lamina i as a
function of the coordinates x, y, z. For thin laminas the cracks occupy the entire thickness
of the lamina and it suffices to work with thickness averages of the variables. A thickness
average is denoted by

φ̂i(x, y) =
1

ti

∫
ti

φi(x, y, z)dz (3)

where ti denotes the thickness of lamina i. Specifically,

• ûi(x, y), v̂i(x, y), ŵi(x, y), are the thickness-average displacements in lamina i as a
function of the in-plane coordinates x, y.

• ε̂i1(x, y), ε̂i2(x, y), γ̂i6(x, y), are the thickness-average strains in lamina i.

• σ̂i1(x, y), σ̂i2(x, y), σ̂i6(x, y), are the thickness-average stress in lamina i.

Out-of-plane (intralaminar) shear stress components appear due to the perturbation of
the displacement field caused by the crack. These are approximated by linear functions
through the thickness of the i-lamina

σi4(z) = σ4(zi−1) + [σ4(zi)− σ4(zi−1)]
z − zi−1

ti

σi5(z) = σ5(zi−1) + [σ5(zi)− σ5(zi−1)]
z − zi−1

ti
(4)

where zi−1 and zi are the thickness coordinate at the bottom and top of lamina i, respecti-
vely.

To solve for the average displacements ûi(x, y), v̂i(x, y), in all laminas i for a given crack
density λ and applied strain ε, the in-plane and intralaminar equilibrium equations, the
kinematic equations, and the constitutive equations are invoked [24]. This leads to a system
of 2n partial differential equations in ûi(x, y), v̂i(x, y), which has a particular solution of
the form

ûi = ai sinhλy + ax+ by

v̂i = bi sinhλy + bx+ cy (5)
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and substituted into the PDE system leads to an eigenvalue problem(
[K]− η2

e [M ]
){ ai

bi

}
e

= {0} (6)

where η are the 2n eigenvalues, {ai, bi}Te are the 2n eigenvectors, and n is the number of
laminas in the laminate. Since always two of the eigenvalues are zero, the general solution
of the PDE system is built as the linear combination of 2n − 2 independent solutions as
follows {

ûi

v̂i

}
=

2n−2∑
e=1

αe

{
ai

bi

}
e

sinh ηey +

{
a
b

}
x+

{
b
c

}
y (7)

where αe are unknown coefficients in the linear combination. The general solution contains
2n+1 unknown coefficients, including a, b, c, and αe with e = 1...2n−2. To determine these
coefficients, one needs 2n + 1 boundary conditions on the boundary of the representative
volume element (RVE) in Figure 1. Note that the RVE spans a unit length along the fiber
direction x, a distance 2l between successive cracks (along y) and the whole thickness h of
the symmetric laminate.

The crack density enters into the solution through the length of the RVE, i.e., 2l = 1/λ.
The applied stress (or strain) enters through force equilibrium on the RVE. This results in
2n + 1 boundary conditions on a system of 2n + 1 algebraic equations that can be solved
for the 2n + 1 coefficients in (7), to obtain the average displacements in all laminas from
(7) for given values of crack density λ and applied load σ̂ = N/h.

The thickness-averaged strain field in all laminas can now be obtained by using the
kinematic equations, i.e., by direct differentiation of (7)

ε̂ix =
∂ûi

∂x
; ε̂iy =

∂v̂i

∂y
; γ̂ixy =

∂ûi

∂y
+
∂v̂i

∂x
(8)

The compliance S and CTE α of the laminate in the coordinate system of lamina k
(x, y, Figure 1) can be calculated one column at a time by solving for the strains (8) for
four load cases, as follows

aσ̂ =


1
0
0


∆T=0

bσ̂ =


0
1
0


∆T=0

cσ̂ =


0
0
1


∆T=0

dσ̂ =


0
0
0


∆T=1

(9)

Cases a, b, c, provide one column each for the compliance matrix of the damaged
laminate

S =

 aεx
bεx

cεx
aεy

bεy
cεy

aγxy
bγxy

cγxy

 (10)
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and case d (∆T = 1) provides the CTE of the damaged laminate. Next, the laminate
stiffness in the coordinate system of lamina k is

C = S−1 (11)

The laminate stiffness is defined by the contribution of the cracking lamina k plus the
contribution of the remaining n− 1 laminas, as follows

C = Qk
tk
h

+

n∑
m=1

(1− δmk)Qm
tm
h

(12)

where the Kronecker delta is defined as δmk = 1 if m = k, otherwise 0. The left-hand side
(LHS) of (12) is known from (11) and all values of Qm can be easily calculated since the m
laminas are not cracking at the moment. Therefore, one can calculate the reduced stiffness
Qk of the cracking lamina k as follows

Qk =
h

tk

[
C −

n∑
m=1

(1− δmk)Qm
tm
h

]
(13)

2.1 Fracture Energy

Under displacement control, the energy release rate (ERR) is defined as the partial deri-
vative of the strain energy U with respect to the crack area Ac. Mode decomposition [28]
can be accomplished as follows

UI =
VRV E

2h

n∑
k=1

tk(ε2 − α̃
(k)
2 δT )Q

(k)
2j (εj − α̃(k)

j δT )

UII =
VRV E

2h

n∑
k=1

tk(ε6 − α̃
(k)
6 δT )Q

(k)
6j (εj − α̃(k)

j δT ) (14)

where h =
∑n

k=1 tk, ε6 = γ12, and α̃(k) are the CTE of lamina k. Equation (14) is cast in
the coordinate system of the cracking lamina (k = c) so that ε2 is mode I (crack opening)
and ε6 is mode II (crack shear).

According to experimental observations on laminated, brittle matrix composites (e.g.,
using most toughened epoxy matrices), cracks develop suddenly over a finite length, and
thus are not infinitesimal. Then, Griffith’s energy principle is applied on its discrete (finite)
form in order to describe the observed, discrete (finite) behavior of crack growth, as follows

GI = 2γI =
UIa − UIb

2 tc

GII = 2γII =
UIIa − UIIb

2 tc
(15)
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where UIa, UIb, UIIa, UIIb, are the elastic strain energies in modes I and II, for crack densities
λa and λb = 2λa, and ∆Ac = 2 tc × 1 is the increment of crack area when a new crack
propagates in two symmetrically located laminas, each with thickness tc, in and RVE with
dimension 1 along the fiber direction.

For the current damage state i, characterized by crack density (state variable) λi =
1/(2l), the RVE in Figure 1 has thickness h, a unit length along the crack direction x, and
width 2l (between cracks), resulting in a volume VRV E = h/λ. Due to shear lag, every new
crack appears between two existing cracks, yielding new crack spacing l, new crack density
λi+1 = 2λi and newly created area ∆Ac = 2 tc.

The damage activation function (1) can now be calculated for any value of λ and applied
strain εx, εy, γxy. Note that the computation of the ERR components derives directly from
the displacement solution (7) for a discrete crack (Figure 1). When this formulation is used
along with the finite element method (FEM), it does not display mesh dependency on the
solution and does not require the arbitrary specification of a characteristic length [29,30], in
contrast to formulations based on smeared crack approximations. A shell element capable
of utilizing this formulation is implemented as a user element into ANSYS [27,30]. Abaqus
implementation is available as a User General Section (UGENS) in [31]. Additional details
are given in [24,32–36].

3 Methodology

In this work, Design Optimization (DO) is used to adjust the values of GIc and GIIc
so that the DDM prediction of laminate response closely approximates the experimental
data. Design Optimization tools can be found in ANSYS Workbench in the Design Ex-
plorer (DE) module [21], which includes also Design of Experiments (DoE), Properties
Correlation (PC), Response Surface (RS), Response Surface Optimization (RSO), and Six
Sigma Analysis.

First, we use DoE to identify the laminates that are most sensitive to each material
property. The focus at this point is to determine the minimum number of laminates to
be used in the experiments that are needed to adjust the material properties. As a result,
we identify two laminates that are the most sensitive to the material properties sought.
Additional experiments conducted with other laminate stacking sequences (LSS) are not
used to adjust properties but to assess the quality of the predictions.

The objective function is the error between the predictions and the experimental data.
Given N experimental values of laminate modulus E(εi), where ε is the strain applied to
the laminate, and i = 1 . . . N , the error D is defined as

D =
1

N

√√√√ N∑
i=1

(
E

E0

∣∣∣∣DDM

ε=εi

− E

E0

∣∣∣∣Experimental

ε=εi

)2

(16)
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Figure 2: Normalized modulus vs. applied strain for laminate #1 (Table 2).

where E,E0, are the cracked and virgin moduli of the laminate, respectively, and N is
the number of data points available for εi values of applied strain. For example, a set of
experimental data points are shown in Figure 2.

Let’s denote the input properties by the array X = {GIc, GIIc}. The objective function
D = D(X) can be calculated by evaluation of (16) through execution of the finite element
analysis (FEA) code for N values of strain. Each FEA analysis is controlled by the APDL
script, which calls for the evaluation of the non-linear response of the damaging laminate
for each value of strain, with properties X. The APDL script is explained in Section 4.1.

An alternative to direct evaluation of the objective function is to approximate it with
a multivariate quadratic polynomial. The approximation is called response surface (RS).
It can be constructed with only few actual evaluations of the objective by choosing a small
number of sampling points for the input. The sampling points are chosen using Design of
Experiments (DoE) theory. The number of evaluations needed to construct the response
surface (RS) and to find an optimum by direct optimization (DO) are shown in Table 1.

The shape of the RS can be inferred by observing the variation of the objective D as a
function of only one input at a time as shown in Figure 3 and 4. The abscissa spans each
of the inputs and the ordinate measures the error (16) between predicted and experimental
data. The sensitivity of GIIc for laminate #1 (Figure 4) is negligible, of order 10−7, because
the laminas are not subject to shear. Therefore, the experimental data of laminate #1 is
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Table 1: Number of FEA evaluations used (a) to construct the response surface (RS) and
(b) to adjust the input properties by direct optimization (DO).

Number of evaluations
# of inputs Inputs RS (Response Surface) DO (Adaptive Single-Objective)

1 GIc 5 9
2 GIc, GIIc 9 21

used to evaluate only GIc. Since the laminas at ±40 in laminate #8 experience both
traction shear, laminae #8 is used to evaluate GIIc while maintaining GIc constant at the
value found previously with laminate #1.

Figure 3: Response surface chart. Error D vs. GIc for laminate #1 (Table 2) with input
ranges given in Table 3.

The RS is multivariate quadratic polynomial that approximates the objective function
DRS = f(Xi) as a function of the input variables. The sensitivity S of the objective D to
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Figure 4: Response surface chart. Error (103×D) vs. GIIc for laminate #1 (Table 2) with
input ranges given in Table 3.

input X in the user specified interval [Xmin, Xmax] is calculated as

S =
max(D)−min(D)

average(D)
(17)

and tabulated in Table 3. Note that the sensitivity can be calculated from the error
evaluated directly from FEA analysis or from the RS. The latter is much more expedient
than the former, as shown in Table 1 by the number of evaluations needed.

Two optimization techniques are used in this work: Response Surface (RS) and Adap-
tive Single-Objective.

When the objective function is approximated by a RS, finding the minimum is expedient
because the RS is a multivariate quadratic polynomial, for which the minimum can be found
with little computational effort. The only significant computational cost is to construct
the RS, for which actual FEA evaluation of the objective function is needed at a number of
points chosen by Design of Experiments (DoE) theory. While RS optimization is fast, its
accuracy is limited by the quality of the RS built using DoE within the response domain
specified by the user as “Input range” in Table 3.
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Table 2: Laminate stacking sequence for all laminates for which experimental data is
available.

Laminate # LSS

1 [02/904]S
2 [±15/904]S
3 [±30/904]S
4 [±40/904]S
5 [0/908/01/2]S
6 [0/± 704/01/2]S
7 [0/± 554/01/2]S
8 [0/± 404/01/2]S
9 [0/± 254/01/2]S

Table 3: Sensitivity S of the objective (error) to each input (property).
Input range Error D Sensitivity

Input min(Input) max(Input) min(D) max(D) ave(D) S Laminate

GIc 0.3 0.6 0.0019 0.0096 0.00542 1.4136 #1
GIIc 0.9 1.5 0.02524 0.0379 0.03007 0.42101 #8

Adaptive Single-Objective optimization [21] is a gradient-type minimization, using the
MISQP algorithm, acting on a Kriging response surface, while the response domain is
reduced incrementally to find the global minimum. The Kriging response surface (KRS)
is built using FEA evaluations of the objective function at a number of points chosen by
an optimal space-filling design of experiments algorithm. A new KRS is built after each
domain reduction keeping the previous information and adding new evaluations inside the
new smaller domain. Thus, the RS is increasingly accurate but it tends to require more
FEA evaluations (Table 1), which increases the solution time.

4 Determination of Material Properties

The material properties (which are the input to the optimization) can be adjusted with
any mesh and any type of elements that represent the gage section of the specimen, or
a single element to represent a single material point of the specimen. For expediency, a
single linear element (PLANE 182) is used in this study.

4.1 APDL

ANSYS Parametric Design Language is used by ANSYS Mechanical [19]. The APDL script
is used to call the user material (USERMATLib.DLL [20, Ch. 9]), specify the geometry,
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Table 4: Lamina elastic properties and in situ strength values.
Property Units Value Ref.

E1 MPa 44700 [22]
E2 MPa 12700 [22]
G12 MPa 5800 [22]
ν12 - 0.297 [22]
ν23 - 0.411 [22]

GIc KJ/m2 0.254 guess value
GIIc KJ/m2 1.4 guess value
CTE1 MPa 3.7 [25]
CTE2 MPa 30 [25]

∆T MPa 0 [25]
Ply thickness mm 0.144 [23]

mesh, boundary conditions, and the strain applied to the laminate. The latter is specified
by imposing a specified displacement, to mimic the experiment, which is available for a
finite set of values of applied strain.

In APDL, parameters can be defined dynamically, i.e., simply by providing values for
them, as follows:

/TITLE, Laminate #1, USERMATLib.DLL

/PREP7 ! Start pre-processor module

!=== PARAMETERS ==================================================

L0 = 0.02 ! initial the crack density [cracks/mm]

ShellDimensionX = 55.0 ! model dimensions [mm]

ShellDimensionY = 10.0 ! mm

tk =.144 ! ply thickness [mm]

NL = 2 ! number layers half laminate

Nprops = 3+9*NL ! # material properties and LSS

!=== VALUES FOR TBDATA ===========================================

GIc = 0.254 ! initial value

GIIc = 1.400 ! initial value

deltaT = 0.0 ! degrees C

E1 = 44700 ! MPa

E2 = 12700 ! MPa

G12= 5800 ! MPa

nu12 = 0.297

nu23 = 0.410

CTE1 = 3.7 ! microstrains

CTE2 = 30.0 ! microstrains

All the parameters defined in APDL can be designated as design variables (called
inputs in the terminology used by Workbench’s Design Explorer [21]), or become compo-
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nents of the objective function (called outputs in Design Explorer). In this work the
inputs are the material properties being sought (GIc and GIIc) and the only output is the
error D calculated as in (16). By minimizing the error, we can adjust the values of the
material properties.

The DDM UserMATLib.DLL R14 available in [37], is documented in [20]. It works
with ANSYS R14, 15, 16, and 17. It uses Nprops = 3 + 9 ∗ NL parameters that include
3 laminate material properties (GIc, GIIc,∆T ) and 9 parameters per lamina, including
7 material properties (E1, E2, G12, ν12, ν23, CTE1, CTE2), plus angle and thickness. The
laminate must be symmetric and NL is the number of laminas in the symmetric half
of the laminate. The values of GIc and GIIc in Table 4 are initial (guess) values for
the optimization. The material properties (Table 4) and the laminate stacking sequence
(Table 2) are entered as TBDATA, as follows. Note that all the variable names refer to
their definitions above.

!=== USERMAT DECLARATION SECTION ==================================

TB,USER,1,1,Nprops, ! DECLARES USAGE OF USERMAT 1, MAT 1,

TBTEMP,0 ! ref. temperature

TBDATA,,GIc,GIIc,detaT,E1,E2,G12 ! 6 values per TBDATA line

TBDATA,,nu12,nu23,CTE1,CTE2,0,2*tk

TBDATA,,E1,E2,G12,nu12,nu23,CTE1

TBDATA,,CTE2,90,4*tk,

TB,STAT,1,,3*NL ! NUMBER OF STATE VARIABLES

! INITIALIZE THE STATE VARIABLES

TBDATA,,L0,L0,L0,L0,L0,L0

DDM UserMATLib.DLL R14 uses 3*NL state variables (λ,D2(λ), D6(λ)) as explained
in [20, Ex. 9.1]. Only the crack density in every lamina λ are true state variables. D2(λ)
and D6(λ) are continuum damage parameters, derived from λ, that are stored for every
Gauss point (for convenience) because they allow for a quick calculation of the reduced
stiffness [Q](k) for each lamina, which is a function of crack density, as follows

[Q](k) =

 Q̃
(k)
11 (1−D2)Q̃

(k)
12 0

(1−D2)Q̃
(k)
12 (1−D2)Q̃

(k)
22 0

0 0 (1−D6)Q̃
(k)
11

 (18)

in terms of the virgin lamina stiffness [Q̃](k).
The true state variables must be initialized (via TBDATA) to values that are represen-

tative of the initial defects that are always present in any composite. The results are not
sensitive to the value chosen as long as the value is small (0.02 crack/mm in this study).

After the material properties and laminate stacking sequence are defined, the analyst
is free to introduce whatever geometry, loads, and boundary conditions are needed to
represent the problem at hand, as it is normally done in ANSYS or any other FEA package.
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The ensuing discussion illustrates the case of a ASTM D 3039 rectangular specimen subject
to a ramped displacement at one end to simulate the load. Symmetry is assumed at the
midspan of the specimen.

The mesh and solution phases are defined in the usual way. The strain is applied as
a displacement on the boundary, which is subdivided into substeps to mimic the available
experimental data:

!=== MESH =========================================================

ET,1,182,,,3 ! PLANE182, plane elements with plane stress

R,1,2*6*tk ! Real const. 1, thickness of whole laminate

N,1 ! Define node 1, coordinates=0,0,0

N,2,ShellDimensionX,0 ! Define node 2,

N,3,ShellDimensionX,ShellDimensionY

N,4,0,ShellDimensionY

E,1,2,3,4 ! Generate element 1 by node 1 to 4

FINISH ! Exit pre-processor module

!=== SOLUTION =======================================================

/SOLU ! Start Solution module

ANTYPE,STATIC

OUTRES,ALL,1 ! Store results for each substep

D,1,all ! Define b.c. on node 1, totally fixed

D,2,UY,0.00

D,2,UX,1.05 ! Define b.c. on node 2, Uy=0.0

D,3,UX,1.05 ! Define displacement on node 3, Ux=0.1

D,4,UX,0.00 ! Define b.c. on node 4, Ux=0.0

NSUBST,100,200,100 ! 100 = Number of substeps in this load step

SOLVE ! Solve load step

FINISH ! Exit solution module

The error (16) is calculated in the post-processing phase. The laminate modulus Ex(λ)
decreases as a function of crack density λ. To calculate the reduced modulus, we need to
get displacements (VGET,UX3,2,0) and reactions (VGET,FX4,3,0 and VGET,FX1,4,0)
as a function of applied strain. In this example we have 100 substeps and NDATA=22
experimental data points. For each experimental data point, a loop scans the substeps to
find the one that has the strain closest to the experimental, in order to compute each term
in the summation (16). The accumulated error is stored in D, which will be designated in
WorkBench Design Explorer as the output for optimization.

! === CALCULATE THE ERROR ===========================================

/POST26 ! Start time-historic post-process

NSOL,2,3,U,X, UXnode3 ! Load displacements node 3

RFORCE,3,4,F,X,FXnode4 ! Load reaction force node 4

RFORCE,4,1,F,X,FXnode1 ! Load reaction force node 1

LINES,1000

PRVAR,2,3,4 ! list displacements and reactions



Theoretical and Applied Fracture Mechanics 92:99–112 (2017) 16

NDATA=22

*DIM,AA,ARRAY,NDATA,2,1, , ,

*SET,AA(1,1,1) , 0.35909 ! first data point strain

*SET,AA(1,2,1) , 1 ! first data point modulus

...

*SET,AA(22,1,1) , 1.47645 ! last data point strain

*SET,AA(22,2,1) , 0.733498 ! last data point modulus

VGET,UX3,2,0

VGET,FX4,3,0

VGET,FX1,4,0

*SET,L,0

*DO,I,1,NDATA,1

*DO,J,1,100,1

SXP=AA(I,1,1)

EEXP=AA(I,2,1)

SCS=1.8181*UX3(J,1)

FN4=FX4(J,1)

FN1=FX1(J,1)

FN2=FX1(2,1)

SCS2=1.8181*UX3(2,1)

MRG=ABS((SCS-SXP))

*IF,MRG,LE,0.009545,THEN

NUM=((FN1+FN4)*(SCS2))

DEN=2*(FN2)*(SCS)

EPE=NUM/DEN

ER1=EPE-EEXP

ER2=ER1*ER1

L=L+ER2

*ENDIF

*ENDDO

*ENDDO

D=(1/NDATA)*SQRT(L)

FINISH ! Exit post-process module

4.2 Workbench Optimization

First, a Mechanical APDL component is added to the Project Schematic by dragging it
from the Component Systems menu. The APDL code is then imported into Workbench.
Next, from among all the properties defined in the APDL script, the input (GIc, GIIc), and
output D are selected.

Optimization techniques are used in this study to minimize the error (16) by adjusting
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Table 5: Error for all laminates considered, calculated by Response Surface (RS) and
Design Optimization (DO).

Error D
Laminate RS DO (RS-DO)/DO

#1 0.002986 0.002937 2%
#2 0.004918 0.005179 -5%
#3 0.005769 0.005891 -2%
#4 0.01155 0.011797 -2%
#5 0.01384 0.01466 -6%
#6 0.03584 0.037435 -4%
#7 0.002859 0.004631 -38%
#8 0.025511 0.026829 -5%
#9 0.011437 0.009954 15%

the input (material properties) to minimize the output (error). A Response Surface Opti-
mization (RSO) component is now added to the Workbench project by dragging it from
the Component Systems menu to the Project Schematic.

Then, DoE is used to adjust a multivariate quadratic polynomial to the actual response
(objective) of the system as defined by the APDL script. In this study the objective is
the error D in (16) and the multivariate are the properties GIc and GIIc. Then, the RS is
used to plot the objective D vs. each of the properties and to calculate the sensitivities.
This allows the user to select, for optimization, only the properties to which the objective
(error) is sensitive. This varies from one laminate to another.

Within RSO, optimization is performed by using the RS rather than actual evaluation
of the response via finite element analysis (FEA). This results in significant savings of
computer time, as shown in Table 1, but the result is approximate because the RS is an
approximation to the actual objective function. To get exact optimum properties (within
numerical accuracy) one has to conduct Direct Optimization (DO). It can be seen in Table
5 that RS is quite accurate when compared with DO, considering that the number of FEA
evaluations (reported in Table 1) is smaller for RS than for DO.

As it is shown in Table 6, the accuracy of the properties is good when RS is used instead
of DO. A cost comparison, in terms of number of FEA evaluations, is shown in Table 1,
where it can be seen that DO is much more expensive.

Twenty two experimental data points are available for laminate #1 and nineteen ex-
perimental data points are available for laminate #8. Laminate #1 [02/904]S was chosen
because this laminates is sensitive to GIc. On the contrary, GIIc does not have any effect
on the results of Laminate #1, as shown in Figure 4.

For minimizing the error D, lower and upper limits must be chosen for each input (Table
3). Since the response surface is approximate (performing actual evaluation via FEA for
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Table 6: Comparison of adjusted input (material) parameters obtained by using Response
Surface Optimization (RSO) and Direct Optimization (DO).

Optimization method
Parameter Units RSO (Response Surface) DO (Adaptive Single-Objective)

GIC kJ/m2 0.4285 0.4370
GIIC kJ/m2 0.9660 1.0205

Max # of FEM evaluations 9 21

only a few points), direct optimization is used to check for accuracy. Direct optimization
performs FEA at more points to iteratively construct increasingly refined response surfaces
to be explored by the optimization algorithm. Results from response surface and direct
optimization are compared in Table 6.

Since value ofGIc is found with laminate #1, the only property that remains to be found
is GIIc. For this purpose, laminate #8 [0/ ± 404/01/2]S is chosen because it experiences
shear stress in the ±40 laminas. In this way, GIIc has a visible effect on the error D, as
shown in Table 3.

Predicted laminate modulus Ex(εx) with properties listed in Table 6 are compared with
experimental data for all the laminates. The error for each laminate is reported in Table
5.

5 Results

5.1 Other laminates

In this section, the material properties GIc, GIIc, determined earlier are used to predict the
response of other laminates made with different laminate stacking sequence. The difference
between predicted and experimental data for all nine laminates are reported in Table 5.
Only laminates #1 and #8 were used to adjust the material properties. The modulus
reduction of the remaining laminates (2–7, and 9) were calculated using those material
properties. The error (Table 5) is very small for all laminates, demonstrating both the
ability of the proposed procedure to adjust the material properties adequately and the
ability of DDM to use those properties to accurately predict the modulus reduction of a
variety of laminates (listed in Table 2).

5.2 Comparison with Other Models

In this section, results are compared with predictions using Progressive Damage Analysis
(PDA), which is available in ANSYS. PDA uses three material properties: two strengths
values (F2t and F6) and one dissipation energy (Gc). These properties were adjusted using
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a variation of the procedure presented in this work. Laminate #1 was used to obtain
F2t = 78.55 MPa and Gc = 27.50 kJ/m2. Laminate #8 was used to obtain F6 = 88.0 MPa.

Since PDA uses only a single value of energy dissipation, predictions of damage evo-
lution are accurate and comparable to those of DDM as long as one mode, say mode I,
dominates. This can be observed for laminates #1 through #5, as shown in Figures 2, 5,
and 6. All these laminates are subject to pure mode I crack opening in the 90-deg cluster.
Also note that the cracking cluster is always composed of 8 plies. By adjusting F2t and
Gc with laminate #1, the analyst can obtain good predictions with PDA as long as the
damage is dominated by mode I and the cracking cluster has the same thickness as the one
used for adjusting F2t.

Figure 5: Normalized modulus vs. applied strain for laminate #3 (Table 2).

If the cracking cluster has a different thickness, the in situ strength will be different
than F2t. In fact, the in situ strength is inversely proportional to the square root of the
cluster thickness [25, (7.42)]. In PDA, the transverse tensile strength F2t and in-plane shear
strength F6 cannot be corrected for in situ effect, leading to errors when the properties have
been adjusted with one value of lamina thickness but used to predict damage initiation
for a different value of lamina thickness. Note that the cracking cluster in laminates #6
through #9 contain 4 plies (see Table 2), but F2t has been adjusted with laminate #1,
which has a cracking cluster that is twice as thick. This seems to be the reason for the
discrepancy between PDA results and experimental data in Figures 7 and 8.
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Figure 6: Normalized modulus vs. applied strain for laminate #5 (Table 2).

Since DDM automatically takes into account in situ strength, it is able to predict
well the damage initiation regardless of the thickness of the cracking lamina or cluster.
Damage evolution is also predicted correctly because DDM uses an interactive damage
initiation and evolution criterion (1), that includes interaction between the two modes
of crack propagation via two properties (GIc and GIIc). DDM does not uses strength
for predicting crack initiation but simply the Griffith’s criterion. Note that formulas for
predicting in situ strength are based on Griffith’s criterion [38].

5.3 Crack Density

As shown in the previous section, DDM can predict modulus reduction, but it also can
predict crack density (number of cracks per unit length) as a function of applied load or
strain. Comparison of predicted vs. experimental crack density are shown in Figures 9–10.
It must be noted that DDM first calculates the reduced modulus matrix [Q(λ)] of the
laminate using an analytical solution of the elasticity equations over the RVE shown in
Figure 1. Then, it calculates the crack density required to equilibrate the applied load.
Thus, the quality of the modulus reduction is as good or better than that of the crack
density.
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Figure 7: Normalized modulus vs. applied strain for laminate #7 (Table 2).

5.4 Mesh Sensitivity

Mesh sensitivity refers to how much the solution changes with element size, number of
elements, or number of nodes. It can be seen in Figures 11-12 that DDM results are not
sensitive number or type of elements, i.e. to mesh density.

Mesh density refers to the number of nodes, number of elements, and element type
(linear or quadratic) used to discretize the domain. Mesh density affects the solution in
two ways: (a) convergence and (b) objectivity. As the mesh density increases, FEA is able
to approximate the strain gradients in the solution, asymptotically to a final value. Once
the strain distribution on the domain is close to the asymptotic value, the solution does not
change appreciably due to further refinement of the mesh. This is called convergence of the
solution. Next, objectivity deals with the accuracy of the converged solution, which can be
investigated as follows. For a problem for which the exact solution predicts a constant strain
in the entire domain, the solution should be absolutely independent of mesh refinement.
That is, a one-element mesh should provide the same result as an n-element mesh for
any value of n. If it does not, it is an indication of lack of objectivity of the constitutive
model, as it is shown in [39] for a different damage model. Lack of objectivity means that
the constitutive model returns a different estimate of the stress corresponding to a given
strain, depending on the size of the element and/or element type (linear or quadratic).
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Figure 8: Normalized modulus vs. applied strain for laminate #9 (Table 2).

The solution may still converge in the sense of (a), but to an incorrect value.
Since the results in this study are for rectangular specimens subjected to uniaxial load,

theres is no strain gradient (the strain is constant over the entire model). Therefore, a
single element should provide the same strain, stress, and damage results accurately. It
is shown in Figures 11 and 12 that this is true regardless of the number of elements or
element type used (PLANE 182 or PLANE 183).

6 Conclusions

A novel methodology is proposed to determine the material parameters for Discrete Damage
Mechanics in ANSYS and the procedure is explained in detail.

It is observed that adjusted material properties GIC , GIIC , can be used to predict
crack initiation and evolution using ANSYS, and that good comparison with available
experimental data for different laminates is achieved.

DDM not only predicts modulus reduction but also crack density as a function of load
or applied strain. Unlike classical damage variables based on modulus reduction, crack
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Figure 9: Crack density vs. strain for laminate #6 (Table 2).

Figure 10: Crack density vs. strain for laminate #7 (Table 2).
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Figure 11: Normalized Modulus vs. applied strain for laminate #1 using different number
of elements for PLANE 182 and one element for PLANE 183.
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Figure 12: Reaction force vs. applied strain for laminate #1 using different number of
elements (PLANE 182).

density is a true (measurable) state variable, which additionally could be correlated with
the permeability of the composite.

ANSYS/DDM is shown to be independent of mesh density, element type and size, and
number of nodes.

When compared to PDA, DDM provides better predictions for laminates containing
angle-ply clusters because DDM has an independent parameter, namely GIIc, to model
the shear component of cracking, while PDA does not. Furthermore, DDM can better
predict damage initiation because it does not need strength values, which are susceptible
to in situ effect. Instead DDM uses the critical ERR’s parameters to predict both initiation
and evolution of cracking.

When compared to direct optimization methods, response surface demonstrates two
advantages. First, it allows for fast computation of the sensitivity of the error to the
material properties sought, thus allowing the analyst to select the most appropriate lami-
nate stacking sequence to adjust each material property. Second, RS is able to adjust the
material properties accurately and with low computational expense. However, the direct
optimization method is always available to perform a final check.
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