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Abstract

The novel methodology for imperfection sensitivity analysis, presented
in Barbero et al.[1] is here applied for the evaluation of limit load of com-
posite cylindrical shells. Koiter’s perturbation method is used to calculate
the imperfection paths emanating from mode interaction bifurcations and
the Monte Carlo method is used to test a large number of modes and all
possible interactions among them. The computational cost is low because
of the efficiency of Koiter’s method. The demands of Koiter’s method for
accurate evaluations of higher order derivatives of the potential energy
are met by a mixed, corotational element.

keywords: Koiter’s asymptotic approach; Composite Cylinder; Coro-
tational kinematics; Monte Carlo; Imperfection sensitivity.

1 Introduction

The evaluation of the structural performance of cylinders in compression is a
classical technical problem and applications to space launchers, off-shore plat-
forms, and so on [2]. The design of cylindrical sandwich shells structures is
generally dominated by interactive buckling. It is well known that experimen-
tal limit load load are much lower than predicted by buckling loads. This is
explained by the presence of imperfections, of different nature, in real cylinders
and interactive buckling that affect the load carrying capacity. It is clear that
the presence of imperfections greatly influence the structural behaviour of the
cylinder under compression. Therefore it is necessary to evaluate the imper-
fection sensitivity of this type of structures. Imperfection sensitivity analysis
requires the identification of a large number of buckling modes and their interac-
tion. Because of the large number of possible modes and the uncertainly about
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which ones produce the most dangerous interaction among them, such analysis
is prohibitively time consuming. Continuation methods based on Riks method
are often used. In spite of the simplicity of its numerical implementation, which
requires only an approximation of the tangent stiffness matrix, Riks method
suffers in the case of multiple bifurcations, requiring ad-hoc branch switch algo-
rithms. A valid alternative for these cases is the explicit dynamic method but
such method takes long simulation time because the time increment may need to
be very small. Moreover, both Riks and explicit dynamics methods suffer from
another drawback: the analysis must be fully repeated for each imperfection,
making impracticable when combined with Monte Carlo simulation. There-
fore, the aim of this work is to apply a robust and efficient methodology [1] to
study the imperfection sensitivity of cylindrical sandwich shells under axial com-
pression. The proposed methodology does not require a priori knowledge of the
shape and magnitude of imperfections and does not rely on lengthy continuation
analysis. Instead, it uses Koiter’s perturbation approach [3, 4] to calculate the
bifurcation load, post-buckling path, and interaction between modes to detect
bifurcations on the post-buckling path of individual modes, as well as the paths
emanating from those bifurcations. The approach is based on a fourth-order
energy expansion, thus requiring a geometrically coherent structural model for
reliability of the analysis [5]. The corotational approach fulfills this requirement,
allowing also complete reuse of a linear model and its corresponding finite ele-
ment for the geometrically nonlinear analysis. A Hellinger-Reissner formulation
is used to avoid extrapolation looking. The recent 3D plate finite element [6, 7],
provides evaluation of linear elastic response and rotation fields. Therefore, it
is very suitable to be used along with a corotational formulation to perform ge-
ometrically nonlinear analysis [5]. Using Monte Carlo simulation, for a random
sequence of imperfections, each one obtained as a linear combination of buckling
modes, the equilibrium paths for the imperfect structures are recovered. Then,
the worst imperfection is detected and the corresponding limit load is obtained.
The proposed methodology allows us to run thousand of analysis in the time of
a single run of Riks’ or explicit dynamic analysis [1].

2 Koiter’s asymptotic analysis

Asymptotic approach is essentially the implementation of Koiter’s nonlinear
elastic stability approach [8] into the finite element method (FEM) [3, 4]. The
solution process is based on an expansion of the potential energy in terms of
load factor λ and modal amplitudes ξi. It can be summarized as follows:

1. The fundamental path is obtained as a linear extrapolation

uf [λ] = u0 + λû (1a)

where u0 is an initial displacement, possibly null, and u = λû is the vector
of kinematic parameters, i.e., the space of degrees of freedom (dof) of the
structure and û = du/dλ is obtained as the solution of the linear algebraic
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equation
K0 û = p̂ (1b)

where p̂ is the reference load and K0 = K[u0] is the stiffness matrix,
which contains the coefficients of the quadratic terms of the energy Φ′′.

2. A cluster of buckling loads λi, i = 1 · · ·m, and associated buckling modes
v̇i are obtained along uf [λ] by the critical condition

K[λi] v̇i = 0 , K[λ] = K[u0 + λû] (1c)

the eigenvalue problem is defined as fully nonlinear, to correctly recover
the post-critical behavior. The nonlinearity is introduced by updating
the configuration along the fundamental path. Note that the size m of
the subspace of buckling modes needed for the analysis is of orders of
magnitude smaller than the number of dof used to discretize the structure.

We will denote with V = {v̇ =
∑m

i=1 ξiv̇i} the subspace spanned by the
buckling modes v̇i and W = {w : w⊥v̇i , i = 1 · · ·m} its orthogonal
complement according the orthogonality condition

w⊥v̇i ⇔ Φ′′′
b ûv̇iw = 0 (1d)

where û = Lû, v̇i = Lv̇i, w = Lw and L the linear operator of FEM
interpolation. We will also denote with λb an appropriate reference value
for the cluster, e.g. the smallest of λi or their mean value, and with a
suffix ”b” quantities evaluated in correspondence to ub = uf [λb].

3. Denoting ξ0 = (λ − λb) and v̇0 = û, the asymptotic approximation for
any equilibrium path is approximated by an expansion in terms of mode
amplitudes ξj as follows

u[λ, ξk] = ub +

m∑
i=0

ξiv̇i +
1

2

m∑
i,j=0

ξiξjwij (1e)

where wij ∈ W are quadratic corrections introduced to satisfy the projec-
tion of the equilibrium equation intoW, obtained by the linear orthogonal
equations

δwT (Kbwij + pij) = 0 , ∀w ∈ W (1f)

where Kb = K[uf [λb]] and vectors pij are defined as a function of modes

v̇i and, i = 0 · · ·m by the energy equivalence δwTpij = Φ′′′
b δw v̇j v̇j .

4. The following energy terms are computed for i, j = 0 · · ·m, k = 1 · · ·m:

Aijk = Φ′′′
b v̇iv̇j v̇k

Bijhk = Φ′′′′
b v̇iv̇j v̇hv̇k − Φ′′

b (wijwhk + wihwjk + wikwjh)

Cik = Φ′′
bw00wik

µk[λ] =
1

2
λb(λ−

1

2
λb)Φ

′′′
b û

2v̇k +
1

6
λ2b(λb − 3λ)Φ′′′′

b û3v̇k

(1g)
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where the implicit imperfection factors µk are defined by the 4th order
expansion of the unbalanced work on the fundamental path (i.e. µk[λ] =
(λp̂− Φ′[λû])v̇k).

5. The equilibrium path is obtained by projecting equilibrium equation on
V. According to Eqs, (1a)–(1g), we have

1

2

m∑
i,j=0

ξiξjAijk +
1

6

m∑
i,j,h=0

ξiξjξhBijhk + µk[λ]

− λb(λ−
1

2
λb)

m∑
i=0

ξiCik = 0 , k = 1 . . .m

(1h)

which is an algebraic nonlinear system ofm equations in them+1 variables
ξ0, ξ1 · · · ξm, with known coefficients.

The implementation of the asymptotic approach is quite easy and its com-
putational cost remains of the order of that required by a standard linearized
stability analysis [3]. Once the preprocessor phase of the analysis has been
performed (steps 1 to 4), the presence imperfections can be taken into account
in step 5, by adding additional imperfection terms in the expression of µk[λ],
allowing for an inexpensive imperfection sensitivity analysis.

3 Imperfection sensitivity analysis

In the analysis of thin walled structures the characterization of imperfection is
often difficult. The presence of imperfections changes some aspects of structural
response and often causes an erosion of the carrying capacity, especially in the
interactive buckling range [9, 10, 11]

In the asymptotic algorithm the presence of imperfections expressed by a
load p̃[λ] and/or an initial displacement ũ affect Eq.(1g) only in the imperfection
term µk[λ] that becomes (see [3])

µk[λ] =
1

2
λb(λ−

1

2
λb)Φ

′′′
b û

2v̇k +
1

6
λ2b(λb − 3λ)Φ′′′′

b û3v̇k + µl
k[λ] + µg

k[λ] (2)

with
µl
k[λ] + µg

k[λ] = λ (Φ′′′
c ûũv̇k − p̃[λ]) = λµ̄k (3)

The aim of the imperfection sensitivity analysis is to link the presence of geomet-
rical and load imperfections to the reduction in the limit load. For structures
presenting coupled buckling even a small imperfection in loading or geometry
can mean a marked reduction in collapse load with respect to the bifurcation
load [12, 13, 14]. So an effective safety analysis should include an investigation
of all possible imperfection shapes and sizes to identify the worst cases.

The asymptotic approach provides a powerful tool for performing this exten-
sive investigation. In fact, the analysis for a different imperfection only needs to
update the imperfection factors µg

k[λ] and µl
k[λ] through Eqs.(2)–(3) and solve
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the nonlinear system (1g)–(1h). Even if this system, which collects all the non-
linear parts of the original problem, proves to be highly nonlinear and some care
has to be taken in treating the occurrence of multiple singularities, its solution
through a path–following process is relatively easy because of the small number
m of unknowns involved.

4 Numerical results

The imperfection sensitivity analysis of the cylinder called Z15 [15, 16] in com-
pression is investigated. The geometrical data and mechanical properties are
reported in Table 1. Different thickness have been considered. The boundary
condition used is clamped on bottom and top edge except the longitudinal dis-
placement at the top edge. The load is a distributed line load applied at the
top edge. The elements used for the mesh have a dimension of 5.8x5.8mm.
From computational point of view, the Koiter’s asymptotic analysis has been
performed using corotational approach [17] within a mixed formulation based
on MISS-4 finite element [6]. Further details about the implementation can be
also found in paper [1].

Z15 Cylinder UD CFRP
Geometry Material Properties

Length [mm] 500.00 E1 [GPa] 157.4
Radius [mm] 250.27 E2 [GPa] 8.6
Thickness [mm] 0.463 G12 [GPa] 5.3
Lay-up [in-out] [±24/± 41] ν12 0.28

Table 1: Geometrical data and mechanical properties.

5 Buckling and post-buckling analyses

The buckling modes are reported in Table 2. Eight buckling modes have been
considered for the multimodal analysis. The buckling modes for the the thick-
ness t = 0.463 mm are reported in Fig. 1. Some of the quadratic corrections
(eq.1d) are shown in Figure 2 and used to recover the structural behaviour of
the imperfect structure.

Only geometrical imperfections ũ have been considered. In particular, they
are generated as linear combinations of the buckling modes v̇i, that is

ũ =

m∑
i

riv̇i (4)

where ri are random numbers, and m is the number of buckling modes included
in the expansion (1e). For this example, m = 8 is used. Note that our aim
is to find the worst imperfection. Then, the real shape of the imperfection is
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not required and only the linear combinations of buckling modes are considered.
The maximum value of ũmax is assumed to be bound by a tolerance

ũmax/t ≤ tol (5)

For this example, ũmax/t = 0.3 is used, while in practice the amplitude of the
imperfection depends on the manufacturing process. The shape of the worst
imperfection and the deformed shape at minimum limit load are shown in Fig-
ures 3 and 4, respectively. The distribution of limit load λlim considering one
thousand imperfections is shown in Fig. 5

The load sensitivity as a function of the amplitude of the worst imperfec-
tion is reported in Figure 6, where it can be seen that cylinder Z15 is highly
imperfection sensitive.

thick λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
1/4 t 1745 1745 1756 1756 1758 1758 1762 1762
1/2 t 7120 7120 7131 7131 7189 7189 7201 7201
3/4 t 16302 16302 16531 16531 16557 16557 16586 16586
t 29556 29556 29945 29945 30059 30059 30199 30199
5/4 t 46918 46918 47740 47740 48117 48117 48194 48194
3/2 t 68848 68848 69324 69324 70614 70614 71499 71499
7/4 t 94844 94844 96862 96862 97115 97115 98470 98470

Table 2: Buckling loads (in Newtons) for cylinder Z15 and various values of the
thickness.

v̇1 v̇2 v̇3 v̇4

v̇5 v̇6 v̇7 v̇8

Figure 1: Buckling modes for cylinder Z15 with t = 0.463 mm.
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w11 w12 w13 w14

w15 w16 w17 w18

Figure 2: Quadratic corrections for cylinder Z15 with t = 0.463 mm.

1/4 t 1/2 t 3/4 t

t 5/4 t 3/2 t

7/4 t

Figure 3: Shapes of the worst imperfection for cylinder Z15 and various values
of the thickness.
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1/4 t 1/2 t 3/4 t

t 5/4 t 3/2 t

7/4 t

Figure 4: Mode shapes at minimum limit load with the worst imperfection for
cylinder Z15 and various values of the thickness.

Figure 5: Frequency distribution of the lowest limit load λlim for cylinder Z15
and various values of the thickness.
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Figure 6: Limit load λlim normalized on the lower buckling load λmin. Sensi-
tivity to worst imperfection amplitude for cylinder Z15 and several values of the
thickness.
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6 Concluding remarks

An imperfection sensitivity analysis using Koiter’s approach and the Monte
Carlo method has been applied for the evaluation of imperfection sensitivity
of composite cylindrical shells. The analysis allows to evaluate the limit loads
and the erosion of the theoretical buckling due to both imperfections and mode
interaction. The main strengths of the proposed methodology are the ability
to analyse thousands of random imperfections in a short time, with very low
computational cost, to find the worst imperfection and provide an accurate
evaluation of limit load and erosion of buckling load, with respect to theoretical
case, due to buckling mode interaction. In particular, the overall analysis allows
to obtain a statistical evaluation of limit load distribution and the sensitivity
curves with respect to worst imperfections. The robustness and the reliability
of the methodology confirms that Koiter’s approach is a powerful tool for the
evaluation of limit performance of composite cylindrical shells.
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