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Abstract

Both composite materials and stress concentration are common issues in modern structural engi-
neering. In this paper, analytical integration of the singular kernels is performed for boundary
element analysis (BEM) of elastic, plane orthotropic media with stress concentrations. Analytical
integration leads to accuracy and efficiency improvements over FEM. Furthermore, high continuity
(HC), quadratic spline interpolation on the boundary is used to further improve accuracy at low
computational cost when compared to FEM. The advantages of BEM for calculation of displace-
ments and stresses near stress raisers in orthotropic plates are shown. Particular attention is paid
to efficient interpolation for approximating boundary quantities and to precision of computation for
evaluating boundary integrals. Such improvements lead to accurate computation of both displace-
ments and stresses in both the boundary and the domain. Thus, the advantages of the proposed
method are accuracy and low computational cost.
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1 Introduction

Orthotropic materials, including laminated composite materials, are extensively used in modern
industry. The theory of elasticity for orthotropic bodies is well established and solutions have been
obtained for simple problems [1,2]. The presence of cracks increases the complexity of the analysis
[3-7]. Therefore, complex problems of orthotropic, elastic bodies are analyzed with numerical
methods, such as the Finite Element Method (FEM) [8-13] and the Boundary Element Method
(BEM) [14-27]. Application examples of the BEM can be found, for example in [28-33|. Specific
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application of BEM to plasticity and fracture can be found, for example in [34-37]. BEM analysis
of interphase cracks and transverse isotropy in bimaterials is presented in [38,39)].

The boundary element approach can be used to construct efficient algorithms for numerical
analysis of engineering problems. Some characteristics of this method are very attractive, namely
the reduction of the dimension (e.g., from 2D to 1D) of the discrete model in comparison with
domain methods (e.g., FEM), and the mixed nature (traction—displacement) of the method, which
yields comparable accuracy in both displacements and tractions.

Green [40] first introduced the fundamental solutions for 2-D orthotropic bodies under a concen-
trated force. Rizzo and Shippy (1970) [41] introduced the fundamental solutions into the boundary
integral equations for numerical elastic analysis of stress concentration. Recently, the fundamental
solutions for orthotopic plane problems were improved [42-47], but numerical integration was used
to compute the boundary coefficients.

Analytical evaluation of the boundary coefficients has been used for 2-D isotropic, plane and
bending elastic problems [48-50] and in BEM for orthotropic, plane, potential problems [51,52]. In
this paper, analytical integration is developed for the 2D orthotropic problem.

In the context of the boundary element method for plane orthotropic media, the aim of this work
is to provide an accurate evaluation of the stress field with low computational cost. Accuracy and
efficiency are achieved by refining both the boundary interpolation and the integration process. In
summary, the boundary is discretized into macro-elements using a quadratic high continuity (HC)
spline approximation to ensure C! continuity using few control points. Then, analytical integration
of coefficients is carried out on linear piecewise boundaries. The exact evaluation of integrals is
decisive for an accurate, yet inexpensive computation of the domain stress field from the boundary
solution. Finally, and assessment of the performance of the proposed methodology is presented.

2 Orthotropic plane problem

Consider a 2D orthotropic elastic body described in a rectangular Cartesian system x1,x3. The
behavior of the body is described by two-dimensional fields of displacement, stress, and strain. The
problem is governed by the customary equations, namely kinematic, constitutive, and equilibrium
equations (e.g., [8, Chapter 2|).

2.1 Fundamental Solution

Consider an elastic orthotropic problem on a 2D infinite domain subjected to a concentrated force
f* applied at the source point €. The fundamental solution for this problem is obtained by first
rewriting the equilibrium equations, taking into account of the Hooke’s law, into form
Lu+b=0 (1)
where L is the differential operator
C110% + Ce605  (Cr1 + Cep) 0102

L| = 2

(L] (Ch1 + Ces) 102 Ca03 + Ce60} 2)
and u is the displacement field, b are the body forces, 9; = 0/0x;, and C;; are the coefficients of

the stiffness tensor in Voigt contracted notation. Solving the system (2), the following fundamental
solution was obtained by Huang [42], for displacements
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where the generic term v}, (§,x) of the fundamental solution represents the component of the
displacement at the field point z in x; direction due to the application at the source point £ of a
unit force directed along x,.

The fundamental solution for the tractions is
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where ny represent the components of the unit normal at the field point x, and the generic term
t¥; (&, x) of the fundamental solution represents the component of the traction at the field point
in x; direction due to the application at the source point £ of a unit force directed along x.

The distance between the source £ and the field point z is

e (€, 2) = mp — & (5)
where
28 Se
A+ Ay = 12 + S66 (6)
Sao

St
Ay = — 7
e =g (7)
A = S11 — A\pS22 (8)
22 = M 415 (9)
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D= (10)
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Equations (6) and (7) imply that
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where S;; are the components of the compliance tensor in Voigt contracted notation.

2.2 Integral equation on the boundary

The integral equations on the boundary can be derived using Betti’s reciprocal work theorem, or
the weighted residuals method, resulting in Somigliana’s equation [53]

u(f):/ru*T (§,x)t(x)dI‘—/Ft*T (5,x)u(:r)df+/u*T &2)b(z)dQ  (£€T) (12)

Q

When evaluating (12) on the boundary, singularities of order O(1/r?) require evaluation the
integral as Cauchy Principal Values [54]

u(é) = /F u’ (f,x)t(m)df—(McT u(é) + /F " (g,x)u(a;)dr>+ /Q ' (&,2)b(2)dQ  (£€T)

(13)
which can be written as

u©) = [w'Eat@d - [ Eou@ar + [ o Eob@de  (er) (1
r r Q
where b are the body forces, u* and t* are the fundamental solutions (3) and (4), © is the 2D
domain, I' is the boundary of the domain, and c is 2 x 2 coefficient matrix which depends on the
surface geometry and it is defined as following

1 0 C11 0
c=I+M! = + (15)
0 1 0 C292

where ¢11 and cog are evaluated in the Appendix (4).

2.3 Discrete model

The approximate solution requires discretization of both the geometry of the contour and the me-
chanical variables, i.e., displacement and traction. The geometry of the contour can be represented
through a system of curvilinear coordinates or through piecewise linearization. The curvilinear
representation is the most general, but requires that the boundary integrals be evaluated in nume-
rically. Numerical integration requires us to pay particular attention to the calculation of singular
and nearly singular integrals. On the other hand, a piecewise linear representation of the contour
allows us to use analytical integration for both, the solution on the boundary I' and the solution
inside the domain .

For polygonal domains, the discretization into boundary elements proceeds as follows. The dis-
continuities of the boundary (e.g., corners) and the boundary conditions (e.g., attachement points)
are used to subdivide the boundary into macro-elements. Macro-elements (denoted by M; in Figure
1) are used to discretize the boundary; not the domain. In this way, the integral equations are
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Figure 1: Discretization with macro-elements M;, subdivided into elements I'.. Note that each change from
a displacement boundary condition to a traction one, or viceversa, requires a new macro-element.

represented through summations extended over the number of macro-elements. Furthermore, the
discretization of the mechanical variables on the boundary requires that each macro-element be
subdivided into a finite number of evenly spaced elements (denoted by T, in Figure 1).

The boundary variables are approximated by shape functions ¢.(¢) (Figure 2) as follows

u(¢) = Z ue (¢) = Z Gue Ue;  Pue = {qb(f)(o, $Ut(0), ¢<J‘+2><<>}
e=1 e=1
. e (16)
t (C) = Z te (C) = Z Dte Ue; Dte = {¢(]) (C)a ¢(j+1) (C)7 ¢(j+2) (C)}
e=1 e=1

2.3.1 High Continuity (HC) Interpolation

The quality of the numerical solution depends on the quality of the representation of the variables
on the boundary. An interpolation that has been shown to provide high quality interpolation is
the High Continuity (HC) interpolation that was proposed by Aristodemo [55] and used for BEM
in 48,49].

In HC interpolation, the boundary variables are represented by a quadratic B-spline approxi-
mation which guarantees C'' continuity. In each element, the shape function is constructed using
three control points (see Fig. 3(a)), associated with one node placed at the midpoint of the element
itself, and one node on each of the two adjacent elements.

Each macro-element is divided into n elements. For n elements, while a piecewise constant
interpolation uses n parameters, the HC interpolation HC uses n + 2. To enforce C! continuity,
while Hermite interpolation uses 2n parameters, HC uses only n + 2, achieving the same continuity.

For n + 2 parameters, HC interpolation requires n + 2 sources located on the macro-element.
The sources are located at the midpoint of the internal elements, plus one additional source for
each of the end elements. The sources in the end elements are located as shown in Fig. (4), where
a = 0.6a and 8 = 1.4a, where a is the element half-length. The values of «, 3, are chosen by
numerical optimization [49].
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Figure 2: Quadratic interpolation of displacements.
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Figure 3: Shape functions and arrangement of the interpolation parameters.
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Figure 4: Arrangement of the sorce points on a macro-element.

In (14), the displacements and the tractions field u and t can be approximated by the following
generic function

3 3 2
ﬁmzszmW=Z< %wﬂﬁ“;izmm+z (17)
h=0

k=1 h=1

where  is the local element coordinate, with —1 < ¢ < 1 (Figure 3.a), ¢(®) (¢) is the interpolation

function associated to the function f; at node k, and cpi is the coefficient of degree h of the

polynomial corresponding to nodal parameter k. Also, n is the number of elements on a macro-

element. For example, if there are n = 8 elements (Figure 4), then we need 10 HC parameters.
The general expression of these functions is [55]

oM (¢) = 4(514—1) (1-2¢+ ¢?)

¢(2)(O:4<3+1§(d+1) (2+3(s+d)+dsd) +2(d =)= (d+5+2) () (18)
@ () = 4(dl+1) (1+2¢+¢?)

where s = 1,d = 0, for the leftmost element in the macro-element, s = 0,d = 1, for the rightmost
element, and s = 1,d = 1, for inside elements. In this work, the shape functions are generated
using s = d = 1 (inside element). Use of all three types of HC elements is onerous and it does not
provide any advantage for the work carried out in this particular case, i.e., 2D plane orthotropic
media. Therefore, we have

(1) L 1. 1,
oV (¢) =g — ¢+ 5¢
3 1
o) =7 ;¢ (19)
6@ () =11ty le
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2.4 Determination of the solution on the boundary

The discrete form of (14) allows to construct an algebraic system of equations in terms of contour
variables. Using HC interpolation, the displacement and traction fields are represented inside each
element by the following relations

u (:U) = d)ueue

(20)
t(x):(btete
with

¢e:[¢(j) ¢(j+1) ¢(j+2)]
_ugj) ugjﬂ) u§j+2)

ul =
_u;]) U§]+1) ugj+2) (21)
_tgj) tgj+1) t§j+2)

tl =

T Gy G

where the generic terms ¢, representing @,., @;., are given by (19). In (21), the subscripts 1,2,
represent the field directions, and the superscripts j,7 + 1,7 + 2 represent one of the three nodes
involved in the interpolation for element e. Therefore, the discrete form of (14) becomes

) + ;/Fe t* (&, x) P ucdle =
— Z/ 53 ¢tet dl'e + Z/ SL’) dQC (g c F) (22)

where & denotes the position of the source, n, the number of elements along the contour, and n.
is the number of cells in the domain. On the contour, arranging a number of sources equal to the
number of parameters in the discretization, (22) becomes

> Hou.=> Geto+b (23)

The contributions of element e to the matrices H and G are defined by

He = t*T (57 :U) d)ue dl'e
Te
(24)
. = / u (& x) ¢y dle
Te
Using (23)-(24), the system (22) can be rewritten as follows
Hu=Gt+b (25)

Then, taking in account the boundary conditions of the problem, the system (25) can be rewrit-

ten in the compact form as
Ax=f (26)
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where the coefficient matrix A contains both the coefficients of H, G. The vector of unknowns x
collects the unknown values of the the displacement field u and tractions t. The vector f is composed
by the terms resulting from the product of the known values of u and t by the corresponding
coefficients in the matrices H and G, plus the body forces b, as it is explained next.

The boundary is composed of a collection of macro-elements that are subjected to either specified
displacement or specified traction. For those macro-elements under specified displacement, the
tractions are unknown, so in (26), A receives values from G, the unknowns x are the tractions t,
and the RHS is calculated as f = Hu — b. For the remaining macro-elements, which are subjected
to specified traction, the displacements are unknown, so A receives values from H, the unknowns
x are the displacements u, and the RHS is calculated as f = Gt + b.

The size of matrix A is very small when compared to the matrix of domain discretization methods
(e.g., FEM), but it is full and not symmetric. Since x includes both u and t, BEM is said to be
mized; that is, both displacements and tractions are evaluated simultaneously with comparable
precision.

2.5 Analytical integration of boundary coefficients

The integrands in the boundary integrals (22) involve the products between the shape functions and
the fundamental solutions (3) and (4). Analytical computation of these integrals is conveniently
performed using a local coordinate system centered at the midpoint of the boundary element. The
integrals have the following typical form

2 1
/f*gﬁ““’(x)dr—aZchk/ £¢WdC 5 =12 (27)
I h=0 —1

where the abscissa ¢ = z/a is taken in a local system centered on the field element, and a indicates
the half-length of the field element (Figure (5)). Note that i = 1...n+2, where n+2 is the number
of parameters on a macro-element. For example, if there are n = 8 elements (Figure 4), then we
have 10 HC parameters.

Figure 5: Coordinates of the source point S(Z, ) in the local system placed on the field element.
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The integrals (27) have the following typical forms

2 rh
E(k)" = / C2 d¢

1 (Zk)j

C2 )
G = [ aeyichac (28)

Ay = / 1@ arctan <\/E(32_$)> (22)i¢hdc

where Z, %y are the coordinates of the source point expressed in the local system of the field element
and j is the power of the zi term. The analytical solutions of the indefinite integrals E(k)gh)

be written in the following recursive form

can

G2
+2z(j—h)E(k)
]

(h=1)
J

+
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When h =25 — 1, it is necessary to use the following equation

E®) = B(k)\"? — [(n1 + n2di) 22 + (i, +n2) 77 EGR) 4 22B(0)" ) (30)
and, to initialize the recursive process when § # 0, the following integrals are used
G2
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For y = 0 some of these expressions degenerate, and must be replaced by the following
G2
1 1
B = : . 32
) [(c - x>] A (1 2)) 32
Integrals of type G(k)g-h) can be represented in closed form. For the problem of 2D plane
orthotropic media, only evaluation of integrals G(k)(()h) is required, which for § # 0 become
1 G2
Gk =57 1 | () <h+1] = (1t modi) (B — 2Bk ) (33)
G
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When g = 0, (33) becomes

G2
mw_ L Wi Y (h=1)
G0 = 74 ¢ (- Dmia - 55) R 3
1
and the first integral of the recursive process is
G2
G(h)y = [(c — ) n (1) c] (35)
G

Also integrals of type A(k:)g.h) can be represented in closed form. For the problem of 2D plane
(h)

orthotropic media, only integrals A(k), "~ are required

Ay =

ho (zyh (h) (h y’
_h+1<ﬁ> 2f()c * A%

5 e - (h+1) _ =(h+1)
+ ﬁy— arctan M =1 arctan < z! (36)
2 \g i h+1 :
1

and the first integral of the recursive process is

C2

A(k)(()O) — [25Eln (zr) — arctan ()\k(Cy—J?)> (¢— a‘:)] (37)
G

Equations (27) to (37) allow us to evaluate the integrals in (22). After integration, the integrals

Jp, wT'p dle and [;, "7 ¢y, dle are expressed as combinations of E(k:)(h) A(k:)( ), and (G)(k:)ih;,
h

J’lJ’

which are called Ui(j ), and Tl(] ), and reported in the Appendix. The expressions of U;
conveniently assembled, allow us to evaluate H and G in (25).
2.6 Domain solution

The solution in the interior of the domain can be obtained from the solution on the boundary.
When the source point and the field point are very close (ry — 0), the integrals of the form
o f *" (¢, 2) g (x) dT" become singular, so they are evaluated using Cauchy Principal Values (CPV)
(see the Appendix (4)). Since there are no singularities in the domain, ¢ = I,2 and using (14) we
obtain

u(f):/ru* (g,x)t(x)dr/rt* (f,:c)u(x)dFJr/Qu* Ea)b@)d2  (cQ)  (38)

and in discrete form
u(é) =

_i / (&,2) Py te dTe —Z / (&, 7) Pyeuc dre+z / b(z)dQ.  (£€Q)

21 : Identity matrix.
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Calculation of stress fields requires differentiation of the displacement field to obtain the strain
field, as dictated by the kinematic equations [8, (1.4)], and further use of the constitutive equations
[8, (1.55)], resulting in

/D &, 1) dF—/S(f,aﬁ)u(:c)df—i—/D(§,x)b(a:)dQ (£ e) (40)
T Q
and in discrete form

= / D¢y tedle — ) / Sp,ucdle+ > [ Db, (x)dQ.  (£€Q) (41)
e=17Te e=1"7Te =178

where for 2D media

)
D112 Diz2 Doia Dago S112 S122 S212 S22

and by analytic integration we obtain

DT:[Dlll D121 Doy D221} ST:[Slll S121 So1n1 5'221} (42)
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22
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D1y = (\/721412 - \/711422)
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D <A2 r2 Ay 7“2)
211 = 5 T~
1 Vi VA

Doy =D <\ﬁA1 \ﬁAz
Do1o =D <\//\71A12 - ﬁA22>
<1 23

D312 = Daoy

and
1 \/Erl \ﬁ?”l \ﬁﬁw VAITiTe
S111 = -2 1 ny — 1 n2
\ﬁzg \ﬁz1 29 21 2 21

S { [\ﬁﬁm fﬁm] [\ﬁ \ﬁ (ﬁ% \/)\717%)} }
112 — 4 1 — 9 T T o 4 - 4 na

21 22 Z1 Z9 21

S121 = S211 = S112
5122 _ { |:_ + + 9 ()\2\/77"1 )\1\/7T1>:| ny + |:)\2\/77°1’I“2 )\1\/7T17“2:| 2}

22 21

22 Zl
So12 = S921 = 5122

5222:D{ [Ag\/:rlrg_)\l\/;nrg] 1+[ )\2\/72 \ﬁ+2</\2\zﬁr2 Al\ﬁ@)] 2}

2 1 2 Zl 2 Zl

Integral terms of the type D;j;; and S;j;, written as functions of recurring integrals, are given in
the Appendix.
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The body force b has been included for completeness, but no provisions have been made for its
integration because we do not plan to use for our intended application (see Conclusions). Body force
integration is a classical topic, where the goal is to avoid domain integration and use only boundary
integration to guarantee all the advantages of BEM. Some classical papers describing techniques for
transforming BEM domain integrals to the boundary are noted here [56-62].

3 Numerical Results

A number of cases are presented here to demonstrate the application of the proposed methodology to
elastic analysis of 2-D orthotropic medium by the analytical integration of the kernels. The principal
material directions are aligned with the Cartesian coordinate directions. All Abaqus simulations
were performed using a uniform mesh of S8R elements. All elements had the same square shape.
The reference values (Uycf or o,f) used in the graphs have been evaluated numerically using a very
fine mesh (i.e. values at convergence ) employing Abaqus. A pointwise measure of the error has
been used. The log(].|) has been introduced to better emphasize the rate of convergence, where ||
denotes absolute value.

Please note that in the tabulated results one cannot measure the error by comparing BEM and
FEM results between any pair of BEM and FEM discretizations, not even between the finer BEM
and finer FEM meshes, because BEM and FEM meshes are not comparable. While a FEM mesh is
a discretization of the domain, a BEM mesh is a discretization of the boundary. Therefore, identical
results cannot be obtained. Only convergence and rate of convergence are meaningful, both of which
are satisfied for both BEM and FEM, in all examples that follow.

3.1 Square plate under uniform load

Consider an orthotropic square plate with side L = 100 mm, subjected to uniformly distributed
load ¢, = 1.0 N/mm along the principal material direction that coincides with the y-coordinate.
Material properties are £, = 161 MPa, E, = 90.27 MPa, G, = 7.17 MPa, v, = 0.28 and thickness
t = 1.2 mm. The plate is clamped at = 0 loaded with ¢, at y = L (Figure 6).

The results are compared with numerical results obtained using Abaqus. Comparison of the
displacements at points A=(L,0), B=(L, L), C=(L/3,2/3L) and D=(2/3L, L/3) are presented in
Tables 1 and 2. Both tables refer to the same degrees of freedom (dof) shown in Table 1.

Convergence of displacement at boundary points located in point A and B vs. number of degrees
of freedom (dof) is depicted in Figure 7. It can be seen that BEM converges monotonically to the
displacements using less dof than Abaqus. Convergence of displacement at domain point C vs.
number of degrees of freedom (dof) is shown in Figure 8. It can be seen that BEM converges to the
displacement using less dof than Abaqus.

Comparison of traction ¢, at point E=(0, L/2) is shown in Table 3. Comparison of stresses at
points C is presented in Table 4. The table refers to the same dof shown in Table 1. Convergence
of stress at domain point C vs. number of degrees of freedom (dof) is shown in Figure 9. The BEM
code shows a faster, monotonic convergence compared with Abaqus.
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Figure 6: Square plate under uniform load.

Table 1: Comparison of displacements at points A and B, in [mm].

BEM Abaqus
Nt L/Ngy dof UZA Ul | N L/Ng dof UZ up

12 33.333 40 1.2216 8.3447 9 33.333 120 1.1671 6.9620
24 16.666 64 1.1908 8.2409 36 16.666 399 1.1447 7.6073
36 11.111 88 1.1895 8.2281 81 11.111 840 1.1507 7.8240
48 8.333 112 1.1773 8.2261 | 144 8.333 1443 1.1539 7.9279
60 6.666 136 1.1718 8.2258 | 225 6.666 2208 1.1557 7.9892
72 5.565 160 1.1690 8.2257 | 324 5.555 3135 1.1568 8.0296
84 4.761 184 1.1674 8.2257 | 441 4.761 4224 1.1575 8.0583
96 4.166 208 1.1665 8.2256 | 576 4.166 5475 1.1580 8.0796
108 3.703 232 1.1660 8.2254 | 729 3.703 6888 1.1584 8.0962
120 3.333 256 1.1657 8.2253 | 900 3.333 8463 1.1587 8.1094
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Table 3: Convergence of normal traction ¢,, at point E.

N BEM tn N Abaqus tn
12 0.012605 4 0.008728
20 0.019614 16 0.017994
132 0.019092 64 0.020206
220 0.019167 256 0.020206
308 0.019195 1024 0.019763
396 0.019208 4096 0.019122
484 0.019216 16384 0.019126

Table 2: Comparison of displacements at points C and D, in [mm].

BEM Abaqus

u¢ ug vl up u¢ ug vl up
—0.1353  3.8428  0.1546 6.5786 | —0.0244 21964  0.1167 5.2396
—0.1234  3.7846  0.1410 6.4863 | —0.1158  3.2045  0.1373 5.8530
—-0.1220  3.7726  0.1388 6.5539 | —0.1150  3.3630  0.1377 6.0612
—0.1214  3.7680  0.1380 6.4607 | —0.1167  3.4707  0.1373 6.1623
—-0.1211  3.7657  0.1376 6.4575 | —0.1179  3.5285  0.1371 6.2225
—0.1209  3.7644  0.1374 6.4556 | —0.1184  3.5678  0.1370 6.2622
—-0.1208  3.7636  0.1373 6.4545 | —0.1189  3.5955  0.1369 6.2904
—-0.1207  3.7631  0.1372 6.4537 | —0.1192  3.6162  0.1369 6.3115
—-0.1206  3.7627  0.1371 6.4532 | —0.1194  3.6323  0.1368 6.3279
—-0.1206  3.7624  0.1371 6.4528 | —0.1196  3.6451  0.1368 6.3409

Ux* BEM, —8—

E\S_E{ Ut Abaqus —@—

\.\.\'1._._.

log(dof)
(a) U

Uy BEM, —8—
Uy~ Abaqus —%—

log(11-U/U,4l)

Sty

-l

log(dof)
(b) Uy

Figure 7: Convergence of displacement at boundary points A and B vs. degrees of freedom (dof).
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Table 4: Comparison of stresses at point C, in [MPal].

BEM Abaqus
o<, ol 5, o<, s, 5

0.54971 —0.67136 —0.25424 | 0.30868 —0.93328 —0.12980
0.54617 —0.66513 —0.24929 | 0.60545 —0.60281 —0.18117
0.54546 —0.66450 —0.24457 | 0.53595 —0.68128 —0.23643
0.54515 —0.66417 —0.24264 | 0.54351 —0.66386 —0.23595
0.54508 —0.66413 —0.24225 | 0.54446 —0.66640 —0.23756
0.54504 —0.66411 —0.24200 | 0.54368 —0.66524 —0.23886
0.54502 —0.66409 —0.24183 | 0.54388 —0.66528 —0.23943
0.54500 —0.66409 —0.24170 | 0.54388 —0.66510 —0.23984
0.54500 —0.66409 —0.24161 | 0.54390 —0.66504 —0.24013
0.54498 —0.66408 —0.24150 | 0.54393 —0.66498 —0.24034

UxC BEM, —E— 0 UyS BEM, —8—

Ux~ Abaqus —%— -\-Uy\/ibaqus ——

o -1

log(11-U/U,4l)
(%)
/El

3 R

e
&,

log(dof) log(dof)
(a) UY (b) US

Figure 8: Convergence of displacement at domain point C vs. degrees of freedom (dof).
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Figure 9: Convergence of stress at domain point C vs. degrees of freedom (dof).
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3.2 Cantilever plate under uniform shear load

Consider an orthotropic cantilever plate with base b = 200 mm (along z) and height A = 10 mm
(alogn y), subjected to uniformly distributed shear load ¢, = —0.030 N/mm at = b. The plate
is clamped at * = 0. The principal material direction coincides with the z-coordinate. Material
properties are E, = 85 MPa, E, = 74 MPa, G,, = 10 MPa, v,, = 0.3 and thickness t = 1 mm. For
optimum accuracy, the length of the elements are constant for all macro-elements.

A typical mesh is shown in Figure 10. The element size is shown as h/N,; in Table 5.

;
F - B

- b

Figure 10: Typical mesh used for Abaqus discretization. Cantilever plate under uniform shear load.

The results are compared with numerical results obtained using Abaqus at points A=(b,0),
B=(b,h), C=(0, h/2), and D=(b/5, h/2). Comparison of displacements at points A and B are
presented in Table 5. Convergence of displacement at boundary points A and B vs. number of
degrees of freedom (dof) is shown in Figure 11. It can be seen that BEM shows an higher rate of
convergence than Abaqus.

Convergence of stress at domain point D vs. degrees of freedom (dof) is reported in Table 6
and Figure 12, while tangential traction ¢; at point C in Table 7 and Figure 12. It can be seen that
BEM converges to the traction/stress using less dof that Abaqus.

Table 5: Comparison of displacements at points A and B, in [mm].

BEM Abaqus

Niet h/Ng  dof U UB | N h/Ng  dof U Ub
42 10 100 —111.2293 4.1389 | 20 10 309 —113.1230 4.2252
84 5 184 —111.3818 4.1535 | 80 5 975 —113.2740 4.2290
168 2.5 352 —112.1102 4.1825 | 320 2.5 3387 —113.4370 4.2333
336 125 688 —112.8399 4.2085 | 1280 1.25 12531 —113.5280 4.2358
672 0.625 1360 —113.1830 4.2206 | 5120  0.625 48099 —113.6040 4.2378
1344 03125 2704 —113.3130 4.2252
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Table 6: Comparison of stress 7, [MPa] at point D.

BEM Abaqus
Ntot h/Ng  dof T Niot h/Ne dof Th
42 10 100 —0.04490 20 10 309 —0.02926
84 ) 184  —0.04400 80 ) 975 —0.05265
168 2.5 352 —0.04438 | 320 2.5 3387 —0.04687
336 1.25 688 —0.04493 | 1280 1.25 12531 —0.04546
672 0.625 1360 —0.04520 | 5120 0.625 48099 —0.04511
1344 0.3125 2704 —0.04530
Table 7: Comparison of tangential traction ¢; at point C.
BEM Abaqus
Not h/Ne — dof ¢ | Nk h/Ny dof ¢
42 10 100 0.4739 20 10 309 0.0194
126 3.333 268 0.1245 80 ) 975 0.0105
210 2 436 0.1237 | 320 2.5 3387 0.0043
462 0.909 940 0.1125 | 1280 1.25 12531 0.0022
714 0.588 1444 0.1112 | 5120 0.625 48099 0.1047
1470 0.285 2956 0.1105
! Uyt BEM, —8— Ux® BEM,
Uy Abaqus —%— Ux~ Abaqus
g
= 2 B = 3\8\“
Qe Qg \
= =
: . RN '\*E‘
.
.

Figure 11: Convergence of displacement at boundary points A and B vs. number of degrees of freedom (dof).

log(dof)
(a) Uy

log(dof)
(b) U7
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log(11-0/0,.¢)

log(dof) log(dof)
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Figure 12: Convergence of tangential traction at point C and stress at domain point D vs. number of degrees
of freedom (dof).

3.3 L-shape plate under uniform shear load

Consider an orthotropic irregular plate subjected to a uniformly distributed shear load ¢, = —0.0135
N/mm along the principal material direction that coincides with the y-coordinate (Figure 13).
Material properties are B, = 85 MPa, E, = 74 MPa, G, = 20 MPa, v,, = 0.3. The length is
L =100 mm and thickness ¢ = 1.3 mm. Element size is uniform along the boundary, and given as
L/Ng; in Table 8 for each level of discretization.

The results are compared at four points. The first three points, A=(2.5L,1.5L), B=(2.5L,2.5L)
and C=(L, L) are located on the boundary. The point D=(1.5L,2.0L) is located in the domain.

Convergence of displacement at boundary points located in point A and B vs. number of degrees
of freedom (dof) is shown in Table 8 and Figure 14. It can be seen that BEM converges monotonically
to the displacement solution using less dof than Abaqus. Convergence of displacement at point C
vs. number of degrees of freedom (dof) is shown in Table 9and Figure 15. Tt can be seen that
converges to the displacement using less dof that Abaqus.

Convergence of stress at domain point D vs. number of degrees of freedom (dof) is reported
in Table 10 and Figure 16. The BEM code shows faster, monotonic convergence compared with
Abaqus.
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Figure 13: L-shape plate under uniform shear load.

Table 8: Comparison of displacements at points A and B, in [mm)].

BEM Abaqus
Nt L/Ng dof UP Ul | Nt L/Ng  dof UP U
20 50 64 1.0646 —1.5967 16 50 207 1.0382 —1.4912
40 25 104 1.0777 —1.6052 64 25 699 1.0601 —1.5475
80 125 184 1.0801 —1.6032 | 256 12.5 2547 1.0709 —1.5748
160 6.25 344 1.0807 —1.6014 | 1024 6.25 9699 1.0759 —1.5873
320 3.125 664 1.0808 —1.6003 | 4096 3.125 37827 1.0781 —1.5931
Table 9: Comparison of displacements at point C, in [mm].
BEM Abaqus
Niot L/Ng dof US Uyc Niot L/Ne dof UY Uyc
20 50 64 0.2752 —0.2822 16 50 207 0.3241 —0.2598
40 25 104 0.3155 —0.2381 64 25 699 0.3167 —0.2605
80 125 184 0.3112 —0.2419 | 256 12.5 2547 0.3113  —0.2593
160 6.25 344 0.3078 —0.2446 | 1024 6.25 9699 0.3075 —0.2574
320 3.125 664 0.3052 —0.2465 | 4096 3.125 37827 0.3048 —0.2557

22
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Figure 14: Convergence of displacement at boundary points A and B vs. number of degrees of freedom (dof).
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Figure 15: Convergence of displacement at boundary point C vs. number of degrees of freedom (dof).

Table 10: Comparison of stress at point D, in [MPal].

BEM Abaqus
Nt L/Ng dof ol Th Ntot L/Ng dof ol b
20 50 64 —0.00058 0.01520 16 50 207 —0.00786 0.02247
40 25 104 —0.00122 0.01528 64 25 699 —0.00185 0.01563
80 12.5 184 —0.00137 0.01524 | 256 12.5 2547 —0.00171 0.01525
160 6.25 344 —0.00143 0.01522 | 1024 6.25 9699 —0.00160 0.01519
320 3.125 664 —0.00146 0.01521 | 4096 3.125 37827 —0.00155 0.01518
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Figure 16: Convergence of stress at domain point D vs. number of degrees of freedom (dof).

3.4 Laminated plate under shear load

Consider a laminated rectangular plate with base b = 200 mm (along z) and height h = 100 mm
(along y), subjected to uniformly distributed shear load ¢, = —0.24 N/mm at = b. The plate
is clamped at = 0. The laminate has 5 laminas, arranged in a [90/-90/0/-90/90] configuration.
The thickness of each lamina is ¢ = 0.3 mm. The laminated plate is modeled using its equivalent
orthotropic properties 2, §6.4, Eq. (6.4)|, i.e., £, = 120 MPa, E, = 60 MPa, G,, = 7 MPa,
Vzy = 0.071. A typical mesh is shown in Figure 17. The element size is shown as h/Ng; in Table 11.

‘Y
B[l T
Z l
7
7 o) b
b

7
Z !
7 Ao aa ><——X

|74 b y

Figure 17: Typical mesh used for Abaqus discretization. Laminated plate under shear load.

The results are compared with numerical results obtained using Abaqus at points A=(b,0), and
B=(b,h). Comparison of displacements at points A and B is shown in Table 11. Convergence of
displacement at boundary points located at points A and B vs. degrees of freedom (dof) is shown
in Figure 18. It can be seen that BEM converges to the displacements using less dof than Abaqus.
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Table 11: Comparison of displacements at points A and B, in [mm)].

BEM Abaqus
Niot b/Ngy  dof U up Niot b/Ny dof UA up

18 33.333 52 2.8786 12.5133 18 33.333 219 2.9083 12.2900
36 16.666 88 2.9099 12.5220 72 16.666 759 2.9284 12.4542
72 8.3333 160 2.9273 12.5436 288 8.3333 2811 29393 12.5254
144 4.1666 304 2.9354 12.5553 | 1152 4.1666 10803 2.9445 12.5584
288 2.0833 592 2.9392 12.5604 | 4608 2.0833 42339 2.9470 12.5746
576 1.0416 1168 2.9411 12.5626 | 18432 1.0416 167619 2.9482 12.5826

Ux® BEM, —EB— ) Uy® BEM, —&—
Ux’ Abaqus —%— Uy~ Abaqus —%—

LT

1 2 3 4 5 6 1 2 3 4 5 6
log(dof) log(dof)

(a) UA (b) Uy

log(11-U/U,{)
(98]

log(11-U/U /)
(98]

S
“
X\

Figure 18: Convergence of displacement at boundary points A and B vs. number of degrees of freedom (dof).

4 Conclusions

The main contributions of this work are the analytical integration of singular kernels for plane
orthotropic media, and a successful implementation into a BEM code. Numerical examples show
that the results obtained by the proposed BEM implementation are in good agreement with those
obtained by FEM, demonstrating the validity and reliability of the proposed BEM formulation for
the analysis of elastic, 2D, orthotropic media. The analytical evaluation of the integral coefficients
and the efficiency of the implementation is highlighted. All equations are analytically integrated
and expressed as a function of a few recurring integrals, contributed for the first time in this work.
The analytically integrated, HC interpolated BEM formulation converges much faster than a displa-
cement-based FEM, for both displacements and stresses. Stresses always converge monotonically,
while FEM sometimes displays oscillatory, slow convergence. The proposed model is able to re-
present stress concentrations well. HC interpolation allows C! continuity with negligible increment
of dof with respect to piecewise constant interpolation. The BEM formulation is mixed, providing
displacements and tractions simultaneously and with the same order of approximation, which is sig-
nificant for stress analysis. Further, the dimensionality of the model is reduced by one (from 2D to
1D), which coupled with analytical integration and efficient interpolation leads to fast convergence
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and economical solution with fewer dof than required by FEM.

The proposed BEM formulation can be used to solve a variety of problems involving orthotropic
media. In the future, we wish to solve an orthotropic representative volume element that is the
micro-model of a micro/macro model. Since the micro model must be solved for each Gauss point
at each iteration of the (nonlinear) macro model, computational cost is critical. The proposed
formulation is clearly more economical that a FEM micro-model. Our intended applications is for a
flat panel. Therefore, we did not study the applicability and performance of the proposed method
to solve problems with curved geometries. Furthermore, our proposed application does not include
body forces.

Appendix
Coeflicients Ui(-h) and ﬂ(jh)

Coefficients U, 7" are given next:

ij o Lij
n-—{¢ M A2G >—¢MMG®?] (45

W?—DmA4mm@—AuWﬂ (45b)
usy) =y (45¢)
2 2
() _ Af () A3 (h)}
U =-D G(1 — —=G(2 45d
e - Se) (454

For ny =0and ny =1

T _yD[\fAlE — VAALE(1) gh] (46a)
Ty = [\F AEOM — V2 E@2) ] (46b)
T = [Alf Ay B = X/ X ALE(2 } (46¢)
T _yD[\/>A1E — VX AE(2) h)] (46d)

For ni =1and no =0

T = yD [\/>A1E —VAAE(1) h} (47a)
1) = b| ZLEW - ZLE@) (am)
1) = D[ VAaB W) - Vi B (47¢)

TQ(Q)Z/D[V 1A1E(1 h — VA2 A2E(2 h)} (47d)
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where

Bk = E(k)"D — 2B (k)" (48)

and n is the unit outward normal to the boundary took in the global reference system X,Y, so
ny = ng and ng = ny.

Coefficients DZ@Z) and Sm
()

;i shown in (43), written as function of the recurring integrals, have

Integral terms of the type D
the following form

D} =D [\FAlE —VMAE(1) h] (49a)
Dgg%* [M\FAQE h — XV A A1 E(2) h} (49b)
D) =D | V24 E@)" — /A A E(1) h)] (49¢)
D) = D) (494
off = 0| b - Zra) (490)
DY) = gD [VMAEL) — /A B2 5’”] (49f)
212— [\FAlE \FA2E h] (49g)
D), = D) (49h)

(h)

and integrals of the type S shown in (44), can be written for ny = 0 and ng =1 as

st} = 20D | VaBQY - VREWY) (30a)
=D |VaE@ - VA - 2 (B - nEC))| (500)
SY;{ = S} = st (50¢)
Si4) = 24D [Azf B(2){" - Au/ATE(l)éh)] (50d)
Sé’f% = S5} = S15) (50¢)

st = DA - xavRBE( + 27 (aviE@ - wvaE@ )| 60
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and for ny =1 and no =0, as

(h) _ 1 (n 1 (h)
st = b| E@) ‘TATE W -2 (Vaar@f? - VRaE) | (512)

St = ~200 | VRE@Y - VREWY) (51)

h h h

S%Q% = 551% = 551% (51c)
S5y = {\/ LB — VB2 + 252 </\2\/ ME2)Y - Ay )\1E(1)(2h)) } (51d)
h h h

Sél% = 552% = S§2% (51e)

s = 25D [Am/ LE(2 )\1\//\11@(1)&}‘)} (51f)
with rg, A1, Ao, Ak, 2, and D given in (5)—(10).

Singular and near singular integrals

The calculation of the integrals on the boundary (14) brings to some integration problems, absent
in the calculation of them in the domain. When the source point £ is coincident with the field point
x, the kernels of the integrals show some singularities.

The kernel function u* (£, z) have two weak singularities, O(In z;) and O (arctan(ra/v/Agr1)).
The kernel function t* (£, z) has a strong singularity O(1/22) [63].

The weak singularities disappear when we integrate the integrals on the boundary. The strong
singularity requires the evaluation of the integrals as as Cauchy Principal Value (CPV). The eva-
luation of Cauchy Principal Value (CPV) integrals is one of the typical aspects of the Boundary
Element Method (BEM). It is essentially due to the strong singularity shown by some kernel functi-
ons appearing in some boundary integral equations.

In this Appendix, the distance between source and field point 7y, is denoted with € to emphasize
that it is an infinitesimal quantity.

Integration of kernels with singularity O(1/2})

Integration of t11 and to9

From the integral equation (14) consider the kernel function t;;. When the distance between the
source point { and the field point = tends to 0, ¢ — 0, the integration of kernel ¢;; shows a strong
singularity that necessitates evaluation of the integral as CPV.
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Figure 19: Singular part of ¢;.

We illustrate the integration procedure using t11. The integration of too follows the same proce-
dure. Let’s consider

T T
5 ud(l =T /t* udl
/t’;fudrzhm /1“—1“5 nud@=Te) e
T e—0

Ia Ip

where ¢ is distance between the source and field point, where

Iy =lim t’{f udl —T¢) = / t’{fudf
e—0 r-T. T

The term I4 is part of the system (14), on the right side. This term has no singular contribution
because it is far from the semi-circle in Fig (19). Next,

Ip :/ tﬁudfe =1Ip1 +1Ips
Ie

can be decomposed as follows

A A
Ip=lim [ ] udl. = lim {D [\/EQ L. ‘/AE 2} (r1n1+r2n2)}dF5
r

e—0 . e—0 ) 21
where
VA2 A
Igy = lim | ] wdle=lim {D [ 22 1} (ring + r2n2)} dl's
e—0 . e—0 r. Z5
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and

VMA
Ipy = lim £ wdl. = — lim {D [ : 2] (ring + rznz)} dr'.
E—r I

I, e—0 Zl

Using polar coordinates

x = (1 +ecost
y = (2 +esind

where

e=V(z - &)+ (y - &)

rl:%::p_gl:cosﬁ — ry =¢ecosf
’ Ox

1»2:%:2/_&:51110 — r9 = £sinf
’ oy €

n = [ng,ny] = [cos§,sin 6]

dl’ = edf

Zi = \/M,z(i’ —&)+(y— &)= \/)\172(5 cos0)? + (e sin6)>

Then, 5x — & = ecos f and taking in account (5), z — & = and y — & = r9. Therefore,
€

Ip1 =
T cos 0% + sin 62 9 1 A u
= D/ A2A; li df = D/ X2 A =
Vaeds lim o 21 +cos20(hs—1)]" ¢ 2 s T 200 — A2) S
Iy =
T cos 6 4+ sin 62 9 1 As u
= —Dy/ A A i d) = —D\/ \MAy——nT = ————
142 210 0 €2[1+cos?6(\ — 1)]u ¢ \/T 2\/H7T 2(A1 — A2) S22
Finally,

A; — As
In=1 Tpo = — = 72 4 —
B Bl + 1B2 2(M — /\Q)SQQU C11

Therefore, the value of ¢1; for (14) is

U= 90— Ma)Spm 2

Similarly, the term cos results from integration of 99, using the same procedure described above.
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Integration of t12 and to1
For integration of ¢t12 and t2; we develop the following procedure

| ) (8 )

<1 22

11 1 11
tig = {\/ 141 < e = - 2r2n1> — V24 (27"1712 - 7“2”1)}
21 z A2 2

T
tioud(l =T /t* udl’
/tﬁudr:nm /r_rs izud(l'=Te) | ro S
T e—0

-~

Ia Ip
where ¢ is distance between the source and field point. Let’s consider
Iy =lim iy ud( —T.) = / t55udl
e—0 -T. r

The term I4 is part of RHS of (14). This term has no singular contribution because it is away
from the semi-circle in Fig. (19). Next,

Ip = / toudle = Ipy + Ipo
I

can be decomposed as follows

Ip=lim | 5 udl. =
e—0

Ie
. 11 11
= lim \/ A1 7’177,2 7’2711 \/ A2 TlTlQ 7’2711 dl“g
e—0 )\ )\
where
. «T ) 11
IBl = hm/ t12 u dF€ = lim {\/ Al < ring — 27“2711) } dI‘e
e—0 . e—0 )\1 2]
and

. T .
Igs = lim t19 u dl; = lim
e—0 Fs e—0 F:—:

11
{\/ A2 < ring — )\21”2711) } dFE
)

Using polar coordinates

Ip) =
. T 1 ™1 1
= lim D {\/)qu <T1n2 — T2n1> } — = —D+\/ A hm - { <r2n1 — r1n2> } cudf
e—0 Jo )\1 Zl 0 <1 >\1
Ips =

= lim {\/ 9 A9 <r1n2 — )\1r2n1> } —U udf = D+/ A3 As hm % { <)\1r2n1 — r1n2> } cudf
2 z5 2

e—0
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1 1
Iy = =D/ A; lim - { < cos @ sin§ — cos@sinﬁ) } e2udf =
e—=0 Jo 2] )\1

7 1 cosOsinf
— —D\/MA, i 1 udf =
Vi 159 0 {<)\1 >€2[1+00829()\1—1)]}6ucw !

™1 1
Igy = D/ Ao As lim — { ( cos fsin 6 — cos # sin 0) } e2udf =
e=0 Jo 25 A9

— D/ Xy Ay lim { (1 _ 1) cos f/sin 0 }e%de —0
e—=0 0

Ao e2[1+4cos?6 (X —1)]

results in
c12 =co1 =0
Integration of kernels with singularity O(ln z)

Integration of u;; and uss

For integration of w12 and wg; we use the following procedure

T T
uj; td(I =T /u* tdl
/uﬁtdr:hm /rrs Ll =Te) | L
T e—0

Iy Ip

where ¢ is distance between the source and field point. Expanding the two integrals on the RHS,
we have

Iy =lim wi td(f —T,) = / wly tdl
e—0 r-T. T
and
Ip=1lim | «] tdl.=1lm [ D { [\/)\1 Alnz — g A2In zg} } tdl.
e—0 I. e—0 r.
or

Ip = lim/ wi tdl. =lim [ D [\/Al A2 lnzl} tdT. — lim/ D [\//\2 A%lan] tdl. =
e—0 I e—0 j =0 T

= D/ A3 ii_rg%/o £2n [\/1 +cos? 0 (A — 1)} td0—D~/ Ao A? ii_I}%)/O £2n [\/1 +cos? 0 (A — 1)} tdd =0

Integration of kernels with singularity O (arctan(ry/v/Axry))
Integration of uis = uo;

The integration procedure for uio is as follows

. / ufy td(I = T') / ufy tdl:
/uTQ tdl' =lim |Jr-r. + Jr.
T e—0

IA IB
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where ¢ is distance between the source and field point. Expanding the two integrals on the RHS,
we have

I, = lim ui tdI' -T,) = / uitdf
e—0 I-T. r
and
T «T 1 (] . 2
Ip = ggr(l] N ujy tdl'e = ;13[1] N DA Ay [arctan <\/)\72T1> arctan (\//\717“1>] tdl’,
or

) T - & sin 0 sin 0 B
Ip = 21_% ; ujy tdf = C11_1}(1) ; DA Ay [arctan <\/w> — arctan (W)} tedd =

O CARES
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