
Composites Part B, 108, 393�412 (2017).

Analytic integration of singular kernels for

boundary element analysis of plane orthotropic

media

E. J. Barbero
West Virginia University, Morgantown USA

and

F. Vetere, A. Madeo 1, and R. Zinno
University of Calabria, Arcavacata di Rende, CS, Italy

Abstract

Both composite materials and stress concentration are common issues in modern structural engi-
neering. In this paper, analytical integration of the singular kernels is performed for boundary
element analysis (BEM) of elastic, plane orthotropic media with stress concentrations. Analytical
integration leads to accuracy and e�ciency improvements over FEM. Furthermore, high continuity
(HC), quadratic spline interpolation on the boundary is used to further improve accuracy at low
computational cost when compared to FEM. The advantages of BEM for calculation of displace-
ments and stresses near stress raisers in orthotropic plates are shown. Particular attention is paid
to e�cient interpolation for approximating boundary quantities and to precision of computation for
evaluating boundary integrals. Such improvements lead to accurate computation of both displace-
ments and stresses in both the boundary and the domain. Thus, the advantages of the proposed
method are accuracy and low computational cost.
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1 Introduction

Orthotropic materials, including laminated composite materials, are extensively used in modern
industry. The theory of elasticity for orthotropic bodies is well established and solutions have been
obtained for simple problems [1,2]. The presence of cracks increases the complexity of the analysis
[3�7]. Therefore, complex problems of orthotropic, elastic bodies are analyzed with numerical
methods, such as the Finite Element Method (FEM) [8�13] and the Boundary Element Method
(BEM) [14�27]. Application examples of the BEM can be found, for example in [28�33]. Speci�c
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application of BEM to plasticity and fracture can be found, for example in [34�37]. BEM analysis
of interphase cracks and transverse isotropy in bimaterials is presented in [38,39].

The boundary element approach can be used to construct e�cient algorithms for numerical
analysis of engineering problems. Some characteristics of this method are very attractive, namely
the reduction of the dimension (e.g., from 2D to 1D) of the discrete model in comparison with
domain methods (e.g., FEM), and the mixed nature (traction�displacement) of the method, which
yields comparable accuracy in both displacements and tractions.

Green [40] �rst introduced the fundamental solutions for 2-D orthotropic bodies under a concen-
trated force. Rizzo and Shippy (1970) [41] introduced the fundamental solutions into the boundary
integral equations for numerical elastic analysis of stress concentration. Recently, the fundamental
solutions for orthotopic plane problems were improved [42�47], but numerical integration was used
to compute the boundary coe�cients.

Analytical evaluation of the boundary coe�cients has been used for 2-D isotropic, plane and
bending elastic problems [48�50] and in BEM for orthotropic, plane, potential problems [51,52]. In
this paper, analytical integration is developed for the 2D orthotropic problem.

In the context of the boundary element method for plane orthotropic media, the aim of this work
is to provide an accurate evaluation of the stress �eld with low computational cost. Accuracy and
e�ciency are achieved by re�ning both the boundary interpolation and the integration process. In
summary, the boundary is discretized into macro-elements using a quadratic high continuity (HC)
spline approximation to ensure C1 continuity using few control points. Then, analytical integration
of coe�cients is carried out on linear piecewise boundaries. The exact evaluation of integrals is
decisive for an accurate, yet inexpensive computation of the domain stress �eld from the boundary
solution. Finally, and assessment of the performance of the proposed methodology is presented.

2 Orthotropic plane problem

Consider a 2D orthotropic elastic body described in a rectangular Cartesian system x1, x2. The
behavior of the body is described by two-dimensional �elds of displacement, stress, and strain. The
problem is governed by the customary equations, namely kinematic, constitutive, and equilibrium
equations (e.g., [8, Chapter 2]).

2.1 Fundamental Solution

Consider an elastic orthotropic problem on a 2D in�nite domain subjected to a concentrated force
f? applied at the source point ξ. The fundamental solution for this problem is obtained by �rst
rewriting the equilibrium equations, taking into account of the Hooke's law, into form

Lu + b = 0 (1)

where L is the di�erential operator

[
L
]

=

 C11∂
2
1 + C66∂

2
2 (C11 + C66) ∂1∂2

(C11 + C66) ∂1∂2 C22∂
2
2 + C66∂

2
1

 (2)

and u is the displacement �eld, b are the body forces, ∂i = ∂/∂xi, and Cij are the coe�cients of
the sti�ness tensor in Voigt contracted notation. Solving the system (2), the following fundamental
solution was obtained by Huang [42], for displacements
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u∗11 (ξ, x) = D
[√
λ1A

2
2 ln z1 −

√
λ2A

2
1 ln z2

]
u∗12 (ξ, x) = DA1A2

[
arctan

(
r2√
λ2r1

)
− arctan

(
r2√
λ1r1

)]
u∗21 (ξ, x) = u12 (ξ, x)

u∗22 (ξ, x) = −D
[
A2

1√
λ1

ln z1 −
A2

2√
λ2

ln z2

]
(3)

where the generic term u∗αi (ξ, x) of the fundamental solution represents the component of the
displacement at the �eld point x in xi direction due to the application at the source point ξ of a
unit force directed along xα.

The fundamental solution for the tractions is

t∗11 (ξ, x) = D

[√
λ2A1

z2
2

−
√
λ1A2

z2
1

]
(r1n1 + r2n2)

t∗12 (ξ, x) = D

{(√
λ1A1

z2
1

−
√
λ2A2

z2
2

)
r1n2 −

(√
λ1

λ1

A1

z2
1

−
√
λ2

λ2

A2

z2
2

)
r2n1

}
t∗21 (ξ, x) = D

{(
λ1

√
λ1A2

z2
1

− λ2

√
λ2A1

z2
2

)
r1n2 −

(√
λ1A2

z2
1

−
√
λ2A1

z2
2

)
r2n1

}
t∗22 (ξ, x) = D

[√
λ1A1

z2
1

−
√
λ2A2

z2
2

]
(r1n1 + r2n2)

(4)

where nk represent the components of the unit normal at the �eld point x, and the generic term
t∗αi (ξ, x) of the fundamental solution represents the component of the traction at the �eld point x
in xi direction due to the application at the source point ξ of a unit force directed along xα.

The distance between the source ξ and the �eld point x is

rk (ξ, x) = xk − ξk (5)

where

λ1 + λ2 =
2S12 + S66

S22
(6)

λ1λ2 =
S11

S22
(7)

Ak = S11 − λkS22 (8)

z2
k = λkr

2
1 + r2

2 (9)

D =
1

2π (λ1 − λ2)S22
(10)

Equations (6) and (7) imply that
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λ1,2 =
2S21 + S66

2S22
±

√(
2S21 + S66

2S22

)2

−
(
S11

S22

)
(11)

where Sij are the components of the compliance tensor in Voigt contracted notation.

2.2 Integral equation on the boundary

The integral equations on the boundary can be derived using Betti's reciprocal work theorem, or
the weighted residuals method, resulting in Somigliana's equation [53]

u (ξ) =

∫
Γ
u∗

T
(ξ, x) t (x)dΓ−

∫
Γ
t∗

T
(ξ, x)u (x)dΓ +

∫
Ω
u∗

T
(ξ, x)b (x)dΩ (ξ ∈ Γ) (12)

When evaluating (12) on the boundary, singularities of order O(1/r2) require evaluation the
integral as Cauchy Principal Values [54]

u (ξ) =

∫
Γ
u∗

T
(ξ, x) t (x)dΓ−

(
MT

c u(ξ) +

∫
Γ
t∗

T
(ξ, x)u (x)dΓ

)
+

∫
Ω
u∗

T
(ξ, x)b (x)dΩ (ξ ∈ Γ)

(13)
which can be written as

cTu (ξ) =

∫
Γ
u∗

T
(ξ, x) t (x) dΓ −

∫
Γ
t∗

T
(ξ, x)u (x) dΓ +

∫
Ω
u∗

T
(ξ, x)b (x) dΩ (ξ ∈ Γ) (14)

where b are the body forces, u∗ and t∗ are the fundamental solutions (3) and (4), Ω is the 2D
domain, Γ is the boundary of the domain, and c is 2 × 2 coe�cient matrix which depends on the
surface geometry and it is de�ned as following

c = I + MT
c =

1 0

0 1

+

c11 0

0 c22

 (15)

where c11 and c22 are evaluated in the Appendix (4).

2.3 Discrete model

The approximate solution requires discretization of both the geometry of the contour and the me-

chanical variables, i.e., displacement and traction. The geometry of the contour can be represented
through a system of curvilinear coordinates or through piecewise linearization. The curvilinear
representation is the most general, but requires that the boundary integrals be evaluated in nume-
rically. Numerical integration requires us to pay particular attention to the calculation of singular
and nearly singular integrals. On the other hand, a piecewise linear representation of the contour
allows us to use analytical integration for both, the solution on the boundary Γ and the solution
inside the domain Ω.

For polygonal domains, the discretization into boundary elements proceeds as follows. The dis-
continuities of the boundary (e.g., corners) and the boundary conditions (e.g., attachement points)
are used to subdivide the boundary into macro-elements. Macro-elements (denoted by Mi in Figure
1) are used to discretize the boundary; not the domain. In this way, the integral equations are
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Figure 1: Discretization with macro-elements Mi, subdivided into elements Γe. Note that each change from
a displacement boundary condition to a traction one, or viceversa, requires a new macro-element.

represented through summations extended over the number of macro-elements. Furthermore, the
discretization of the mechanical variables on the boundary requires that each macro-element be
subdivided into a �nite number of evenly spaced elements (denoted by Γe in Figure 1).

The boundary variables are approximated by shape functions φe(ζ) (Figure 2) as follows

u (ζ) =

ne∑
e=1

ue (ζ) =

ne∑
e=1

φue ue; φue =
{
φ(j)(ζ), φ(j+1)(ζ), φ(j+2)(ζ)

}
t (ζ) =

ne∑
e=1

te (ζ) =

ne∑
e=1

φte ue; φte =
{
φ(j)(ζ), φ(j+1)(ζ), φ(j+2)(ζ)

} (16)

2.3.1 High Continuity (HC) Interpolation

The quality of the numerical solution depends on the quality of the representation of the variables
on the boundary. An interpolation that has been shown to provide high quality interpolation is
the High Continuity (HC) interpolation that was proposed by Aristodemo [55] and used for BEM
in [48,49].

In HC interpolation, the boundary variables are represented by a quadratic B-spline approxi-
mation which guarantees C1 continuity. In each element, the shape function is constructed using
three control points (see Fig. 3(a)), associated with one node placed at the midpoint of the element
itself, and one node on each of the two adjacent elements.

Each macro-element is divided into n elements. For n elements, while a piecewise constant
interpolation uses n parameters, the HC interpolation HC uses n + 2. To enforce C1 continuity,
while Hermite interpolation uses 2n parameters, HC uses only n+ 2, achieving the same continuity.

For n + 2 parameters, HC interpolation requires n + 2 sources located on the macro-element.
The sources are located at the midpoint of the internal elements, plus one additional source for
each of the end elements. The sources in the end elements are located as shown in Fig. (4), where
α = 0.6a and β = 1.4a, where a is the element half-length. The values of α, β, are chosen by
numerical optimization [49].
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Figure 2: Quadratic interpolation of displacements.
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(a) (b)

(c)

Figure 3: Shape functions and arrangement of the interpolation parameters.
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Figure 4: Arrangement of the sorce points on a macro-element.

In (14), the displacements and the tractions �eld u and t can be approximated by the following
generic function

fi (ζ) =

3∑
k=1

φ(k) (ζ)f
(k)
i =

3∑
h=1

(
2∑

h=0

chk(ζ
h)

)
f

(k)
i ; i = 1 . . . n+ 2 (17)

where ζ is the local element coordinate, with −1 < ζ < 1 (Figure 3.a), φ(k) (ζ) is the interpolation
function associated to the function fi at node k, and chk is the coe�cient of degree h of the
polynomial corresponding to nodal parameter k. Also, n is the number of elements on a macro-
element. For example, if there are n = 8 elements (Figure 4), then we need 10 HC parameters.

The general expression of these functions is [55]

φ(1) (ζ) =
1

4 (s+ 1)

(
1− 2ζ + ζ2

)
φ(2) (ζ) =

1

4 (s+ 1) (d+ 1)

(
(2 + 3 (s+ d) + 4sd) + 2 (d− s) ζ − (d+ s+ 2) ζ2

)
φ(3) (ζ) =

1

4 (d+ 1)

(
1 + 2ζ + ζ2

)
(18)

where s = 1, d = 0, for the leftmost element in the macro-element, s = 0, d = 1, for the rightmost
element, and s = 1, d = 1, for inside elements. In this work, the shape functions are generated
using s = d = 1 (inside element). Use of all three types of HC elements is onerous and it does not
provide any advantage for the work carried out in this particular case, i.e., 2D plane orthotropic
media. Therefore, we have

φ(1) (ζ) =
1

8
− 1

4
ζ +

1

8
ζ2

φ(2) (ζ) =
3

4
− 1

4
ζ2

φ(3) (ζ) =
1

8
+

1

4
ζ +

1

8
ζ2

(19)
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2.4 Determination of the solution on the boundary

The discrete form of (14) allows to construct an algebraic system of equations in terms of contour
variables. Using HC interpolation, the displacement and traction �elds are represented inside each
element by the following relations

u (x) = φueue

t (x) = φtete
(20)

with

φe =
[
φ(j) φ(j+1) φ(j+2)

]
uTe =

u(j)
1 u

(j+1)
1 u

(j+2)
1

u
(j)
2 u

(j+1)
2 u

(j+2)
2


tTe =

t(j)1 t
(j+1)
1 t

(j+2)
1

t
(j)
2 t

(j+1)
2 t

(j+2)
2


(21)

where the generic terms φe representing φue,φte, are given by (19). In (21), the subscripts 1, 2,
represent the �eld directions, and the superscripts j, j + 1, j + 2 represent one of the three nodes
involved in the interpolation for element e. Therefore, the discrete form of (14) becomes

cTu (ξ) +

ne∑
e=1

∫
Γe

t∗
T

(ξ, x)φueue dΓe =

=

ne∑
e=1

∫
Γe

u∗
T

(ξ, x)φtete dΓe +

nc∑
c=1

∫
Ωc

u∗
T

(ξ, x)b (x) dΩc (ξ ∈ Γ) (22)

where ξ denotes the position of the source, ne the number of elements along the contour, and nc
is the number of cells in the domain. On the contour, arranging a number of sources equal to the
number of parameters in the discretization, (22) becomes∑

e

Heue =
∑
e

Gete + b (23)

The contributions of element e to the matrices H and G are de�ned by

He =

∫
Γe

t∗
T

(ξ, x)φue dΓe

Ge =

∫
Γe

u∗
T

(ξ, x)φte dΓe

(24)

Using (23)�(24), the system (22) can be rewritten as follows

Hu = Gt + b (25)

Then, taking in account the boundary conditions of the problem, the system (25) can be rewrit-
ten in the compact form as

Ax = f (26)
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where the coe�cient matrix A contains both the coe�cients of H, G. The vector of unknowns x
collects the unknown values of the the displacement �eld u and tractions t. The vector f is composed
by the terms resulting from the product of the known values of u and t by the corresponding
coe�cients in the matrices H and G, plus the body forces b, as it is explained next.

The boundary is composed of a collection of macro-elements that are subjected to either speci�ed
displacement or speci�ed traction. For those macro-elements under speci�ed displacement, the
tractions are unknown, so in (26), A receives values from G, the unknowns x are the tractions t,
and the RHS is calculated as f = Hu− b. For the remaining macro-elements, which are subjected
to speci�ed traction, the displacements are unknown, so A receives values from H, the unknowns
x are the displacements u, and the RHS is calculated as f = Gt + b.

The size of matrixA is very small when compared to the matrix of domain discretization methods
(e.g., FEM), but it is full and not symmetric. Since x includes both u and t, BEM is said to be
mixed ; that is, both displacements and tractions are evaluated simultaneously with comparable
precision.

2.5 Analytical integration of boundary coe�cients

The integrands in the boundary integrals (22) involve the products between the shape functions and
the fundamental solutions (3) and (4). Analytical computation of these integrals is conveniently
performed using a local coordinate system centered at the midpoint of the boundary element. The
integrals have the following typical form∫

Γ
f∗φ(k) (x) dΓ = a

2∑
h=0

chk

∫ 1

−1
f∗i ζ

(h)dζ ; i = 1 . . . n+ 2 (27)

where the abscissa ζ = x/a is taken in a local system centered on the �eld element, and a indicates
the half-length of the �eld element (Figure (5)). Note that i = 1 . . . n+2, where n+2 is the number
of parameters on a macro-element. For example, if there are n = 8 elements (Figure 4), then we
have 10 HC parameters.

Figure 5: Coordinates of the source point S(x̄, ȳ) in the local system placed on the �eld element.
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The integrals (27) have the following typical forms

E(k)
(h)
j =

∫ ζ2

ζ1

ζh

(z2
k)j

dζ

G(k)
(h)
j =

∫ ζ2

ζ1

ln (zk)(z
2
k)jζhdζ

A(k)
(h)
j =

∫ ζ2

ζ1

arctan

(
ȳ√

λk (ζ − x̄)

)
(z2
k)jζhdζ

(28)

where x̄, ȳ are the coordinates of the source point expressed in the local system of the �eld element

and j is the power of the z2
k term. The analytical solutions of the inde�nite integrals E(k)

(h)
j can

be written in the following recursive form

E(k)
(h)
j =

1

2j − h− 1

{[
ζh−1(
z2
k

)j−1

]ζ2
ζ1

+ 2x̄ (j − h)E(k)
(h−1)
j +

+ (h− 1)
[
(n1 + n2λk) x̄

2 + (n1λk + n2) ȳ2
]
E(k)

(h−2)
j

}
(29)

When h = 2j − 1, it is necessary to use the following equation

E(k)
(h)
j = E(k)

(h−2)
j−1 −

[
(n1 + n2λk) x̄

2 + (n1λk + n2) ȳ2
]
E(k)

(h−2)
j + 2x̄E(k)

(h−1)
j (30)

and, to initialize the recursive process when ȳ 6= 0, the following integrals are used

E(k)
(0)
1 =

1√
λkȳ

[
arctan

((
n1 + n2

√
λk
)

(ζ − x̄)(
n1

√
λk + n2

)
ȳ

)]ζ2
ζ1

(31a)

E(k)
(1)
1 =

1(
n1 + n2

√
λk
)[ln (zk)

]ζ2
ζ1

+ x̄E(k)
(0)
1 (31b)

E(k)
(h)
0 =

[
ζh+1

h+ 1

]ζ2
ζ1

(31c)

E(k)
(0)
j+1 =

1

2 (n1λk + n2) ȳ2j


[

(ζ − x̄)(
z2
k

)j
]ζ2
ζ1

+ (2j − 1)E(k)
(0)
j

 (31d)

For ȳ = 0 some of these expressions degenerate, and must be replaced by the following

E(k)
(0)
j =

[
1

(ζ − x̄)2j−1

]ζ2
ζ1

1

(n1 + n2λk) (1− 2j)
(32)

Integrals of type G(k)
(h)
j can be represented in closed form. For the problem of 2D plane

orthotropic media, only evaluation of integrals G(k)
(h)
0 is required, which for ȳ 6= 0 become

G(k)
(h)
0 =

1

h+ 1


[
ln (zk) ζ

h+1

]ζ2
ζ1

− (n1 + n2λk)
(
E(k)

(h+2)
1 − x̄E(k)

(h+1)
1

) (33)
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When ȳ = 0, (33) becomes

G(k)
(h)
0 =

1

h+ 1


[
ζh
(

(ζ − x̄) ln (zk)−
ζ

h+ 1

)]ζ2
ζ1

+ hx̄G(k)
(h−1)
j

 (34)

and the �rst integral of the recursive process is

G(k)
(0)
0 =

[
(ζ − x̄) ln (zk)− ζ

]ζ2
ζ1

(35)

Also integrals of type A(k)
(h)
j can be represented in closed form. For the problem of 2D plane

orthotropic media, only integrals A(k)
(h)
0 are required

A(k)
(h)
0 =

=

[
− h

h+ 1

(
x̄ȳ(h−1)

√
λk

)
+

ȳ

2
√
λk
ln (zk) ζ

(h) +
(h− 1)

6

ȳ3√
λ3
k

ln (zk) +

+
h

2

ȳ2

λk
arctan

(√
λk (ζ − x̄)

ȳ

)
x̄(h−1) − arctan

(
ȳ

λk (ζ − x̄)

)(
ζ(h+1) − x̄(h+1)

h+ 1

)]ζ2
ζ1

(36)

and the �rst integral of the recursive process is

A(k)
(0)
0 =

[
ȳ

2
√
λk
ln (zk)− arctan

(
ȳ

λk (ζ − x̄)

)
(ζ − x̄)

]ζ2
ζ1

(37)

Equations (27) to (37) allow us to evaluate the integrals in (22). After integration, the integrals∫
Γe

u∗Tφte dΓe and
∫

Γe
t∗Tφte dΓe are expressed as combinations of E(k)

(h)
j , A(k)

(h)
j , and G(k)

(h)
j ,

which are called U
(h)
ij , and T

(h)
ij , and reported in the Appendix. The expressions of U

(h)
ij , T

(h)
ij ,

conveniently assembled, allow us to evaluate H and G in (25).

2.6 Domain solution

The solution in the interior of the domain can be obtained from the solution on the boundary.
When the source point and the �eld point are very close (rk → 0), the integrals of the form∫

Γ f
∗T (ξ, x) g (x) dΓ become singular, so they are evaluated using Cauchy Principal Values (CPV)

(see the Appendix (4)). Since there are no singularities in the domain, c = I,2 and using (14) we
obtain

u (ξ) =

∫
Γ
u∗

T
(ξ, x) t (x) dΓ −

∫
Γ
t∗

T
(ξ, x)u (x) dΓ +

∫
Ω
u∗

T
(ξ, x)b (x) dΩ (ξ ∈ Ω) (38)

and in discrete form

u (ξ) =

=

ne∑
e=1

∫
Γe

u∗
T

(ξ, x)φtete dΓe −
ne∑
e=1

∫
Γe

t∗
T

(ξ, x)φueue dΓe+

nc∑
c=1

∫
Ωc

u∗
T

(ξ, x)b (x) dΩc (ξ ∈ Ω)

(39)

2I : Identity matrix.
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Calculation of stress �elds requires di�erentiation of the displacement �eld to obtain the strain
�eld, as dictated by the kinematic equations [8, (1.4)], and further use of the constitutive equations
[8, (1.55)], resulting in

σ (ξ) =

∫
Γ
D (ξ, x) t (x) dΓ −

∫
Γ
S (ξ, x)u (x) dΓ +

∫
Ω
D (ξ, x)b (x) dΩ (ξ ∈ Ω) (40)

and in discrete form

σ (ξ) =

ne∑
e=1

∫
Γe

Dφtete dΓe−
ne∑
e=1

∫
Γe

Sφueue dΓe+

nc∑
c=1

∫
Ωc

Dbc (x) dΩc (ξ ∈ Ω) (41)

where for 2D media

DT =

[
D111 D121 D211 D221

D112 D122 D212 D222

]
; ST =

[
S111 S121 S211 S221

S112 S122 S212 S222

]
(42)

and by analytic integration we obtain

D111 = D

(√
λ2A1

r1

z2
2

−
√
λ1A2

r1

z2
1

)
D122 = D

(
λ1

√
λ1A2

r1

z2
1

− λ2

√
λ2A1

r1

z2
2

)
D121 = D

(√
λ2A1

r2

z2
2

−
√
λ1A2

r2

z2
1

)
D112 = D121

D211 = D

(
A2√
λ2

r2

z2
2

− A1√
λ1

r2

z2
1

)
D222 = D

(√
λ1A1

r2

z2
1

−
√
λ2A2

r2

z2
2

)
D212 = D

(√
λ1A1

r1

z2
1

−
√
λ2A2

r1

z2
2

)
D212 = D221

(43)

and

S111 = D

{[
1√
λ2z2

2

− 1√
λ1z2

1

− 2

(√
λ2r

2
1

z4
2

−
√
λ1r

2
1

z4
1

)]
n1 − 2

[√
λ2r1r2

z4
2

−
√
λ1r1r2

z4
1

]
n2

}
S112 = D

{
−2

[√
λ2r1r2

z4
2

−
√
λ1r1r2

z4
1

]
n1 +

[√
λ2

z2
2

−
√
λ1

z2
1

− 2

(√
λ2r

2
2

z4
2

−
√
λ1r

2
2

z4
1

)]
n2

}
S121 = S211 = S112

S122 = D

{[
−
√
λ2

z2
2

+

√
λ1

z2
1

+ 2

(
λ2

√
λ2r

2
1

z4
2

− λ1

√
λ1r

2
1

z4
1

)]
n1 + 2

[
λ2

√
λ2r1r2

z4
2

− λ1

√
λ1r1r2

z4
1

]
n2

}
S212 = S221 = S122

S222 = D

{
2

[
λ2

√
λ2r1r2

z4
2

− λ1

√
λ1r1r2

z4
1

]
n1 +

[
−λ2

√
λ2

z2
2

+
λ1

√
λ1

z2
1

+ 2

(
λ2

√
λ2r

2
2

z4
2

− λ1

√
λ1r

2
2

z4
1

)]
n2

}
(44)

Integral terms of the type Dijl and Sijl, written as functions of recurring integrals, are given in
the Appendix.
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The body force b has been included for completeness, but no provisions have been made for its
integration because we do not plan to use for our intended application (see Conclusions). Body force
integration is a classical topic, where the goal is to avoid domain integration and use only boundary
integration to guarantee all the advantages of BEM. Some classical papers describing techniques for
transforming BEM domain integrals to the boundary are noted here [56�62].

3 Numerical Results

A number of cases are presented here to demonstrate the application of the proposed methodology to
elastic analysis of 2-D orthotropic medium by the analytical integration of the kernels. The principal
material directions are aligned with the Cartesian coordinate directions. All Abaqus simulations
were performed using a uniform mesh of S8R elements. All elements had the same square shape.
The reference values (Uref or σref ) used in the graphs have been evaluated numerically using a very
�ne mesh (i.e. values at convergence ) employing Abaqus. A pointwise measure of the error has
been used. The log(|.|) has been introduced to better emphasize the rate of convergence, where ||
denotes absolute value.

Please note that in the tabulated results one cannot measure the error by comparing BEM and
FEM results between any pair of BEM and FEM discretizations, not even between the �ner BEM
and �ner FEM meshes, because BEM and FEM meshes are not comparable. While a FEM mesh is
a discretization of the domain, a BEM mesh is a discretization of the boundary. Therefore, identical
results cannot be obtained. Only convergence and rate of convergence are meaningful, both of which
are satis�ed for both BEM and FEM, in all examples that follow.

3.1 Square plate under uniform load

Consider an orthotropic square plate with side L = 100 mm, subjected to uniformly distributed
load qy = 1.0 N/mm along the principal material direction that coincides with the y-coordinate.
Material properties are Ey = 161 MPa, Ex = 90.27 MPa, Gxy = 7.17 MPa, νxy = 0.28 and thickness
t = 1.2 mm. The plate is clamped at x = 0 loaded with qy at y = L (Figure 6).

The results are compared with numerical results obtained using Abaqus. Comparison of the
displacements at points A=(L, 0), B=(L,L), C=(L/3, 2/3L) and D=(2/3L,L/3) are presented in
Tables 1 and 2. Both tables refer to the same degrees of freedom (dof) shown in Table 1.

Convergence of displacement at boundary points located in point A and B vs. number of degrees
of freedom (dof) is depicted in Figure 7. It can be seen that BEM converges monotonically to the
displacements using less dof than Abaqus. Convergence of displacement at domain point C vs.
number of degrees of freedom (dof) is shown in Figure 8. It can be seen that BEM converges to the
displacement using less dof than Abaqus.

Comparison of traction tn at point E=(0, L/2) is shown in Table 3. Comparison of stresses at
points C is presented in Table 4. The table refers to the same dof shown in Table 1. Convergence
of stress at domain point C vs. number of degrees of freedom (dof) is shown in Figure 9. The BEM
code shows a faster, monotonic convergence compared with Abaqus.
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Figure 6: Square plate under uniform load.

Table 1: Comparison of displacements at points A and B, in [mm].

BEM Abaqus

N tot
el L/Nel dof UAx UBy N tot

el L/Nel dof UAx UBy

12 33.333 40 1.2216 8.3447 9 33.333 120 1.1671 6.9620
24 16.666 64 1.1908 8.2409 36 16.666 399 1.1447 7.6073
36 11.111 88 1.1895 8.2281 81 11.111 840 1.1507 7.8240
48 8.333 112 1.1773 8.2261 144 8.333 1443 1.1539 7.9279
60 6.666 136 1.1718 8.2258 225 6.666 2208 1.1557 7.9892
72 5.555 160 1.1690 8.2257 324 5.555 3135 1.1568 8.0296
84 4.761 184 1.1674 8.2257 441 4.761 4224 1.1575 8.0583
96 4.166 208 1.1665 8.2256 576 4.166 5475 1.1580 8.0796
108 3.703 232 1.1660 8.2254 729 3.703 6888 1.1584 8.0962
120 3.333 256 1.1657 8.2253 900 3.333 8463 1.1587 8.1094
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Table 3: Convergence of normal traction tn at point E.

N tot
el BEM tn N tot

el Abaqus tn
12 0.012605 4 0.008728
20 0.019614 16 0.017994
132 0.019092 64 0.020206
220 0.019167 256 0.020206
308 0.019195 1024 0.019763
396 0.019208 4096 0.019122
484 0.019216 16384 0.019126

Table 2: Comparison of displacements at points C and D, in [mm].

BEM Abaqus

UCx UCy UDx UDy UCx UCy UDx UDy

−0.1353 3.8428 0.1546 6.5786 −0.0244 2.1964 0.1167 5.2396
−0.1234 3.7846 0.1410 6.4863 −0.1158 3.2045 0.1373 5.8530
−0.1220 3.7726 0.1388 6.5539 −0.1150 3.3630 0.1377 6.0612
−0.1214 3.7680 0.1380 6.4607 −0.1167 3.4707 0.1373 6.1623
−0.1211 3.7657 0.1376 6.4575 −0.1179 3.5285 0.1371 6.2225
−0.1209 3.7644 0.1374 6.4556 −0.1184 3.5678 0.1370 6.2622
−0.1208 3.7636 0.1373 6.4545 −0.1189 3.5955 0.1369 6.2904
−0.1207 3.7631 0.1372 6.4537 −0.1192 3.6162 0.1369 6.3115
−0.1206 3.7627 0.1371 6.4532 −0.1194 3.6323 0.1368 6.3279
−0.1206 3.7624 0.1371 6.4528 −0.1196 3.6451 0.1368 6.3409
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Figure 7: Convergence of displacement at boundary points A and B vs. degrees of freedom (dof).
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Table 4: Comparison of stresses at point C, in [MPa].

BEM Abaqus

σCxx σCyy τCxy σCxx σCyy τCxy

0.54971 −0.67136 −0.25424 0.30868 −0.93328 −0.12980
0.54617 −0.66513 −0.24929 0.60545 −0.60281 −0.18117
0.54546 −0.66450 −0.24457 0.53595 −0.68128 −0.23643
0.54515 −0.66417 −0.24264 0.54351 −0.66386 −0.23595
0.54508 −0.66413 −0.24225 0.54446 −0.66640 −0.23756
0.54504 −0.66411 −0.24200 0.54368 −0.66524 −0.23886
0.54502 −0.66409 −0.24183 0.54388 −0.66528 −0.23943
0.54500 −0.66409 −0.24170 0.54388 −0.66510 −0.23984
0.54500 −0.66409 −0.24161 0.54390 −0.66504 −0.24013
0.54498 −0.66408 −0.24150 0.54393 −0.66498 −0.24034
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Figure 8: Convergence of displacement at domain point C vs. degrees of freedom (dof).
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Figure 9: Convergence of stress at domain point C vs. degrees of freedom (dof).
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3.2 Cantilever plate under uniform shear load

Consider an orthotropic cantilever plate with base b = 200 mm (along x) and height h = 10 mm
(alogn y), subjected to uniformly distributed shear load qy = −0.030 N/mm at x = b. The plate
is clamped at x = 0. The principal material direction coincides with the x-coordinate. Material
properties are Ex = 85 MPa, Ey = 74 MPa, Gxy = 10 MPa, νxy = 0.3 and thickness t = 1 mm. For
optimum accuracy, the length of the elements are constant for all macro-elements.

A typical mesh is shown in Figure 10. The element size is shown as h/Nel in Table 5.

Figure 10: Typical mesh used for Abaqus discretization. Cantilever plate under uniform shear load.

The results are compared with numerical results obtained using Abaqus at points A=(b,0),
B=(b,h), C=(0, h/2), and D=(b/5, h/2). Comparison of displacements at points A and B are
presented in Table 5. Convergence of displacement at boundary points A and B vs. number of
degrees of freedom (dof) is shown in Figure 11. It can be seen that BEM shows an higher rate of
convergence than Abaqus.

Convergence of stress at domain point D vs. degrees of freedom (dof) is reported in Table 6
and Figure 12, while tangential traction tt at point C in Table 7 and Figure 12. It can be seen that
BEM converges to the traction/stress using less dof that Abaqus.

Table 5: Comparison of displacements at points A and B, in [mm].

BEM Abaqus

N tot
el h/Nel dof UAy UBx N tot

el h/Nel dof UAy UBx

42 10 100 −111.2293 4.1389 20 10 309 −113.1230 4.2252
84 5 184 −111.3818 4.1535 80 5 975 −113.2740 4.2290
168 2.5 352 −112.1102 4.1825 320 2.5 3387 −113.4370 4.2333
336 1.25 688 −112.8399 4.2085 1280 1.25 12531 −113.5280 4.2358
672 0.625 1360 −113.1830 4.2206 5120 0.625 48099 −113.6040 4.2378
1344 0.3125 2704 −113.3130 4.2252
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Table 6: Comparison of stress τxy [MPa] at point D.

BEM Abaqus

N tot
el h/Nel dof τDxy N tot

el h/Nel dof τDxy

42 10 100 −0.04490 20 10 309 −0.02926
84 5 184 −0.04400 80 5 975 −0.05265
168 2.5 352 −0.04438 320 2.5 3387 −0.04687
336 1.25 688 −0.04493 1280 1.25 12531 −0.04546
672 0.625 1360 −0.04520 5120 0.625 48099 −0.04511
1344 0.3125 2704 −0.04530

Table 7: Comparison of tangential traction tt at point C.

BEM Abaqus

N tot
el h/Nel dof tCt N tot

el h/Nel dof tCt

42 10 100 0.4739 20 10 309 0.0194
126 3.333 268 0.1245 80 5 975 0.0105
210 2 436 0.1237 320 2.5 3387 0.0043
462 0.909 940 0.1125 1280 1.25 12531 0.0022
714 0.588 1444 0.1112 5120 0.625 48099 0.1047
1470 0.285 2956 0.1105
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Figure 11: Convergence of displacement at boundary points A and B vs. number of degrees of freedom (dof).
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Figure 12: Convergence of tangential traction at point C and stress at domain point D vs. number of degrees
of freedom (dof).

3.3 L-shape plate under uniform shear load

Consider an orthotropic irregular plate subjected to a uniformly distributed shear load qy = −0.0135
N/mm along the principal material direction that coincides with the y-coordinate (Figure 13).
Material properties are Ey = 85 MPa, Ex = 74 MPa, Gxy = 20 MPa, νxy = 0.3. The length is
L = 100 mm and thickness t = 1.3 mm. Element size is uniform along the boundary, and given as
L/Nel in Table 8 for each level of discretization.

The results are compared at four points. The �rst three points, A=(2.5L, 1.5L), B=(2.5L, 2.5L)
and C=(L,L) are located on the boundary. The point D=(1.5L, 2.0L) is located in the domain.

Convergence of displacement at boundary points located in point A and B vs. number of degrees
of freedom (dof) is shown in Table 8 and Figure 14. It can be seen that BEM converges monotonically
to the displacement solution using less dof than Abaqus. Convergence of displacement at point C
vs. number of degrees of freedom (dof) is shown in Table 9and Figure 15. It can be seen that
converges to the displacement using less dof that Abaqus.

Convergence of stress at domain point D vs. number of degrees of freedom (dof) is reported
in Table 10 and Figure 16. The BEM code shows faster, monotonic convergence compared with
Abaqus.
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Figure 13: L-shape plate under uniform shear load.

Table 8: Comparison of displacements at points A and B, in [mm].

BEM Abaqus

N tot
el L/Nel dof UBx UAy N tot

el L/Nel dof UBx UAy

20 50 64 1.0646 −1.5967 16 50 207 1.0382 −1.4912
40 25 104 1.0777 −1.6052 64 25 699 1.0601 −1.5475
80 12.5 184 1.0801 −1.6032 256 12.5 2547 1.0709 −1.5748
160 6.25 344 1.0807 −1.6014 1024 6.25 9699 1.0759 −1.5873
320 3.125 664 1.0808 −1.6003 4096 3.125 37827 1.0781 −1.5931

Table 9: Comparison of displacements at point C, in [mm].

BEM Abaqus

N tot
el L/Nel dof UCx UCy N tot

el L/Nel dof UCx UCy

20 50 64 0.2752 −0.2822 16 50 207 0.3241 −0.2598
40 25 104 0.3155 −0.2381 64 25 699 0.3167 −0.2605
80 12.5 184 0.3112 −0.2419 256 12.5 2547 0.3113 −0.2593
160 6.25 344 0.3078 −0.2446 1024 6.25 9699 0.3075 −0.2574
320 3.125 664 0.3052 −0.2465 4096 3.125 37827 0.3048 −0.2557
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Figure 14: Convergence of displacement at boundary points A and B vs. number of degrees of freedom (dof).
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Figure 15: Convergence of displacement at boundary point C vs. number of degrees of freedom (dof).

Table 10: Comparison of stress at point D, in [MPa].

BEM Abaqus

N tot
el L/Nel dof σDxx τDxy N tot

el L/Nel dof σDxx τDxy

20 50 64 −0.00058 0.01520 16 50 207 −0.00786 0.02247
40 25 104 −0.00122 0.01528 64 25 699 −0.00185 0.01563
80 12.5 184 −0.00137 0.01524 256 12.5 2547 −0.00171 0.01525
160 6.25 344 −0.00143 0.01522 1024 6.25 9699 −0.00160 0.01519
320 3.125 664 −0.00146 0.01521 4096 3.125 37827 −0.00155 0.01518
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Figure 16: Convergence of stress at domain point D vs. number of degrees of freedom (dof).

3.4 Laminated plate under shear load

Consider a laminated rectangular plate with base b = 200 mm (along x) and height h = 100 mm
(along y), subjected to uniformly distributed shear load qy = −0.24 N/mm at x = b. The plate
is clamped at x = 0. The laminate has 5 laminas, arranged in a [90/-90/0/-90/90] con�guration.
The thickness of each lamina is t = 0.3 mm. The laminated plate is modeled using its equivalent
orthotropic properties [2, �6.4, Eq. (6.4)], i.e., Ex = 120 MPa, Ey = 60 MPa, Gxy = 7 MPa,
νxy = 0.071. A typical mesh is shown in Figure 17. The element size is shown as h/Nel in Table 11.

Figure 17: Typical mesh used for Abaqus discretization. Laminated plate under shear load.

The results are compared with numerical results obtained using Abaqus at points A=(b,0), and
B=(b,h). Comparison of displacements at points A and B is shown in Table 11. Convergence of
displacement at boundary points located at points A and B vs. degrees of freedom (dof) is shown
in Figure 18. It can be seen that BEM converges to the displacements using less dof than Abaqus.
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Table 11: Comparison of displacements at points A and B, in [mm].

BEM Abaqus

N tot
el b/Nel dof UAx UBy N tot

el b/Nel dof UAx UBy

18 33.333 52 2.8786 12.5133 18 33.333 219 2.9083 12.2900
36 16.666 88 2.9099 12.5220 72 16.666 759 2.9284 12.4542
72 8.3333 160 2.9273 12.5436 288 8.3333 2811 2.9393 12.5254
144 4.1666 304 2.9354 12.5553 1152 4.1666 10803 2.9445 12.5584
288 2.0833 592 2.9392 12.5604 4608 2.0833 42339 2.9470 12.5746
576 1.0416 1168 2.9411 12.5626 18432 1.0416 167619 2.9482 12.5826
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Figure 18: Convergence of displacement at boundary points A and B vs. number of degrees of freedom (dof).

4 Conclusions

The main contributions of this work are the analytical integration of singular kernels for plane
orthotropic media, and a successful implementation into a BEM code. Numerical examples show
that the results obtained by the proposed BEM implementation are in good agreement with those
obtained by FEM, demonstrating the validity and reliability of the proposed BEM formulation for
the analysis of elastic, 2D, orthotropic media. The analytical evaluation of the integral coe�cients
and the e�ciency of the implementation is highlighted. All equations are analytically integrated
and expressed as a function of a few recurring integrals, contributed for the �rst time in this work.
The analytically integrated, HC interpolated BEM formulation converges much faster than a displa-
cement-based FEM, for both displacements and stresses. Stresses always converge monotonically,
while FEM sometimes displays oscillatory, slow convergence. The proposed model is able to re-
present stress concentrations well. HC interpolation allows C1 continuity with negligible increment
of dof with respect to piecewise constant interpolation. The BEM formulation is mixed, providing
displacements and tractions simultaneously and with the same order of approximation, which is sig-
ni�cant for stress analysis. Further, the dimensionality of the model is reduced by one (from 2D to
1D), which coupled with analytical integration and e�cient interpolation leads to fast convergence
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and economical solution with fewer dof than required by FEM.
The proposed BEM formulation can be used to solve a variety of problems involving orthotropic

media. In the future, we wish to solve an orthotropic representative volume element that is the
micro-model of a micro/macro model. Since the micro model must be solved for each Gauss point
at each iteration of the (nonlinear) macro model, computational cost is critical. The proposed
formulation is clearly more economical that a FEM micro-model. Our intended applications is for a
�at panel. Therefore, we did not study the applicability and performance of the proposed method
to solve problems with curved geometries. Furthermore, our proposed application does not include
body forces.

Appendix

Coe�cients U
(h)
ij and T

(h)
ij

Coe�cients U
(h)
ij , T

(h)
ij are given next:

U
(h)
11 = D

[√
λ1A

2
2G(1)

(h)
0 −

√
λ2A

2
1G(2)

(h)
0

]
(45a)

U
(h)
12 = DA1A2

[
A(2)

(h)
0 −A(1)

(h)
0

]
(45b)

U
(h)
21 = U

(h)
12 (45c)

U
(h)
22 = −D

[
A2

1√
λ1
G(1)

(h)
0 − A2

2√
λ2
G(2)

(h)
0

]
(45d)

For n1 = 0 and n2 = 1

T
(h)
11 = ȳD

[√
λ2A1E(2)

(h)
1 −

√
λ1A2E(1)

(h)
1

]
(46a)

T
(h)
12 = D

[√
λ1A1Ẽ(1)

(h)
1 −

√
λ2A2Ẽ(2)

(h)
1

]
(46b)

T
(h)
21 = D

[
λ1

√
λ1A2Ẽ(1)

(h)
1 − λ2

√
λ2A1Ẽ(2)

(h)
1

]
(46c)

T
(h)
22 = ȳD

[√
λ1A1E(1)

(h)
1 −

√
λ2A2E(2)

(h)
1

]
(46d)

For n1 = 1 and n2 = 0

T
(h)
11 = ȳD

[√
λ2A1E(2)

(h)
1 −

√
λ1A2E(1)

(h)
1

]
(47a)

T
(h)
12 = D

[
A1√
λ1
Ẽ(1)

(h)
1 − A2√

λ2
Ẽ(2)

(h)
1

]
(47b)

T
(h)
21 = D

[√
λ1A2Ẽ(1)

(h)
1 −

√
λ2A1Ẽ(2)

(h)
1

]
(47c)

T
(h)
22 = ȳD

[√
λ1A1E(1)

(h)
1 −

√
λ2A2E(2)

(h)
1

]
(47d)
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where
Ẽ(k)

(h)
j = E(k)

(h+1)
j − x̄E(k)

(h)
j (48)

and n is the unit outward normal to the boundary took in the global reference system X,Y , so
n1 = nx and n2 = ny.

Coe�cients D
(h)
ijl and S

(h)
ijl

Integral terms of the type D
(h)
ijl shown in (43), written as function of the recurring integrals, have

the following form

D
(h)
111 = D

[√
λ2A1Ẽ(2)

(h)
1 −

√
λ1A2Ẽ(1)

(h)
1

]
(49a)

D
(h)
122 = D

[
λ1

√
λ1A2Ẽ(1)

(h)
1 − λ2

√
λ2A1Ẽ(2)

(h)
1

]
(49b)

D
(h)
121 = ȳD

[√
λ2A1E(2)

(h)
1 −

√
λ1A2E(1)

(h)
1

]
(49c)

D
(h)
112 = D

(h)
121 (49d)

D
(h)
211 = ȳD

[
A2√
λ2
E(2)

(h)
1 − A1√

λ1
E(1)

(h)
1

]
(49e)

D
(h)
222 = ȳD

[√
λ1A1E(1)

(h)
1 −

√
λ2A2E(2)

(h)
1

]
(49f)

D
(h)
212 = D

[√
λ1A1Ẽ(1)

(h)
1 −

√
λ2A2Ẽ(2)

(h)
1

]
(49g)

D
(h)
212 = D

(h)
221 (49h)

and integrals of the type S
(h)
ijl shown in (44), can be written for n1 = 0 and n2 = 1 as

S
(h)
111 = −2ȳD

[√
λ2Ẽ(2)

(h)
2 −

√
λ1Ẽ(1)

(h)
2

]
(50a)

S
(h)
112 = D

[√
λ2E(2)

(h)
1 −

√
λ1E(1)

(h)
1 − 2ȳ2

(
λ2E(2)

(h)
2 − λ1E(2)

(h)
1

)]
(50b)

S
(h)
121 = S

(h)
211 = S

(h)
112 (50c)

S
(h)
122 = 2ȳD

[
λ2

√
λ2Ẽ(2)

(h)
2 − λ1

√
λ1Ẽ(1)

(h)
2

]
(50d)

S
(h)
212 = S

(h)
221 = S

(h)
122 (50e)

S
(h)
222 = D

[
λ1

√
λ1Ẽ(1)

(h)
1 − λ2

√
λ2Ẽ(2)

(h)
1 + 2ȳ2

(
λ2

√
λ2E(2)

(h)
2 − λ1

√
λ1E(2)

(h)
1

)]
(50f)
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and for n1 = 1 and n2 = 0, as

S
(h)
111 = D

[
1√
λ2
E(2)

(h)
1 − 1√

λ1
E(1)

(h)
1 − 2ȳ2

(√
λ2E(2)

(h)
2 −

√
λ1E(1)

(h)
2

)]
(51a)

S
(h)
112 = −2ȳD

[√
λ2Ẽ(2)

(h)
2 −

√
λ1Ẽ(1)

(h)
2

]
(51b)

S
(h)
121 = S

(h)
211 = S

(h)
112 (51c)

S
(h)
122 = D

[√
λ1E(1)

(h)
1 −

√
λ2E(2)

(h)
1 + 2ȳ2

(
λ2

√
λ2E(2)

(h)
2 − λ1

√
λ1E(1)

(h)
2

)]
(51d)

S
(h)
212 = S

(h)
221 = S

(h)
122 (51e)

S
(h)
222 = 2ȳD

[
λ2

√
λ2Ẽ(2)

(h)
2 − λ1

√
λ1Ẽ(1)

(h)
2

]
(51f)

with rk, λ1, λ2, Ak, zk, and D given in (5)�(10).

Singular and near singular integrals

The calculation of the integrals on the boundary (14) brings to some integration problems, absent
in the calculation of them in the domain. When the source point ξ is coincident with the �eld point
x, the kernels of the integrals show some singularities.

The kernel function u∗ (ξ, x) have two weak singularities, O(ln zk) and O
(
arctan(r2/

√
λkr1)

)
.

The kernel function t∗ (ξ, x) has a strong singularity O(1/z2
k) [63].

The weak singularities disappear when we integrate the integrals on the boundary. The strong
singularity requires the evaluation of the integrals as as Cauchy Principal Value (CPV). The eva-
luation of Cauchy Principal Value (CPV) integrals is one of the typical aspects of the Boundary
Element Method (BEM). It is essentially due to the strong singularity shown by some kernel functi-
ons appearing in some boundary integral equations.

In this Appendix, the distance between source and �eld point rk is denoted with ε to emphasize
that it is an in�nitesimal quantity.

Integration of kernels with singularity O(1/z2
k)

Integration of t11 and t22

From the integral equation (14) consider the kernel function tij . When the distance between the
source point ξ and the �eld point x tends to 0, ε → 0, the integration of kernel tij shows a strong
singularity that necessitates evaluation of the integral as CPV.
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Figure 19: Singular part of t∗11.

We illustrate the integration procedure using t11. The integration of t22 follows the same proce-
dure. Let's consider ∫

Γ
t∗

T

11 u dΓ = lim
ε→0


∫

Γ−Γε

t∗
T

11 ud(Γ− Γε)︸ ︷︷ ︸
IA

+

∫
Γε

t∗
T

11 udΓε︸ ︷︷ ︸
IB


where ε is distance between the source and �eld point, where

IA = lim
ε→0

∫
Γ−Γε

t∗
T

11 u d(Γ− Γε) =

∫
Γ
t∗

T

11 udΓ

The term IA is part of the system (14), on the right side. This term has no singular contribution
because it is far from the semi-circle in Fig (19). Next,

IB =

∫
Γε

t∗
T

11 udΓε = IB1 + IB2

can be decomposed as follows

IB = lim
ε→0

∫
Γε

t∗
T

11 u dΓε = lim
ε→0

∫
Γε

{
D

[√
λ2A1

z2
2

−
√
λ1A2

z2
1

]
(r1n1 + r2n2)

}
dΓε

where

IB1 = lim
ε→0

∫
Γε

t∗
T

11 u dΓε = lim
ε→0

∫
Γε

{
D

[√
λ2A1

z2
2

]
(r1n1 + r2n2)

}
dΓε
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and

IB2 = lim
ε→0

∫
Γε

t∗
T

11 u dΓε = − lim
ε→0

∫
Γε

{
D

[√
λ1A2

z2
1

]
(r1n1 + r2n2)

}
dΓε

Using polar coordinates {
x = ζ1 + ε cos θ

y = ζ2 + ε sin θ

where

ε =
√

(x− ξ1)2 + (y − ξ2)2

r,1 =
∂r1

∂x
=
x− ξ1

ε
= cos θ −→ r1 = ε cos θ

r,2 =
∂r2

∂y
=
y − ξ2

ε
= sin θ −→ r2 = ε sin θ

n = [nx, ny] = [cos θ, sin θ]

dΓ = εdθ

zi =
√
λ1,2(x− ξ1)2 + (y − ξ2)2 =

√
λ1,2(ε cos θ)2 + (ε sin θ)2

Then, ε
x− ξ1

ε
= ε cos θ and taking in account (5), x− ξ1 = r1 and y − ξ2 = r2. Therefore,

IB1 =

= D
√
λ2A1 lim

ε→0

∫ π

0

cos θ2 + sin θ2

ε2 [1 + cos2 θ(λ2 − 1)]
u ε2dθ = D

√
λ2A1

1√
λ2
π =

A1 u

2(λ1 − λ2)S22

IB2 =

= −D
√
λ1A2 lim

ε→0

∫ π

0

cos θ2 + sin θ2

ε2 [1 + cos2 θ(λ1 − 1)]
u ε2dθ = −D

√
λ1A2

1√
λ1
π = − A2 u

2(λ1 − λ2)S22

Finally,

IB = IB1 + IB2 =
A1 −A2

2(λ1 − λ2)S22
u = c11

Therefore, the value of c11 for (14) is

c11 =
A1 −A2

2(λ1 − λ2)S22
= c22

Similarly, the term c22 results from integration of t22, using the same procedure described above.
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Integration of t12 and t21

For integration of t12 and t21 we develop the following procedure

t12 = D

{(√
λ1A1

z2
1

−
√
λ2A2

z2
2

)
r1n2 −

(√
λ1

λ1

A1

z2
1

−
√
λ2

λ2

A2

z2
2

)
r2n1

}

t12 = D

{√
λ1A1

(
1

z2
1

r1n2 −
1

λ1

1

z2
1

r2n1

)
−
√
λ2A2

(
1

z2
2

r1n2 −
1

λ2

1

z2
2

r2n1

)}

∫
Γ
t∗

T

12 u dΓ = lim
ε→0


∫

Γ−Γε

t∗
T

12 ud(Γ− Γε)︸ ︷︷ ︸
IA

+

∫
Γε

t∗
T

12 udΓε︸ ︷︷ ︸
IB


where ε is distance between the source and �eld point. Let's consider

IA = lim
ε→0

∫
Γ−Γε

t∗
T

12 u d(Γ− Γε) =

∫
Γ
t∗

T

12 udΓ

The term IA is part of RHS of (14). This term has no singular contribution because it is away
from the semi-circle in Fig. (19). Next,

IB =

∫
Γε

t∗
T

12 udΓε = IB1 + IB2

can be decomposed as follows

IB = lim
ε→0

∫
Γε

t∗
T

12 u dΓε =

= lim
ε→0

∫
Γε

D

{√
λ1A1

(
1

z2
1

r1n2 −
1

λ1

1

z2
1

r2n1

)
−
√
λ2A2

(
1

z2
2

r1n2 −
1

λ2

1

z2
2

r2n1

)}
dΓε

where

IB1 = lim
ε→0

∫
Γε

t∗
T

12 u dΓε = lim
ε→0

∫
Γε

D

{√
λ1A1

(
1

z2
1

r1n2 −
1

λ1

1

z2
1

r2n1

)}
dΓε

and

IB2 = lim
ε→0

∫
Γε

t∗
T

12 u dΓε = lim
ε→0

∫
Γε

−D
{√

λ2A2

(
1

z2
2

r1n2 −
1

λ2

1

z2
2

r2n1

)}
dΓε

Using polar coordinates

IB1 =

= lim
ε→0

∫ π

0
D

{√
λ1A1

(
r1n2 −

1

λ1
r2n1

)}
r

z2
1

udθ = −D
√
λ1A1 lim

ε→0

∫ π

0

1

z2
1

{(
1

λ1
r2n1 − r1n2

)}
εudθ

IB2 =

= lim
ε→0

∫ π

0
−D

{√
λ2A2

(
r1n2 −

1

λ2
r2n1

)}
r

z2
2

udθ = D
√
λ2A2 lim

ε→0

∫ π

0

1

z2
2

{(
1

λ2
r2n1 − r1n2

)}
εudθ
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IB1 = −D
√
λ1A1 lim

ε→0

∫ π

0

1

z2
1

{(
1

λ1
cos θ sin θ − cos θ sin θ

)}
ε2udθ =

= −D
√
λ1A1 lim

ε→0

∫ π

0

{(
1

λ1
− 1

)
cos θ sin θ

ε2 [1 + cos2 θ (λ1 − 1)]

}
ε2udθ = 0

IB2 = D
√
λ2A2 lim

ε→0

∫ π

0

1

z2
2

{(
1

λ2
cos θ sin θ − cos θ sin θ

)}
ε2udθ =

= D
√
λ2A2 lim

ε→0

∫ π

0

{(
1

λ2
− 1

)
cos θ sin θ

ε2 [1 + cos2 θ (λ2 − 1)]

}
ε2udθ = 0

results in

c12 = c21 = 0

Integration of kernels with singularity O(ln zk)

Integration of u11 and u22

For integration of u12 and u21 we use the following procedure

∫
Γ
u∗

T

11 t dΓ = lim
ε→0


∫

Γ−Γε

u∗
T

11 td(Γ− Γε)︸ ︷︷ ︸
IA

+

∫
Γε

u∗
T

11 tdΓε︸ ︷︷ ︸
IB


where ε is distance between the source and �eld point. Expanding the two integrals on the RHS,
we have

IA = lim
ε→0

∫
Γ−Γε

u∗
T

11 t d(Γ− Γε) =

∫
Γ
u∗

T

11 tdΓ

and

IB = lim
ε→0

∫
Γε

u∗
T

11 t dΓε = lim
ε→0

∫
Γε

D
{[√

λ1A
2
2 ln z1 −

√
λ2A

2
1 ln z2

]}
tdΓε

or

IB = lim
ε→0

∫
Γε

u∗
T

11 t dΓε = lim
ε→0

∫
Γε

D
[√

λ1A
2
2 ln z1

]
tdΓε − lim

ε→0

∫
Γε

D
[√

λ2A
2
1 ln z2

]
tdΓε =

= D
√
λ1A

2
2 lim
ε→0

∫ π

0
ε2ln

[√
1 + cos2 θ (λ1 − 1)

]
tdθ−D

√
λ2A

2
1 lim
ε→0

∫ π

0
ε2ln

[√
1 + cos2 θ (λ2 − 1)

]
tdθ = 0

Integration of kernels with singularity O
(
arctan(r2/

√
λkr1)

)
Integration of u12 = u21

The integration procedure for u12 is as follows

∫
Γ
u∗

T

12 t dΓ = lim
ε→0


∫

Γ−Γε

u∗
T

12 td(Γ− Γε)︸ ︷︷ ︸
IA

+

∫
Γε

u∗
T

12 tdΓε︸ ︷︷ ︸
IB


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where ε is distance between the source and �eld point. Expanding the two integrals on the RHS,
we have

IA = lim
ε→0

∫
Γ−Γε

u∗
T

12 t d(Γ− Γε) =

∫
Γ
u∗

T

12 tdΓ

and

IB = lim
ε→0

∫
Γε

u∗
T

12 t dΓε = lim
ε→0

∫
Γε

DA1A2

[
arctan

(
r2√
λ2r1

)
− arctan

(
r2√
λ1r1

)]
tdΓε

or

IB = lim
ε→0

∫ π

0
u∗

T

12 t dθ = lim
ε→0

∫ π

0
DA1A2

[
arctan

(
sin θ√
λ2 cos θ

)
− arctan

(
sin θ√
λ1 cos θ

)]
tεdθ =

= lim
ε→0

∫ π

0
DA1A2

[(
θ√
λ2

)
−
(

θ√
λ1

)]
tεdθ = 0
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