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Abstract

An analytical, closed form solution is developed for balanced (not necessarily symmetric) lami-

nates subjected to flexural deformation. The analytical solution provides spatial distribution of

displacements and curvature, from which in-plane and intralaminar strains and stresses are ob-

tained through differentiation and constitutive equations. The deformation is shown to consist of

a homogeneous deformation plus perturbations near the crack tip. A methodology is proposed to

separate the perturbation from the homogeneous deformation, to eliminate ill-conditioning of the

eigenvalue/eigenvector problems that occurs otherwise. It is shown that, while the homogeneous

deformation provides a macroscopic measure of damage in terms of reduced flexural stiffness of the

laminate, the perturbation solution provides a detailed account of the intralaminar shear induced

near the crack, which is used to calculate the extent of shear lag and the maximum intralaminar

shear stress. The intact portion of the laminate is modeled without lumping it into a single equiv-

alent lamina. Furthermore, laminas can be subdivided into multiple sub-laminates to increase the

accuracy of the representation of intralaminar/interlaminar shear, which is shown to improve the

predicted value of maximum interlaminar shear stress, which in turn is important for the prediction

of matrix-crack induced delamination.
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1 Introduction

Intralaminar matrix cracking is the first mode of damage in polymer-matrix laminated composites

subjected to quasi-static, fatigue, and impact load. Matrix cracking increases the permeability of

the laminate leading to gas/liquid leakage and facilitates access to contaminants that may degrade

the fibers. Also, matrix cracking often precedes catastrophic modes of damage such as delamination,

and fatigue life reduction. Furthermore, stiffness reduction of cracking laminas leads to stress

redistribution to other laminas that may as a result fail in a catastrophic, fiber dominated mode.

Therefore, prediction of damage initiation and evolution is an important ingredient of laminate

failure prediction [1].

Matrix cracks are caused by a combination of transverse tensile and in-plane shear strain.

Under these conditions, preexisting defects grow into cracks when the energy release rate exceeds

the intralaminar fracture toughness of the lamina. Assuming linear elastic fracture mechanics

[2] and periodicity leads to predictive methods that require the minimum number of material

properties while achieving good comparisons with available experimental data. These solutions are

either approximate, e.g., [3–7] or numerical, e.g., [8–11]. More refined methods require adjustable

parameters, for example in the form of empirical hardening laws [12, 13], and combinations of

fracture and strength properties, for example [14].

The vast majority of analytical and semi-analytical solutions are restricted to symmetric lami-

nates subjected to membrane loads only, and only matrix cracks are considered for the calculation

of interlaminar stresses. To account for interaction between intralaminar cracks and delaminations,

more complex numerical models such as reported in [15] are needed. Furthermore, most analytical

and semi-analytical solutions assume either linear [16] or bi-linear [17] distribution of interlaminar

stress through the undamaged sublaminates. Such limitation is removed in this work by subdividing

each undamaged lamina into a sublaminate with as many layers as needed to achieve convergence

in the value of the maximum interlaminar stress.
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Matrix cracking of laminates subject to flexural deformation are analyzed in [18, 19] using a

clever analogy between laminates and orthotropic media. Such methodology was generalized in [20],

but it relies on an “a priori” parametric study via finite element analysis (FEA) that restricts its

applicability to those material systems included in the FEA study. A 1D beam bending model for

[0/90]S–like laminates where only one of the 90◦ laminas is allowed to crack is offered in [21, 22].

The finite strip solution in [23–25] relies on the generalized plane strain assumption.

Both approximate and numerical solutions require either experiments or analytical solutions

to validate them. Experiments are limited to a few laminate configurations and they are further

limited in what can be measured. For example, stiffness reduction of carbon fiber laminates is

very difficult to measure. Therefore, analytical solutions are desirable because they can be used as

benchmarks, even if they are limited in scope of applicability to say, plane stress, and/or impose

restrictions on the type of material behavior, such as say, elastically linear/damaging behavior.

In this work, a closed form, analytical solution is developed for balanced (not necessarily sym-

metric) laminates subjected to bending. Plane stress through the thickness and along one of the

in-plane directions is assumed to reduce the problem to one dimension. The analytical solution

provides spatial distribution of displacements and curvature, from which in-plane and intralami-

nar strains are obtained through differentiation, and stresses through constitutive equations. The

solution is expressed as a combination of a fundamental solution and perturbation functions to rep-

resent the perturbation of the stress/strain field near the cracks. In this way, the near singularity

of displacement-only solutions is removed. Furthermore, the perturbation terms lead naturally to

computation of intralaminar/interlaminar stresses.

2 Approximations

The development of a closed form, analytical solution for bending of laminates with matrix cracks

requires a number of approximations to reduce the 3D problem to 1D. These approximations are

described as follows.
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Figure 1: Representative Volume Element (RVE) with dimensions 2` × 1 × 2h, where 2h is the
thickness of the laminate, and A,B, represent balanced sub-laminates.

2.1 Fracture mechanics

Consider a thin, balanced laminate, with N laminas, subjected to bending load Mx only. All

laminas are of the same material but oriented with respect to the x-axis in a laminate stacking

sequence (LSS) such as [0m/90n/ ± θr]S , where θ < 45◦. Experimental evidence [26–33] indicate

that in such laminates, the transverse laminas develop cracks as soon as the energy release rate in

mode-I fracture GI exceeds the intralaminar fracture toughness of the material GIc. Cracks start

at defects within the transverse layer (90n layer). Their propagation through the thickness of the

ply is unstable [34, section 7.2.1], reaching the interface suddenly. Upon further increase in applied

load Mx or curvature κx, the thickness cracks grow again unstably parallel to the fiber direction,

as illustrated in Figure 1.

When subjected to bending deformation, only the laminas experiencing tensile stress may de-

velop matrix cracks parallel to the fiber direction. If the cracked lamina spans across the midsurface,

the thickness crack develops on the tensile side only. In this case, the transverse lamina is divided

into two laminas, one cracked (tensile side) and another one virgin (compression side).

Initially, cracks are not equally spaced but they become so as the crack density increases [35].

It is therefore possible to assume equally spaced cracks, which allows us to assume periodicity, and

thus identify and use a representative volume element (RVE) to analyze this problem efficiently.

The RVE encompasses the thickness of the laminate, a unit length along the fiber direction of the
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cracking lamina, and the arc length 2` between existing cracks. The crack density in each lamina,

denoted by subscript i, is defined as

λi = 1/2` (1)

The analysis assumes that a very small crack density exists in the material, which may be

justified as being representative of initial defects. An initial value λi = 0.01 mm−1 is used in the

examples. New cracks are assumed to appear halfway between existing cracks, that is, as far as

possible from the shear lag regions near existing cracks. The coordinate system for the RVE has

its origin halfway between existing cracks, as shown in Figure 1.

2.2 Plate kinematics

In this work, general laminates, such as [0m/90n/±θr], not necessarily symmetric, can be analyzed.

Even if the undamaged (intact) laminate is initially symmetric, it will become unsymmetric when

it cracks on the tensile side of the midsurface. Furthermore, bending deformation is antisymmetric

with respect to the midsurface, with positive (negative) deformation above (below) the midsurface.

In summary, due to antisymmetry of deformation and material properties with respect to the

mid-surface of the laminate, all the laminate (with N laminas) needs to be analyzed. The following

approximations are made:

I. Lines initially straight and normal to the mid-surface remain incompressible: εz ' 0

II. A state of plane stress is assumed in the thickness direction, i.e., σiz = 0

III. Due to intralaminar damage, a high order kinematics is needed to represent the beam defor-

mation, and consequently lines initially straight and normal to the mid-surface are no longer

straight and normal to the mid-surface. Furthermore, the deflection w0 and the rotation φ0x

are not zero. Since the laminate is balanced, the deformation is symmetric with respect to

the y−z plane (Fig. 1), and no bending is applied in the y−direction (My = 0), the intralam-

inar shear strain for each lamina can be written as the deviation from the average laminate

rotation, as follows
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γixz =
∂ui

∂z
− φ0x (2)

where ui(x, z) is the in-plane displacement of the i−lamina.

IV. In order to reduce the problem to 2D, a state of plane stress is assumed in the y−direction,

i.e., σiy = 0.

V. For a general laminate such as [0m/90n/ ± θr], the coupling terms D16 and D26 may be

different from zero, but these terms decrease rapidly with increasing r. Therefore, each pair

(±θ) is treated as an equivalent lamina without coupling (Q16 = Q26 = 0) and therefore

D16 = D26 = 0 and γixy = 0.

VI. Since cracks appear equally spaced on both sides of the y − z plane (Figure 1), the domain is

symmetric with respect to the y − z plane and γiyz = 0.

The sum of approximations I to VI reduce the problem to 2D, i.e.,

 ui = ui(x, z) = z φox(x) + ui1(x, z)

wi = wo(x)
(3)

where φox(x) is the fundamental solution and ui1(x, z) are perturbations produced by intralaminar

cracks. The strain field in each lamina of the laminate can be written as follows


εx

εy

γxy



i

= z


∂φox/∂x

0

0

+


∂ui1(x, z)/∂x

0

0

 (4)

and the Poisson’s effect εiy ≈ 0 is assumed to be negligible.

3 Constitutive equations

Let’s denote by subscript k the particular lamina that is, at the moment, subject to cracking, which

in this study will be one of the laminas oriented at 90 degrees with respect to the x-axis, subjected
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to tensile stress, taken one at a time. Let’s denote with subscript m 6= k all other laminas that are

not cracking at the moment, which are N − 1 of them. If more than one cracking lamina exist,

they will be analyzed one at a time. For a state of plane stress we have


εx

εy

γxy = 0



i

=


S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66


i

σx

σy = 0

σxy



i

;

γyz = 0

γxz


i

=

S̄44 S̄45

S̄45 S̄55


iτyzτxz


i

(5)

Note that each balanced pair ±θ is treated as a single lamina with S̄16 = S̄26 = S̄45 = 0.

Therefore, the problem has symmetry with respect to the y-z plane, and as a result τ iyz = 0. Using

these facts, as well as (2) in (5), we get

∂ui(x, z)

∂z
− φox = S̄i

55 τ
i
xz (6)

The constitutive equation of lamina i, expressed in lamina coordinate system (c.s. 1,2,3) is

σir =
[
Qi

rs

]
(εis − αi

s∆T ); r, s = 1, 2, 6 (7)

where α is the coefficient of thermal expansion (CTE), ∆T is the increment of temperature, and

[Qi
rs] is the stiffness matrix of the lamina, possibly reduced due to prior damage, and expressed in

the lamina c.s. Once the crack density λk in lamina k is known, and the reduced stiffness of the

laminate [Q(λ)] has been calculated, the reduced stiffness matrix [Qk(λ)] of lamina k is calculated

as

[Qk] hk = [Q(λ)] h−
N∑

m=1

(1− δmk)[Qm] hm (8)

where δ is the Kronecker symbol and h =
∑N

i=1 hi is the thickness of the laminate. To aid in

computer implementation, the following damage variables are defined
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Dk
ij(λk) = 1−Qk

ij/Q̃
k
ij ; i = 1, 2, 6 ; j = 2, 6 (9)

where Q̃k
ij is the virgin stiffness matrix of the lamina. In this way, the reduced stiffness of any

damaged lamina can be easily calculated as

[
Qk
]

=


Q̃k

11 (1−D12)Q̃
k
12 0

(1−D12)Q̃
k
12 (1−D22)Q̃

k
22 0

0 0 (1−D66)Q̃
k
66

 (10)

Based on experimental evidence [28–31], laminas at 0◦, transverse laminas subjected to com-

pression stress, and groups ±θ < 45◦, all of which are denoted by subscript m, are assumed to be

free from cracking when the laminate is loaded with Mx only. Laminas at 90◦ with tensile stress,

denoted by subscript k, are assumed to crack when the energy release rate in fracture mode I, GI ,

reaches the intralaminar fracture toughness GIc.

Although the intact laminate is symmetric, the damaged laminate is unsymmetric. Therefore,

bending-extension coupling terms βij appear when using the original coordinate system. Since the

laminate is balanced (assumption V), the constitutive equations of the cracked laminate can be

simplified as follows [34, Sect. 10.2.1]



εox

εoy

γoxy

κx

κy

κxy



=



α11 α12 0 β11 β12 0

α22 0 β12 β22 0

α66 0 0 β66

δ11 δ12 0

δ22 0

sym. δ66





Nx

Ny = 0

Nxy

Mx

My = 0

Mxy



(11)

where Nx, Ny and Nxy are the normal and shear forces per unit length on the sides with units

[N/m]; Mx,My and Mxy are the moments per unit length on the sides, with units [N], with bending

moments taken as are positive when they produce a concave deformation looking from the negative

z-axis (Fig. 1); εox, ε
o
y, and εoxy are the mid-plane strains, and κx, κy, and κxy the curvatures.
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The compliance matrix in (11) is the inverse of the ABD matrix [34, Eq. (6.16)], with the

lamina reduced stiffness [Q]k calculated for the current crack density λ using (10) as in [36]. In this

way, the compliance in (11) contains bending-extension coupling even if the intact laminate was

symmetric before it cracked. Once cracked, the laminate is no longer symmetric.

Removing the first and fifth rows and columns from (11), inverting and reorganizing terms, the

constitutive equation for the laminated beam becomes (see [34, Ch. 10])



εx

κy

γxy

κxy


=



A B 0 0

B D 0 0

0 0 F C

0 0 C H





Nx

Mx

Nxy

Mxy


(12)

where A,B,C,D, F,H, are scalars representing the various stiffnesses of the laminated beam; A

is the axial stiffness, B represents the coupling between bending and extension, D is the bending

stiffness, H is the twisting stiffness, F is the in-plane shear stiffness, and C is the coupling between

twisting curvature and in-plane shear. The position of the neutral axis of bending is given by

eb =
B

A
(13)

The eccentricity eb displaces the original coordinate system, uncoupling the bending and exten-

sional forces, and allowing us to obtain a new mid-surface for which B = 0 (Figure 1). Once the

position of the neutral axis (13) is known, the new z coordinates of all interfaces can be calculated

by subtracting eb from the original z coordinates of the interfaces between laminas. If a cracking

lamina straddles the midsurface of the laminate, that lamina will now be divided in two laminas of

different thicknesses so that the crack extends to the neutral axis.

Developing and simplifying (7) along the x-direction, we get

σx = Ei
x(εix − αi

x∆T ) (14)
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where αi and Ei
x are the coefficient of thermal expansion and the modulus of elasticity of the

i−lamina in the laminate coordinate system x,y, respectively, with

Ei
x = Q̄i

11 −
(Q̄i

12)
2

Q̄i
22

(15)

where Q̄i
ij are the stiffnesses of lamina i transformed to the laminate c.s. (i.e., x,y). Substituting

εix from (4) into (14), we get

σx = Ei
x

(
zi
∂φox(x)

∂x
+
∂ui1(x, z)

∂x
− αi

x∆T

)
(16)

4 Deformation

The moment-curvature equation for a laminated beam is

κ0x =
Mx

(EI)
= δ11Mx =

∂φ0x
∂x

(17)

where the last term is the rotation-curvature relationship from first order shear deformation theory

(FSDT) [34, Ch. 6], the superscript o indicates laminate quantities that are independent of z, (EI)

is the bending stiffness [34, Ch. 10], and δ11 = (EI)−1 is the bending compliance given by

δ11 =

[
D11D22 −D2

12

D22

]−1
(18)

in terms of the bending stiffness matrix [D] of the intact laminate. In this way, κox is the curvature

of the FSDT fundamental solution, which will be complemented with the perturbation solution due

to cracking, later on.

The axial deformation u(x) can obtained from the FSDT kinematics (flexure only) as follows
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Figure 2: Through-the-thickness distribution of normal stress (a) before and (b) after the crack.
The cracked lamina is numbered k = 3 with fiber orientation θ = 90◦.

u(x, z) = z φ0x(x) (19)

Therefore, the strain is linear through the thickness

εx(x, z) = z
∂φ0x
∂x

(20)

and the stress is piecewise linear through the thickness, as shown in Figure 2(a) (due to the different

stiffnesses of the laminas).

For the undamaged laminate, no interlaminar shear is necessary to satisfy continuity of dis-

placements through the thickness. If a crack appears in lamina k, the surface of the crack becomes

a free edge, unable to support stress. To maintain equilibrium, the stress in the rest of laminas

must increase, as depicted in Figure 2(b). The resulting stress distribution is unknown and not

necessarily piecewise linear, but the summation of all the stress perturbations in the uncracked

laminas must compensate for loss of the stress in the cracked lamina (k = 3 counting from the

bottom in Figure 2). In other words, the stress no longer carried by the cracked lamina must be

taken up by the remaining uncracked laminas. The laminate becomes unsymmetric, requiring us

to study the entire the laminate, as well as its eccentricity, even if initially symmetric.

To helps us understand the proposed kinematics, let’s consider (as an example and without
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loss of generality) the case of symmetric laminate stacking sequence (LSS) subjected to flexural

deformation only. When such laminate is intact, the displacement distribution u(z) is antisymmetric

(i.e., a linear function of z in (19)). When such laminate becomes cracked, the displacement

distribution should remain, for the most part, approximately antisymmetric.

Since the axial stress σx vanishes at the crack surface, interlaminar stresses τxz are necessary

to satisfy continuity of displacements at the interface between the cracked and adjacent laminas.

The interlaminar stress τxz is zero at the top and bottom of the laminate because those are free

surfaces.

Furthermore, both of the interfaces limiting the cracked lamina are subjected to intralaminar

stress of the same direction (Figure 3), in this case to the right, in order to equilibrate the tensile

stress on the left of the 90 lamina (k=3) with a crack on the right. The opposite signs (positive on

the top face of k=3, and negative on bottom) are due to the opposite sign of the normal at the two

interfaces (positive on top and negative on bottom). Note that the arrows show the intralaminar

stress applied to the lamina by the adjacent laminas.

Continuity of intralaminar strain γxz(z) inside the cracked lamina demands that the intralaminar

stress vanishes at one point within the cracked lamina, as shown on the right hand side of Figure 3,

but not necessarily at the midsurface of the cracked lamina because of the influence of the flexural

deformation.

Since the fundamental solution for the displacements (19) (before the crack appears) is an-

tisymmetric, the total displacement distribution u(z) (after the crack appears) should be almost

antisymmetric. Also note that the interlaminar stress is proportional to the change in displacement

along z, i.e., τxz ∝ ∂u/∂z, and an antisymmetric displacement distribution satisfies ∂u/∂z > 0.

Therefore, the interlaminar stresses in most if not all of the uncracked laminas will tend to be

positive. Therefore, its distribution through the thickness must be an odd function. The simplest

odd function is a linear distribution, as shown in Figure 3.

A linear distribution of shear stress in a lamina requires displacements ui(z) that are not linear

in z, and for the cracked lamina they must be almost antisymmetric with respect to the lamina

centerline, thus approximately quadratic in z. Since the solution of the equations of elasticity for

such a problem is intractable, additional approximations are introduced, which reduce the problem

to 1D, but still allows us to obtain an accurate representation for intralaminar/interlaminar stresses.
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Figure 3: Layerwise linear distribution of intralaminar stress for a [0/90]S laminate. The full
laminate is shown. The cracked lamina is numbered k = 3 with fiber orientation θ = 90◦.

Let’s introduce the following averaging functions

f̂ =
1

hi

∫
hi

f(z) dz (21)

f̂ ′ =
1

hi

∫ zi,i+1

zi−1,i

f(zi−1,i − z) dz (22)

Equation (21) provides the average of any function f over the thickness of a lamina. When f

is the displacement ui(x, z) of the i−lamina, equation (21) provides the average displacement û(i)

of the i−lamina. Equation (22) provides the displacement of a lamina relative to the top interface,

the later denoted as the “i, i+ 1” interface, where i is the lamina number stating with i = 1 at the

bottom of the laminate.

Let’s consider the generic laminate displayed in Figure 4 and the coordinate system shown in

Figure 5. The interlaminar stress is assumed to be linear, as follows

τ ixz(x, z) = τ i,i+1
xz (x) +

[
τ i−1,ixz (x)− τ i,i+1

xz (x)
] zi,i+1 − z

hi
(23)
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Figure 4: Generic laminate illustrating the numbering of laminas and interface shear stresses.
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Figure 5: Local coordinate system at lamina i.
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Note that assuming intralaminar stress τ ixz to be linear through the thickness implies a quadratic

displacement ui(x, z) through the thickness, where the quadratic part must be confined to the sec-

ond term in (3) because the first term is obviously linear in z. Therefore, equation (3) describes the

kinematics of the laminate with a piece-wise quadratic deformation that satisfies zero interlaminar

stress on the surfaces of the laminate as depicted in Figure 3. Calculating the weighted average

(22) of (6) with τ ixz given by (23), we get

1

hi

∫ zi,i+1

zi−1,i

∂ui

∂z
(zi,i+1 − z)dz =

1

hi
S̄i
55

∫ zi,i+1

zi−1,i

τ i,i+1
xz (zi,i+1 − z) dz +

1

hi
S̄i
55

∫ zi,i+1

zi−1,i

[
τ i−1,ixz − τ i,i+1

xz

] (zi,i+1 − z)2

hi
dz+

1

hi

∫ zi,i+1

zi−1,i

φox (zi,i+1 − z) dz (24)

Developing the LHS of (24) we get

1

hi

[∫ zi,i+1

zi−1,i

∂ui

∂z
zi,i+1dz −

∫ zi,i+1

zi−1,i

∂ui

∂z
zdz

]
(25)

Integrating we get

1

hi

[
zi,i+1 ui(zi,i+1) − zi,i+1 ui(zi−1,i) + zi−1,i ui(zi−1,i) − zi,i+1 ui(zi,i+1)

]
+

1

hi

∫ zi,i+1

zi−1,i

ui dz

(26)

and simplifying we have

1

hi

[
zi−1,i − zi,i+1

]
ui(zi−1,i) + û(i) (27)

where û(i) is the average displacement in the i−lamina according to (21). In this way, the problem

is reduced from 2D to 1D, where the unknown variables û(i) are only function of x. Therefore, (27)
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reduces to

û(i)− u(zi−1,i) (28)

which we realize is equal to ∂ui/∂z. Integrating the first term on the RHS of (24) we have

− S̄
i
55

hi
τ i,i+1
xz

[
(zi,i+1 − z)2

2

]zi,i+1

zi−1,i

= S̄i
55

hi
2
τ i,i+1
xz (29)

Integrating the second term on the RHS of (24) we have

− S̄
i
55

hi

[
τ i−1,ixz − τ i,i+1

xz

]
hi

[
(zi,i+1 − z)3

3

]zi,i+1

zi−1,i

= S̄i
55

hi
3

[
τ i−1,ixz − τ i,i+1

xz

]
(30)

Integrating the third term on the RHS of (24) we have

− 1

hi
φox

[
(zi,i+1 − z)2

2

]zi,i+1

zi−1,i

=
hi
2
φox (31)

Substituting (28),(29),(30),(31) into (24), we get

û(i)− u(zi−1,i) = S̄i
55

hi
2
τ i,i+1
xz + S̄i

55

hi
3

[
τ i−1,ixz − τ i,i+1

xz

]
+
hi
2
φox (32)

Next, let’s consider the coordinate system shown in Figure 6. The interlaminar stress is again

assumed to be linear, as follows

τ i−1xz (x, z) = τ i−2,i−1xz (x) +
[
τ i−1,ixz (x)− τ i−2,i−1xz (x)

] z − zi−2,i−1
hi−1

(33)

Calculating the weighted average (22) of (6) with τ ixz given by (33), and following the same

procedure that led to (32), we get

u(zi−1,i)− û(i− 1) = S̄i−1
55

hi−1
2
τ i−1,i−2xz + S̄i−1

55

hi−1
3

[
τ i−1,ixz − τ i−2,i−1xz

]
+
hi−1

2
φox (34)
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i

i-1

i-2
t (i-2,i-1)

t
(i-1,i)

h
i-1

Figure 6: Local coordinate system at lamina i-1.

Adding (34) and (32) we get

û(i)− û(i−1) = τ i,i+1
xz S̄i

55

hi
6

+τ i−1,ixz

[
S̄i
55

hi
3

+ S̄i−1
55

hi−1
3

]
+τ i−2,i−1xz S̄i−1

55

hi−1
6

+
1

2
[hi +hi−1]φ

o
x (35)

Equation (35) provides the step change in average displacement from one lamina to the next in

terms of the intralaminar shear values. But actually what is needed is the inverse, i.e., and equation

for the intralaminar shear in terms of displacements. To obtain such relationship, we write (35) for

the N − 1 interfaces, as follows

−[Ho]
φox
2

+



û(2)− û(1)

û(3)− û(2)

...

û(N)− û(N − 1)


= [H]



τ1,2xz

τ2,3xz

...

τN−1,Nxz


(36)

where [H] and [Ho] collect the coefficients in (35). Inverting it, we get

τ i,i+1
xz =

N−1∑
j=1

H−1i,j [û(j + 1)− û(j)]− [Li,1] φ
o
x (37)

where the matrix [Li,1] is
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[Li,1] =
1

2
[H]−1[Ho] (38)

Next, calculating the difference between the interlaminar stresses in terms of the difference

between the average displacements across the N + 1 interfaces including the top and the bottom

surface of the laminate, we get

τ i,i+1
xz − τ i−1,ixz =

N−1∑
j=1

[
H−1i,j −H

−1
i−1,j

]
[û(j + 1)− û(j)]− [Li,1 − Li−1,1] φ

o
x (39)

Since the first lamina is denoted i = 1, the bottom surface of the laminate is denoted with

superscript “0, 1” and since the bottom surface of the laminate is a free surface, we have τ0,1xz = 0

and H0,j = 0. For the top surface of the laminate, i = N , τN,N+1
xz = 0 and HN+1,j = 0 for the same

reason.

5 Equilibium

Since the intralamimar stress is assumed to be linear in each lamina, its slope is constant (see

Figure 5), and it can be calculated dividing (39) by the lamina thickness hi. Therefore, the 3D

equations of equilibrium reduce to 2D as follows

∂σ̂ix
∂x

+
τ i,i+1
xz − τ i−1,ixz

hi
= 0 (40)

where σ̂x and τxz are functions of x, and i = 1 . . . N is the lamina number. Averaging the consti-

tutive equation (16) using (21) we obtain

σ̂ix = Ei
x

(
z̄i
∂φox(x)

∂x
+
∂ûi1(x)

∂x

)
(41)

where ûi1 is function of x only. Substituting (39),(41), into (40) we get
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Figure 7: Averaged stresses and displacements for a [0/90/0]S laminate. Only the top half of the
symmetric laminate is shown. The cracked lamina is numbered k = 5 with fiber orientation θ = 90◦.

Ei
x

(
z̄i
∂2φox(x)

∂x2
+
∂2ûi1(x)

∂x2

)
−

[H−1i−1,1 −H
−1
i,1 ]

hi
û(1) +

[H−1i,1 −H
−1
i−1,1 −H

−1
i,2 +H−1i−1,2]

hi
û(2)

+ . . .+
[H−1i,2 −H

−1
i−1,2 −H

−1
i,N−1 +H−1i−1,N−1]

hi
û(N − 1) +

[H−1i,N−1 −H
−1
i−1,N−1]

hi
û(N)

− [Li,1 − Li−1,1]

hi
φox = 0 (42)

for all i = 1...N laminas.

Note that (42) is expressed in terms of the fundamental solution φox(x) (first and last terms),

plus a perturbation ûi1 (due to crack formation, see first term), plus the total displacement û(i) of

each lamina. In order to solve the problem, we need to express (42) in terms of a single dependent

variable, and to express all the terms in the global coordinate system. To accomplish this, we choose

the total rotation φ̂it as the dependent variable, x as the independent variable, and we decompose

the total displacement as follows

ûi(x) = z̄i φ̂
i
t (43)

where z̄i is the location of the midsurface of lamina i and φ̂it is the total rotation angle, common

to all laminas for i = 1...N due to compatibility of deformation between the RVE and the rest of

laminate (Figure 7).

Letting φ̈t = ∂2φ̂t/∂x
2, (42) can be written as
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z̄i[M ]{φ̈it}+ z̄i[K]{φit} − [αo]φ
o
x = 0 (44)

where [M ] is the axial stiffness matrix, [K] is the interlaminar stiffness matrix, and [Lo] = (Li,1 −

Li−1,1)/hi, and z̄i is the location of the midsurface of lamina i. Equation (44) is a system N second

order, ordinary differential equations with constant coefficients. As such, it admits a closed form,

analytical solution, that we see to find next. To do this, the first step is to transform (44) into a

so-called standard problem

φ̈it + [D]φit = [F ]φox (45)

where [D] = [R]−1[E], [R] = z̄i[M ], [E] = z̄i[K], and [F ] = [R]−1[Lo] for all the laminas i = 1...N .

Next, the matrix [D] can be re-written in terms of its eigenvalues [λ] and eigenvectors [V ] as

[D] = [V ][λ][V ]−1 (46)

Next, applying the change of variable

{Z̈} = [V ]−1{φ̈it} (47)

we can uncouple the system of ordinary differential equations (noting that [λ] is diagonal) as follows

{Z̈i}+ [λ]{Zi} = [J ]φox (48)

where [J ] = [V ]−1[F ]. Next, the fundamental solution φox can be calculated integrating (17),

obtaining
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φox(x) = δ11 Mx x (49)

Therefore, equation (48) can be further simplified to

{Z̈i}+ [λ]{Zi} = [Jo]x (50)

where [Jo] = [J ] δ11 Mx. Next, note that (50) admits an exact homogeneous solution plus a

particular solution, as follows

Zi = ri exp(x
√
−λi) + si exp(−x

√
−λi) +

Joi
λi
x (51)

where λi are the eigenvalues of [D], Joi are known constants for each i lamina, and ri, si, are

constants to be found in terms of the boundary conditions. The total angle rotation of the laminate

can be written for each lamina as a summation, but the angle is unique for all laminas (see Figure 7),

so we can drop the superscript, as follows

φ̂t = φ̂it =

N∑
j=1

VijZj (52)

Taking the origin of the global coordinate system at the center of the representative volume

element (RVE), as shown in Figure 1, the y-z plane is a plane of symmetry. Therefore, φ̂t(x=0) = 0,

and si = −ri, which allows us to write (51) as

Zi = ri

(
exp(x

√
−λi)− exp(−x

√
−λi)

)
+
Joi
λi
x (53)

and furthermore, since the eigenvalues are all negative, (53) can be written as
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Figure 8: Left: elemental functions. Right: Deformation components. LSS: [02/904]S with λk =
0.2 [1/mm]. The cracking lamina is the third one from bottom (k = 3).

Zi = pi sinh(x
√
−λi) +

Joi
λi
x; i = 1 . . . N (54)

where pi = 2ri.

Equation (54) implies that the total rotation angle φ̂t in (52) is a summation of hyperbolic

and linear functions, as shown on the left hand side of Figure 8. Both components are needed to

describe the sum of the fundamental solution φ0x plus the perturbations near the crack at ±`. The

fundamental solution φ0x is described by a linear combination of terms (Joi/λ)x in (54). For a given

value of x, the fundamental solution is a constant, equal to the rotation angle of FSDT, which

obviously produces a linear displacement u0x(z) as in FSDT.

For a constant applied moment Mx, the homogeneous deformation φox is almost linear in −` <

x < `. To describe a linear function of x with sinh(x
√
−λs), the eigenvalue λs must be extremely

small, so that the sinh becomes almost linear in that range. In fact, numerical results confirm that



Composite Structures 135 (2016) 140–155 23

such eigenvalue is extremely small for every case analyzed in this work. For the example described

in Fig. 8, the eigenvalue is λ3 and the corresponding function Z3 is virtually linear in x. Let’s label

the small eigenvalue with the subscript s. Then, s = 3 in Fig. 8.

A very small eigenvalue results in a very small amplitude for the sinh, thus a very large constant

ps is needed to recover the deformation. This pair of very small/very large eigenvalue/constant

causes numerical problems. To avoid such problems, the homogeneous deformation can be ap-

proximated by a zero eigenvalue (λ = 0) and a linear function Zs = x. Then, (52) is rewritten

as

φ̂t = φ̂it =
N∑
j=1

(1− δjs)VijZj + VisBox (55)

where λs is the almost-zero eigenvalue and Bo is part of the fundamental solution φ0x. In summary,

the s−column of the eigenvector matrix [V ] is not used in the first term on the right hand side

of (55) because it corresponds to an almost-zero eigenvalue; but the term canceled by (1 − δjs) is

recovered by introducing the last term in (55), which uses the s−column of the eigenvector, i.e,

Vis. Since the rest of functions Zj , with j 6= s, are each a linear combination of perturbations (first

term in (54)) and portions of the homogeneous deformation (second term in (54)), equation (55)

the can be rewritten in terms of the curvature κ0x = δ11 Mx obtained by FSDT (17–18), as follows

φ̂t =

N∑
j=1

(1− δjs)VijZ ′j + κ0x x (56)

where the perturbation functions Z ′i are given by the first therm in (54), i.e.,

Z
′
j = pi sinh(x

√
−Ai) (57)
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5.1 Boundary conditions

5.1.1 Compatible deformation on the boundary

The deformation of the boundary of the RVE must be compatible with the rest of the laminate.

In this case, it means that the total rotation of all laminas, except the cracking one, must be the

same

φ̂mt (±`) = φ̂rt (±`); ∀m 6= k (58)

where lamina r is a lamina that is not cracking, taken as reference. In the computer implementation,

r = 1 if lamina 1 is not cracking, else r = 2.

5.1.2 Stress free crack surface

The cracking lamina k has cracks on the extremes of the RVE at x = −`, `, as shown in Figure 1.

Crack surfaces are stress free, as follows

∫ 1/2

−1/2
σ̂kx(`) dy = 0 (59)

where the integration limits represent a RVE that has unit length in the y-direction, i.e., in the

fiber direction of the cracking lamina. Using (43), we get

Ek
x

∫ 1/2

−1/2

(
z̄k
∂φkt (`)

∂x
− α̂k

x∆T

)
dy = 0 (60)

which simplifies to

φ̇kt (`) = φ̇kt (−`) =
α̂k
x∆T

z̄k
(61)
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5.1.3 External load

The applied bending load Mx, if any, is applied to the boundary of all the laminas except the

cracked one because the later has a free surface on the boundary. Therefore, the load equilibrium

on the boundary of the RVE excludes the cracked lamina, as follows

N∑
i=1

(1− δik)

∫ 1/2

−1/2

∫
hi

σ̂ix(`) zdzdy = Mx (62)

where h =
∑N

i=1 hi is the thickness of the laminate, k is the cracking lamina, δ is the Kronecker

symbol, and Mx is the bending load applied to the laminate. Using (43),

N∑
i=1

(1− δik)Ei
x

∫ 1/2

−1/2

∫
hi

(
z̄k
∂φit(`)

∂x
− α̂k

x∆T

)
zdzdy = Mx (63)

where

∫
hi

zdz =
z2

2

∣∣∣∣zi,i+1

zi−1,i

= hiz̄i (64)

which simplifies to

N∑
i=1

(1− δik)Ei
xhiz̄

2
i φ̇

i
t = Mx +

N∑
i=1

(1− δik)Ei
xhiz̄iα̂

i
x∆T (65)

Note that away from the crack, the cracked lamina still supports load, which is transfered from

the uncracked to the cracked laminas by intralaminar shear in the vicinity of the crack.

6 Reduced Laminate Stiffness

The boundary conditions described in the previous section allows us to determine the constants pi

in (57) for i 6= s, that is N − 1 values; plus Bo to obtain κ0x from (17) yields N equations for N
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unknowns, which are the average displacements ûi in N layers. To do this, one substitutes (55)

into the boundary conditions (58), (61), and (65). In the context of this study, the load is defined

by a pair (bending moment, temperature), i.e., (Mx,∆T ).

Applying Mx = 1,∆T = 0, allows us to calculate the degraded modulus of the laminate Eb
x

as a function of crack density λk. When a unit bending load Mx = 1 is applied, the homogenized

laminate curvature is obtained by averaging the curvature from (56) as follows

κ̂0x =
1

2`

∫ `

−`

∂φ̂t(x)

∂x
dx =

φ̂t(`)

`
(66)

It follows that to calculate the engineering modulus, the inverse of δ11 is needed

δ−111 =
Mx

κ̂0x
; for Mx = 1,∆T = 0 (67)

Finally, the bending modulus of the laminate is

Eb
x =

12

h3t δ
−1
11

=
12 `

h3t φ̂t(`)
(68)

which is determined by the average total rotation at x = `, calculated with (66) and (56).

7 Results and discussion

Two materials have been selected for this section, Fiberity/HyE-9082A [28,29] and Avimid-K/IM6

[37]. The material properties are tabulated in [38].

7.1 Results

The results are presented in Figures 9, 10, 11 for two materials and several laminates. In the

plots, the “laminate moduli by CLT” is the flexural modulus of the undamaged laminate, and

the “Laminate reduced stiffness” is the flexural modulus Eb
x(λ) calculated with (68). The drop is
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Figure 9: Prediction of laminate flexural modulus Eb
x vs. crack density λ for [02/904]S and [904/02]S

Fiberite/HyE-9082A.

physically caused by the cracks and numerically captured by the N − 1 perturbation terms of the

solution (56).

In Figure 9, the modulus drops 7.98% (from 35.42 to 32.59 MPa) for [02/904]S and 57.58% (from

13.72 to 5.82 MPa) for [904/02]S . The later laminate starts with lower flexural modulus because

the transverse laminas are on the outside, and looses a larger percentage of its stiffness because the

cracking lamina is on the outside as well.

In Figure 10, the modulus drops 10.08% (from 32.22 to 28.97 MPa) for [±15/904]S , 11.99%

(from 24.37 to 20.23 MPa) for [±30/904]S , and 21.77% (from 19.11 to 14.95 MPa) for [±40/904]S .

The later laminate starts with lower flexural modulus because the outside laminas at ±40 are less

stiff than for the other two laminates, and looses a larger percentage of its stiffness because the

cracking lamina represents a larger % of the total stiffness of the laminate.

In Figure 11, the modulus drops 4.37% (from 82.01 to 78.42 MPa) for [0/903]S and 54.46% (from

11.76 to 5.35 MPa) for [903/0]S . The later laminate starts with lower flexural modulus because the

transverse laminas are on the outside, and looses a larger percentage of its stiffness because the

cracking lamina is on the outside as well.
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Figure 10: Prediction of laminate flexural modulus Eb
x vs. crack density λ for [±θ/904]S

Fiberite/HyE-9082A with θ = 15, 30, 40.
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Figure 12: Intralaminar stress τxz(x) at the interfaces (see legend) of a [02/904]S Fiberite/HyE-
9082A laminate subjected to bending Mx = 1 N mm, with crack density λk = 0.25 on the tensile
side of the 904 layer.

7.2 Intralaminar stress fields

Intralaminar stress are necessary near the crack to transfer the load between the loaded laminas

(denoted by subscript m) and the cracked lamina (denoted by subscript k). The intralaminar stress

vanishes far away from the crack, once all of the load has been redistributed in the laminate.

Calculated intralaminar stress τxz(x) between two cracks located at x = ±` are shown in

Figure 12 for the interfaces 0/90 in a [02/904]S laminate and in Figure 13 for the four interfaces in

a [0/±15/902]S Fiberite/HyE-9082A. In the legend, the interfaces are denoted by the pair of angles

of the adjacent laminas. The intralaminar stress τxz is higher at the crack locations (located at ±`)

and the interface 904/02 above the midsurface of the laminate has the maximum values because it

is located next to the cracked 904 lamina on the tensile side of the laminate.

Calculated intralaminar stress through the thickness τxz(z) at the crack surface located at x = `

is shown in Figure 14 for the [02/904]S Fiberite/HyE-9082A laminate. Recall that τxz = 0 at the

top and bottom surface because they are a free surfaces. The cracking thickness is 4tk + eb, where

tk = 0.144 mm is the ply thickness and eb = 0.0103 mm is the position of the neutral axis due to

cracking, calculated by (13).
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Figure 13: Intralaminar stress τxz(x) at the interfaces (see legend) of a [0/±15/902]S Fiberite/HyE-
9082A laminate subjected to bending Mx = 1 N mm, with crack density λk = 0.25 on the tensile
side of the 904 layer.
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Figure 14: Intralaminar stress τxz(`) through the thickness of a [02/904]S Fiberite/HyE-9082A
laminate subjected to bending Mx = 1 N mm, with crack density λk = 0.25 on the tensile side of
the 904 layer.
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Note that the approximation can be refined by modeling individual laminas, even if they are

adjacent and have the same orientation, instead of lumping them together into a single, thicker,

equivalent lamina. Furthermore, it is possible to refine the model by sub-dividing laminas into a

number n of sub-laminas. This cannot be done with the cracking lamina because the crack spans the

entire thickness. To show the effect of model refinement, intralaminar stress through the thickness

τxz(z) at the crack surface located at x = ` for the [02/904]S Fiberite/HyE-9082A laminate are

shown in Figure 14 for n = 1, Figure 15 for n = 2, Figure 16 for n = 4, and Figure 17 for n = 8,

where n is the number of subdivisions in each of the 02 laminas.

It can be seen that the maximum value at the 90/0 interface (labeled τ3,4 in Fig. 14) increases

slightly with the number of sub-laminas. This means that the assumption of linear intralaminar

stress is not exact, but a very good approximation. Furthermore, the maximum value of intralam-

inar stress converges as the number of sub-laminas (in a piece-wise representation on intralaminar

stress) increases from 1 to 8. The convergence plot is shown in Figure 18.

Also, it can be seen, particularly in Figure 17, that the maximum interlaminar stress occurs

at the interface between the cracking and uncracking laminas. Also, it is worth noticing that all

formulations in the literature use linear distribution of intralaminar stress, not only in the adjacent

lamina but over an entire, equivalent sub-laminate that often encompasses all of the intact (non

damaging) laminas on either side (top and bottom) of the cracking lamina, e.g., [3, 39].

7.3 Displacement components

The elementary functions Zi that result from the exact solution to the problem are shown in Figure 8

(left) for the [02/904] laminate. It can be seen that Z4 is linear, resulting in a linear component

of angle rotation φ̂i1 = Vi4Z4 for all laminas i, with constant angle φox; where φ̂it = φox + φ̂i1.

The remaining components are perturbations that appear in the exact solution to produce the

intralaminar stress that redistributes the load between cracked and intact laminas.

The displacement perturbations in each lamina û(i) − z̄iφox are shown in Figure 8 (right). In

the literature, the magnitude of the ineffective length δ (the shear lag) is often assumed because

it is very difficult to calculate. However, the proposed methodology allows for calculation of the

ineffective length using the exact solution for the perturbations. The distance δ for which the

perturbations decrease (typically a 10% of their maximum value [40–42]), are hereby calculated
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Figure 15: Intralaminar stress τxz(`) through the thickness of a [02/904]S under bending Mx = 1 N
mm, with crack density λk = 0.25 on the tensile side of the 904 layer. The 0◦ lamina divided into
two sub-laminas.
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Figure 16: Intralaminar stress τxz(`) through the thickness of a [02/904]S under bending Mx = 1 N
mm, with crack density λk = 0.25 on the tensile side of the 904 layer. The 0◦ lamina divided into
four sub-laminas.
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Figure 17: Intralaminar stress τxz(`) through the thickness of a [02/904]S under bending Mx = 1 N
mm, with crack density λk = 0.25 on the tensile side of the 904 layer. The 0◦ lamina divided into
eight sub-laminas.
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Laminate Interface δ [mm] τxz [MPa]

[0/± 15/902]S 0/± 15 1.41 0.015

±15/902 0.501 0.055

902/902 0.3067 0.113

902/± 15 0.6971 0.156

±15/0 1.647 0.022

[02/904]S 02/904 0.517 0.0929

904/904 0.586 0.161

904/02 1.011 0.247

Table 1: Ineffective length δ calculated from the results reported in Figures 12–13 for Mx = 1 N
mm.

from the results reported in Figures 12–13, and reported in Table 1.

Note that the largest interlaminar stress occurs at the interfaces between the cracked and

uncracked laminas on the tensile side (interface 902/±15 for the [0/±15/902]S laminate and interface

904/02 for the [02/904]S laminate). Qualitatively, these trends are to be expected. However, the

present methodology provides quantitative values, which so far could be obtained only through

numerical methods such as FEA. Furthermore, note that the longer ineffective length may occur at

interfaces between laminas that are not cracking, e.g., at the ±15/0 interface of the [0/± 15/902]S

laminate, although neither the ±15 or the 0 laminas are cracked.

To illustrate the capability of the formulation to analyze non-symmetric laminates, results are

presented in Figure 19, compared to the undamaged CLT solution for the same laminates. The

largest relative reduction of flexural stiffness occurs for the [02/904] because the top lamina (904) is

in tension and thus the laminate looses most of its flexural stiffness when transverse matrix cracks

develop. Similarly, the [03/904] also looses most of its flexural stiffness, even though the 03 lamina

is 50% thicker then the 02 layer. Thus, in both laminates discussed so far, [02/904] and [03/904],

the undamaged 904 lamina serves to position the stiff longitudinal laminas away from the neutral

axis, and most of the flexural stiffness of the laminate is due to that effect. In comparison, the

[904/03/90] laminate, has less initial stiffness because of the position of the longitudinal lamina near

the neutral axis, and it looses less of that stiffness when the relatively thin top lamina develops

significant damage, as seen in the Figure.
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Figure 19: Flexural modulus vs. crack density for non-symmetric laminates.

7.4 Condition number

The condition number for an eigenvalues problem is defined as ratio between the maximum and

minimum eigenvalue. Ordering the eigenvalues by descending value, the condition number of the full

matrix [V ] in (52) is Cn = λ1/λn � 1, with very large values that are unfavorable for numerical

computation. This happens because λn ≈ 0. On the contrary, the condition number of the

reduced-rank matrix (1− δis)Vij in (56) is Cn−1 = λ1/λn−1 ∼ 101, which is favorable for numerical

computation. Using (56) instead of (52) leads us to obtain a condition number Cn−1 of order one.

A comparison of condition number between the original eigenvalue problem (with a rank N matrix)

and the new one (with a rank N − 1 matrix), is shown in Table 2.

8 Conclusions

A closed form, analytical solution for a laminated beam with transverse cracks subjected to bending

is presented. The solution provides an analytical, yet approximate solution for the average displace-

ment of each lamina as well as the overall rotation of the laminate, the later being a correction of the

(undamaged) FSDT solution to account for damage. From the rotation and displacements, both

axial and intralaminar strains and stresses can be resolved analytically. The analysis is restricted

to balanced but not necessarily symmetric laminates subjected to bending. The solution includes
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Material Laminate Cn Cn−1 λ1 λn−1 λn

I [02/904]S 3.267e+ 16 54.830 -26.373 -0.4806 -8.074e-16

I [904/02]S 132e+ 16 42.175 -52.382 -1.242 -3.988e-16

I [±15/904]S 9.290e+ 16 54.192 -28.9931 -0.535 -3.121e-16

I [±30/904]S 1.691e+ 16 53.740 -39.391 -0.733 -2.335e-15

I [±40/904]S 1.947e+ 16 54.775 -51.544 -0.941 -2.647e-15

II [0/903]S 4.342e+ 16 54.034 -18.966 -0.351 -4.368e-16

II [903/0]S 5.893e+ 16 3.746 -10.187 -2.719 -1.729e-15

I: IM6(Carbon)/Avimid-K II: Fiberite(Glass)/HyE-9082A

Table 2: Condition number C and eigenvalues λ.

calculation of the reduced stiffness of the laminate as a function of crack density, as well as intralam-

inar stresses, interlaminar stresses, and ineffective length. Calculation of intralaminar/interlaminar

stresses can be refined by subdividing the intact laminas into sublaminates. Interlaminar stresses

can be reported for the entire length of the interfaces between cracks. Intralaminar stress can be

reported for the entire thickness at any location between cracks. The results show the expected

trends, such as larger percentage reduction of flexural stiffness when the cracking laminas are away

from the midsurface of the specimens. Besides expected trends, it provides quantitative information

that is useful for the design of experiments. For example, it is clear that some laminate configu-

rations with an expected stiffness loss of only 4% would not be useful to elucidate the effects of

damage in an experimental setting because the change in stiffness would be of the order of mag-

nitude of the precision of the instrumentation. Other LSS using the same material and lamina

thicknesses could provide 50% or more resolution. Also, the analytical solution can be used as a

benchmark for numerical methods.
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