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Abstract

A novel methodology for imperfection sensitivity analysis is presented. Koiter's perturbation

method is used to calculate the imperfection paths emanating from mode interaction bifurcations,

which occur on the post-buckling paths of the single modes. The Monte Carlo method is used to

tests a large number of modes and all possible interactions among them. The computational cost

is low because of the e�ciency of Koiter's method. The demands of Koiter's method for accurate

evaluations of higher order derivatives of the potential energy are met by a mixed, corotational

element.
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1. INTRODUCTION

The design of composite structures is most often dominated by buckling [1, 2]. For example, the

demands for fuel e�ciency is prompting the aircraft industry to revolutionize airframe construction

to save weight, and thus fuel. A promising concept is to let the airframe operate in the postbuckling

regime, where the skin of the composite sti�ened panels are allowed to buckle in normal �ight
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conditions. This hinges upon the assumption that sti�ened panels, and thus the entire airframe,

are imperfection insensitive.

Imperfection sensitivity analysis requires the identi�cation of a large number of buckling modes

and their interaction. Because of the large number of possible modes and our a priori ignorance

about which ones would interact with each other, such analysis is prohibitively time consuming.

Continuation methods based on Riks scheme are often used [3]. In spite of the simplicity of its

numerical implementation, which requires only an approximation of the tangent sti�ness matrix,

the method su�ers in the case of multiple bifurcations, requiring ad-hoc branch switch algorithms

[4]. Continuation methods are time consuming, requiring a lengthy analysis for each assumed im-

perfection. Furthermore, type and shape of imperfections are unknown, either because the structure

is in the design stage or because it is too di�cult to measure them.

Therefore, the aim of this work is to propose a robust and e�cient methodology to calculate

the imperfection sensitivity of laminated composite folded plates, including sti�ened panels as a

particular case. The proposed methodology does not require a priori knowledge of the shape and

magnitude of imperfections and does not rely on lengthy continuation analysis. Instead, it uses

Koiter's perturbation approach [5, 6] to calculate the bifurcation load, post-buckling path, and

interaction between modes to detect bifurcations on the post-buckling path of individual modes, as

well as the paths emanating from those bifurcations. The requirement for linearity of the constitutive

equations is easily met by composite materials, which have a broad, linear stress and strain range

of operation in compression [7].

The most recent implementations of Koiter's approach include spatial beam assemblages [8],

folded plates [9], and composite structures [10]. Since the approach is based on fourth-order energy

expansion [8], a �nite element capable of accurately representing fourth-order terms is required for

robustness of the analysis. The corotational approach [11, 12] ful�ls this requirement allowing the

complete reuse of a linear element for geometrically nonlinear analysis. A mixed formulation is

used to avoid extrapolation locking [13]. The recent 3D plate �nite element [14] based on Hellinger-

Reissner variational formulation guarantees an accurate evaluation of linear elastic response and

of rotation �elds [15], so it is very suitable to be used with a corotational formulation to obtain a

geometrically nonlinear formulation, which is accurate up to fourth order energy terms [10, Fig. 3.b].

Koiter's method provides robust prediction of the path emanating form interaction bifurcations



Thin Walled Structures, 90 (2015) 128�139 3

between three or more modes, thus providing a good estimate of the imperfection sensitive, post-

buckling trajectory (even when the shape and magnitude of the imperfections are unknown) that

otherwise would be very costly to follow by a continuation methods. Mode interaction often produces

the most deleterious imperfection sensitive path with the larger drop in load carrying capacity [16�

18]. The di�culty resides on how to select the set of modes that produces the worst behavior.

The Monte Carlo method is proposed herein to �nd the modes that yield the most unfavorable,

imperfection sensitive path. Although Monte Carlo is an expensive method, the computational cost

is keep low thanks to the e�ciency of both the element used and Koiter's approach. Also, Koiter's

approach is quite demanding about the quality of higher order (up to 4th order) derivatives of the

energy, but the element formulation used in this work is uniquely suited to satisfy those demands

for accuracy at a low computational cost. The proposed methodology allows us to run thousand of

analysis in a few seconds, obtaining the worst imperfection using a Monte Carlo simulation.

2. KOITER'S FORMULATION

2.1. The asymptotic analysis

Asymptotic analysis is essentially the implementation of Koiter's nonlinear elastic stability ap-

proach [5] into the �nite element method (FEM) [6]. The solution process is based on an expansion

of the potential energy Φ in terms of load factor λ and modal amplitudes ξi. It can be summarized

as follows:

i.. The fundamental path is obtained as a linear extrapolation

uf [λ] = u0 + λû (1a)

where u0 is an initial displacement, possibly null, and u = λû is the vector of kinematic

parameters, i.e., the space of degrees of freedom (dof) of the structure, and û = du/dλ is

obtained as the solution of the linear algebraic equation

K0 û = p̂ (1b)

where p̂ is the reference load and K0 = K[u0] is the sti�ness matrix, which contains the
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coe�cients of the quadratic terms of the energy Φ′′.

ii.. A cluster of buckling loads λi, i = 1 · · ·m, and associated buckling modes v̇i are obtained along

uf [λ] by the critical condition

K[λi] v̇i = (K0 + λiK1) v̇i = 0 (1c)

where K1 is the initial-stress sti�ness matrix, which contains the coe�cients of the cubic

terms of the energy Φ′′′. Coherently with the hypothesis of asymptotic expansion, buckling

is a linear eingenvalue problem. However, in the case of strong nonlinear behaviour, the

eigenvalue problem is de�ned as fully nonlinear, to correctly recover the post-critical behavior.

The nonlinearity is introduced by updating the con�guration along the fundamental path.

Note that the size m of the subspace of buckling modes needed for the analysis is orders of

magnitude smaller than the number of dof used to discretize the structure, often as little as

m = 3.

We denote by V = {v̇ =
∑m

i=1 ξiv̇i} the subspace spanned by the buckling modes v̇i (where ξi

are the modal amplitudes) and by W = {w : w⊥v̇i , i = 1 · · ·m} its orthogonal complement,

de�ned by the orthogonality condition

w⊥v̇i ⇔ Φ′′′b ûv̇iw = 0 (1d)

where û = Lû, v̇i = Lv̇i, w = Lw and L is the linear operator of FEM interpolation.

We denote by λb an appropriate reference value for the cluster, e.g. the smallest of λi or

their mean value. Accordingly, a su�x "b" denotes quantities evaluated in correspondence to

ub = uf [λb].

iii.. De�ning ξ0 = (λ−λb) and v̇0 = û, the asymptotic approximation for any equilibrium path is

approximated by a expansion in terms of mode amplitudes ξk as follows

u[λ, ξk] = ub +
m∑
i=0

ξiv̇i +
1

2

m∑
i,j=0

ξiξjwij (1e)

wherewij ∈ W are quadratic corrections introduced to satisfy the projection of the equilibrium
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equation (see[19, Section 3.3]) into W, obtained by the linear orthogonal equations

δwT (Kbwij + pij) = 0 , ∀w ∈ W (1f)

where Kb = K0 + λbK1 and vectors pij are de�ned as a function of modes v̇i ; i = 0 · · ·m,

by the energy equivalence δwTpij = Φ′′′b δw v̇j v̇j .

iv.. The following energy terms are computed for i, j = 0 · · ·m, k = 1 · · ·m:

Aijk = Φ′′′b v̇iv̇j v̇k

Bijhk = Φ′′′′b v̇iv̇j v̇hv̇k − Φ′′b (wijwhk + wihwjk + wikwjh)

Cik = Φ′′bw00wik

µk[λ] =
1

2
λb(λ−

1

2
λb)Φ

′′′
b û

2v̇k +
1

6
λ2
b(λb − 3λ)Φ′′′′b û

3v̇k

(1g)

where the implicit imperfection factors µk are de�ned by the 4th order expansion of the

unbalanced work on the fundamental path, i.e., µk[λ] = (λp̂−Φ′[λû])v̇k (see [19, Eqs.(31,32)]).

v.. The equilibrium path is obtained by projecting the equilibrium equation [19, Section 3.4] on

V. According to eqs, (1a)�(1g), we have

1

2

m∑
i,j=0

ξiξjAijk +
1

6

m∑
i,j,h=0

ξiξjξhBijhk + µk[λ]− λb(λ−
1

2
λb)

m∑
i=0

ξiCik = 0 , k = 1 . . .m (1h)

Equation (1h) is an algebraic nonlinear system ofm equations in them+1 variables ξ0, ξ1 · · · ξm,

with known coe�cients.

The software implementation of the asymptotic approach is quite easy and its computational

cost remains of the order of that required by a standard linearized stability analysis [6]. Once the

preprocessor phase of the analysis has been performed (steps i. to iv.), the presence of small load

and geometrical imperfections can be taken into account in the post-processing phase (step v), by

adding some, easily computed, additional imperfection terms in the expression of µk[λ], with a

negligible computational cost, allowing for an inexpensive imperfection sensitivity analysis. From

eq.(1h) we can also extract information about the worst imperfection shapes [20, 21] that we can use

to improve the imperfection sensitivity analysis or for driving more detailed investigations through

specialized path�following analysis [22].
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2.2. Imperfection sensitivity analysis

The geometry and loads of thin-walled structures are a�ected by random distribution of small

imperfections. In the proposed asymptotic method, the presence of small imperfections expressed

by a load p̃[λ] and/or an initial displacement ũ a�ect Eq.(1g) only on the imperfection term µk[λ]

that becomes [6]

µk[λ] =
1

2
λ2Φ′′′c û

2v̇k +
1

6
λ2(λ− 3λc)Φ

′′′′
c û

3v̇k + µgk[λ] + µlk[λ] (2)

with

µgk[λ] + µlk[λ] = λ
(
Φ′′′c ûũv̇k − q̃[λ]

)
= λµ̄k (3)

The aim of the imperfection sensitivity analysis is to link the presence of geometrical and load

imperfections to the reduction of the limit load. For structures presenting coupled buckling modes,

even a small load or geometrical imperfection may result in a marked reduction of the limit load

with respect to the bifurcation load [23�28]. Therefore, an e�ective safety analysis should include

an investigation of all possible imperfection shapes and sizes to recover the worst case imperfection.

The asymptotic approach provides a powerful tool for performing this extensive investigation.

In fact, the analysis for a di�erent imperfection only needs to update the imperfection factors µgk[λ]

and µlk[λ] through Eq.(2)�(3) and solve the nonlinear system (1g)�(1h). Even if this system, which

collects all the nonlinear parts of the original problem, proves to be highly nonlinear and some

care has to be taken in treating the occurrence of multiple singularities, its solution through a

path�following process is relatively easy because of the small number m of unknowns involved.

3. GEOMETRICALLY LINEAR FORMULATION

As it was stated earlier, the formulation must be capable of accurate representation of fourth-

order terms on the potential energy. Therefore, we start with a mixed formulation. The initial

reference con�guration of the element is �at and referred to a local Cartesian frame {e1, e2 , e3}.

Furthermore, {x, y} is a vector lying on the middle surface Ω de�ned by the unit vectors {e1, e2},

s is the thickness along the e3 direction, and Γ is the boundary of Ω. On this frame, the Hellinger-
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Reissner strain energy for a �at shell can be written as

Φ[t,d] =

∫
Ω

{
tTDd− 1

2
tTE−1t

}
dΩ

t =

tm
tf

 , d =

dm
df

 , D =

Dm 0

0 Df

 (4)

where tm, tf are the in- and out-of-plane stress parameters, respectively; and dm,df are the in- and

out-plane kinematical parameters, de�ned as follows

tm =


Nx

Ny

Nxy

 , tf =



Mx

My

Mxy

Sx

Sy


, dm =

dx
dy

 , df =


dz

ϕx

ϕy

 (5)

where N ,M ,S are the membrane, bending, and shear stress resultants, respectively; and d,ϕ are

the midsurface strains and rotations, respectively.

Using �rst-order shear deformable theory (FSDT) [29], the di�erential operators Dm and Df

are de�ned as

Dm =


∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

 , Df =



0 0 −∂/∂x

0 ∂/∂y 0

0 ∂/∂x −∂/∂y

∂/∂x 0 1

∂/∂y −1 0


(6)

The matrix of elastic coe�cients, E can be written as and 8×8 matrix,

E =

Em Emf

ET
mf Ef

 (7)

The de�nition of Em,Ef characterizing the membrane and �exural behaviour, respectively,

and that of Emf containing the membrane/�exural coupling are computed in terms of the lamina

material properties and the laminate stacking sequence (LSS) as described by equation (6.16) in
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[30]. When the stress resultants are de�ned so that the equilibrium equations are satis�ed with zero

load, the following identity holds [31]

∫
Ω
tTDddΩ =

∫
Γ
tTNTd dΓ =

∫
Γ
tTmN

T
mdm dΓ +

∫
Γ
tTfN

T
f df dΓ (8)

where N is the matrix collecting the components of the unit outward normal to the contour Γ, that

can be split into membrane Nm and bending N f parts

N =

Nm 0

0 N f

 (9)

3.1. Mixed �nite element

Assuming a mixed interpolation for the stress resultants and displacements, a discrete expres-

sion for the Hellinger�Reissner mixed strain energy (4) can be evaluated. In general, the mixed

interpolation can be written as

t = Bte , d = Ude (10)

where B is the matrix collecting the assumed stress modes, te is the vector of stress parameters, U

is the matrix of the displacement shape functions and de is the vector of displacement and rotation

kinematical parameters. Substituting (10) into (4) and integrating on the element domain Ωe leads

to the evaluation of the element mixed energy

Φe[te,de] = tTeDede −
1

2
tTeHete ,


De =

∫
Ωe

{
BTDU

}
dΩ

He =

∫
Ωe

{
BTE−1B

}
dΩ

(11)

where De and He are the compatibility and �exibility matrices, respectively [32].

When the assumed stress modes (shape functions) are chosen so that the stress resultants iden-

tically satisfy equilibrium equations with zero load (self equilibrating stress �eld in the element),

the compatibility matrix can be evaluated on the element contour Γe, i.e., Eq. (8) yields

De =

∫
Γe

BTNTU dΓ (12)
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Applying static condensation to the stress parameters te, the element energy can be evaluated

solely in terms of kinematic parameters de, and using (12), the displacements and rotations (26),(31),

need to be interpolated only along the contour. Details of the element implementation are given in

�5.

4. GEOMETRICALLY NON LINEAR FORMULATION

A linear �nite element can be made geometrically nonlinear using corotational algebra to describe

the rigid body motion [8]. Following the original proposal by Rankin et. al [33, 34], this framework is

still used [35�40]. With respect to the �xed frame {e1, e2, e3}, a corotational (CR) frame {ē1, ē2, ē3}

is de�ned as

ēk = Q[α]ek, k = 1..3 (13)

with Q being a rigid rotation, parametrized by the rotation vector α according to Rodrigues'

formulation [41] (see Fig. 1) . The origin is assumed to be translated by vector c. Denoting by d

and R the displacement and the rotation associated to position X in the �xed reference frame, the

following geometrical relationships hold

d̄ = QT (X + d− c)−X , R̄ = QTR (14)

with d̄ and R̄ being the displacement and the rotation in the corotational frame. Using a vector

parametrization for R̄ and R and denoting by ψ̄ and ψ the rotation vectors, we have

ψ̄ = log(R̄[ψ̄]) = log (QT [α]R[ψ]) (15)

A CR frame can be de�ned for each element through the element rotation vector αe which is a

function of the element kinematical parameters de in the �xed frame

αe = αe[de] (16)

The local kinematical parameters d̄e in the CR frame are related to de by the geometrical transfor-
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Figure 1: Corotational frame.

mation

d̄e = g[de] (17)

where g collects the CR transformations for displacements (14) and rotations (15) opportunely

rearranged in terms of the local kinematical parameters d̄e of the �nite element, as it is done in

(35). See [9] for further details.

Based on the above relations, the linear �nite element characterized by energy (11) can be

transformed into a geometrically nonlinear element simply by introducing a corotational description

and assuming that the element kinematical parameters in eq. (11) are referred to the corotational

frame. This leads to:

Φe[te,de] = tTeDeg[de]−
1

2
tTeHete (18)

The element energy can be expressed in terms of the element vector

ue = {te, de}T (19)

which collects all the parameters de�ning the element con�guration in a single vector and can be

related to the global con�guration vector u through the standard assemblage procedure

ue = Aeu (20)
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where the matrix Ae implicitly contains the compatibility constraints between elements. For the

Hellinger-Reissner formulation used here, the components of u are the global displacements/rotations

of the nodes of the elements and the the stress parameters of each element. Using static condensa-

tion, the stress parameters can be eliminated at the element level, and then a compatible scheme

can be employed [42].

5. ELEMENT IMPLEMENTATION

The mixed isostatic self-equilibrated �at shell element MISS-4 [10, 14] is used as the starting

point here. It is a 4�node quadrilateral externally de�ned by 24 kinematical dofs and internally by

an isostatic self�equilibrated stress expansion represented by 18 parameters.

The local reference frame is a Cartesian frame {e1, e2, e3} de�ned so that the average Jacobian

of the iso�parametric transformation is symmetric. For each side Γk, connecting nodes i and j in

counterclockwise order, we de�ne Ξk, ∆k and its external normal nk according to the following

expressions

Ξk =

Ξkx

Ξky

 =

xj + xi

yj + yi


∆k =

∆kx

∆ky

 =

xj − xi
yj − yi


nk =

nkx
nky

 =
1

Lk

 ∆ky

−∆kx

 (21)

with Lk =
√

∆2
kx + ∆2

ky being the side length. The one�dimensional abscissa −1 ≤ ζ ≤ 1 along Γk

is de�ned as

x =
1

2
(Ξkx + ∆kx ζ) , y =

1

2
(Ξky + ∆ky ζ) (22)

The membrane and bending stress modes are assumed to be uncoupled and the stress resultants

approximation is written as tm
tf

 =

Bm 0

0 Bf


βm
βf

 (23)
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with Bm,Bf are the matrices collecting the approximating functions for the membrane and �exural

part, respectively, and βm,βf are the corresponding stress parameters.

The membrane behavior of MISS-4 is represented by 9 stress parameters

Bm =


1 0 0 y 0 x 0 y2 −2 a2xy

0 1 0 0 x 0 y −x2 2 b2xy

0 0 1 0 0 −y −x 0 a2y2 − b2x2

 (24)

where a and b are the diagonal coe�cients of the Jacobian matrix of the iso-parametric transfor-

mation [15].

The �exural stress resultants are described using 9 stress parameters

Bf =



1 0 0 x 0 y 0 x y 0

0 1 0 0 x 0 y 0 x y

0 0 1 0 y c̄ x/c̄ 0 0 0

0 0 0 −1 −c̄ 0 0 −y 0

0 0 0 0 0 −1/c̄ −1 0 −x


(25)

where c̄ = a2/b2. The form of (24)�(25) are chosen so that the stress resultant approximation (23)

is self-equilibrated and isostatic [15, 42]. Really, the stress resultants interpolation is represented

by 18 parameters corresponding to deformation modes of the elements (24 kinematic parameters

minus 6 rigid body motion).

The interpolation of displacements and rotations is based on a 4-node element with 6 degrees

of freedom (dof) per node. Recalling that the stress satis�es the equilibrium equation, the internal

work can be obtained by integration along the element contour and, therefore, displacements and

rotations need to be de�ned solely on the element boundary. The displacement interpolation along

each side is de�ned as the sum of three terms as follows

d̄k[ζ] = d̄kl[ζ] + d̄kq[ζ] + d̄kc[ζ] (26)
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The �rst term is a linear expansion

d̄kl[ζ] =
1

2
[(1− ζ)d̄

(i)
+ (1 + ζ)d̄

(j)
] with


d̄

(i)
= [d̄(i)

x , d̄
(i)
y , d̄

(i)
z ]T

d̄
(j)

= [d̄(j)
x , d̄(j)

y , d̄(j)
z ]T

(27)

where i and j denote the nodes of side k. The second and third terms correspond to a quadratic

and a cubic expansion for the normal component of the side displacement



d̄kq[ζ] =
1

8
Lk(ζ

2 − 1)

 (ϕ̄
(i)
z − ϕ̄(j)

z )nk

−(ϕ̄(i) − ϕ̄(j))Tnk


d̄kc[ζ] =

1

4
Lkζ(1− ζ2)

nk
0

 ᾱ
with


ϕ̄(i) = [ϕ̄(i)

x , ϕ̄
(i)
y ]T

ϕ̄(j) = [ϕ̄(j)
x , ϕ̄(j)

y ]T
(28)

The parameter ᾱ in the cubic term is taken as the average distortional in�plane nodal rotation

ᾱ =
1

4

4∑
i=1

ϕ̄(i)
z − ϕ̄z (29)

where ϕ̄z is the average in�plane rigid rotation of the element

ϕ̄z = Nαd̄me, Nα =
1

4Ωe
[−∆4y, ∆4x, −∆1y, ∆1x, −∆2y, ∆2x, −∆3y, ∆3x ] (30)

where d̄me is 12-component vector collecting the kinematical parameters that represent the mem-

brane behavior of the element, i.e., d̄
(i)
x , d̄

(i)
y , ϕ̄

(i)
z .

Finally, a simple bilinear interpolation is assumed for bending rotations along the edge [31]

ϕ̄k[ζ] =
1

2
[(1− ζ)ϕ̄(i) + (1 + ζ)ϕ̄(j)] (31)

The corotational frame is obtained by simply setting the rotation vector equal to the average

nodal rotations in the �xed frame

αe =
1

4

4∑
i=1

ϕ(i) (32)
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and setting the translation ce (see eq. (14)) as

ce =
1

4

4∑
i=1

d(i) (33)

The choice about αe o�ers a good compromise between accuracy and simplicity in the evaluation

of high order energy variations for asymptotic analysis [8]. The choice (32) allows the geometrical

transformation law to be de�ned as (17). Really, we have

d̄e =



d̄
(1)
e

d̄
(2)
e

d̄
(3)
e

d̄
(4)
e


, d̄

i
e =

d̄(i)

ϕ̄(i)

 (34)

and �nally using eqs. (14) and (15)

die =

QT [αe](X
i + die − ce)−Xi

log (QT [αe]R[ϕi])

 (35)

6. KOITER ASYMPTOTIC FINITE ELEMENT ANALYSIS

To apply the asymptotic approach to the corotational version of element MISS-4, explicit ex-

pressions for the second-, third- and fourth�order energy variations need to be computed [8] with

respect to a con�guration that can be either the initial (u0 in (1a)) or the bifurcation one (u0 +λû

in (1a)). For computation of second or higher order terms, the constant terms u0 and u0 + λû are

irrelevant, so at the element level we can assume de = 0.

The corotational approach is very convenient to express the strain energy variations, because the

only nonlinearity is limited to the geometrical relationship g[de], eq. (17). The Taylor expansion of

this relationship can be written as

g[de] = g1[de] +
1

2
g2[de,de] +

1

6
g3[de,de,de] +

1

24
g4[de,de,de,de] + · · · (36)

where gn are n�multilinear symmetric forms which express the nth Fréchet variations of function

g[de]. In the following, the vector ui (i = 1 . . . 4) denotes a generic variation of the global �nite ele-
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ment con�guration vector and the vector uei = Aeui = {tei,dei}T denotes the corresponding vector

at the element level, that collects stress and displacement parameters. With the same notation, u0

and ue0 are the global and element reference con�guration vectors.

6.1. Second-order variations

Second�order energy variations are used in the evaluation of the fundamental path (1a) and

the buckling modes v̇. In both cases, using expansion (36) and the energy expression (18), the

contribution of the element to the energy variation can be expressed as

Φ
′′
eue1ue2 = tTe1Deg1[de2] + tTe2Deg1[de1]− tTe1Hete2 + tTe0Deg2[de1,de2] (37)

Introducing matrices L1 and G[te] through the following equivalences

L1dej = g1[dej ] , d
T
e1G[te0]de2 = tTe0Deg2[de1,de2], (38)

eq. (37) can be rearranged in a more compact form:

uTe1Φ
′′
eue2 = uTe1Keue2 , Ke =

 −He DeL1

LT1D
T
e G[te0]

 (39)

The mixed tangent matrix of the element Ke can be directly used, through a standard assem-

blage process, to obtain the overall sti�ness matrix K

uT1 Φ
′′
u2 = uT1Ku2 , K =

∑
e

AT
eKeAe (40)

6.2. Third-order variations

Third-order energy variations are used in Koiter analysis to evaluate the third�order coe�cients

and are also used to evaluate the secondary force vectors. The element contribution to the scalar

coe�cients can be easily calculated using the general formula

Φ
′′′
e ue1ue2ue3 = tTe1Deg2[de2,de3] + tTe2Deg2[de3,de1] + tTe3Deg2[de1,de2]

+ tTe0Deg3[de1,de2,de3]

(41)
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Then the element contributions can be simply added to get the global values. On the other

hand, taking advantage of the above expression, the element contribution to vector secondary force

vector can be evaluated by

Φ′′′e ue1ue2 = pe =

 Deg2[de1,de2]

G[te1]de2 +G[te2]de1 + q[te0,de1,de2]

 (42)

where vector q is de�ned according to the following condition:

dTe3q[te0,de1,de2] = tTe0Deg3[de1,de2,de3] (43)

Then, the overall vector is obtained by standard assemblage

Φ′′′u1u2 =
∑
e

AT
e pe[ue1,ue2]

6.3. Fourth-order variations

Finally, fourth-order energy variations, used to evaluate the fourth�order coe�cients, can be

computed by summing the relevant element contributions based on the following expression

Φ
′′′′
e ue1ue2ue3ue4 = tTe1Deg3[de2,de3,de4] + tTe2Deg3[de3,de4,de1]

+ tTe3Deg3[de4,de1,de2] + tTe4Deg3[de1,de2,de3]

+ tTe0Deg4[de1,de2,de3,de4]

(44)

7. NUMERICAL RESULTS

In this section, the proposed methodology for the evaluation of imperfection sensitivity is applied

�rst to a folded plate structure, and then to cylindrical shells that are know to be imperfection

sensitive.

7.1. Imperfection sensitivity analysis of a hinged box in compression

To illustrate some of the capabilities of the proposed element, the box shown in Figure 2 is

analyzed. The geometrical data are L = 1000 mm, a = 500 mm. Three witdh/thickness ratios

are considered: a/t = 1/500, 1/400, 3/1000. The ply properties are E1 = 123.55 GPa; E2 = 8.708
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GPa; G = 5.695 GPa; ν12 = 0.32. The laminate stacking sequence is [0/0/19/− 19/37/− 37/45/−

45/51/− 51]. The bottom end of the box is hinged. The load is a uniform edge pressure applied at

the top end of the box.

Figure 2: Geometry, boundary conditions, and load for the box in compression.

7.1.1. Buckling analysis

Once the fundamental path is evaluated (eq. 1a), a buckling analysis (eq. 1c) is performed.

The �rst eight buckling loads are reported in Table 1 for di�erent values of width/thickness ratio.

The buckling modes for t/a = 1/400 are shown in Figure 3. The buckling modes are then used to

generate random geometrical imperfections.

t/a λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1/500 608.28 760.38 760.38 920.14 1005.10 1102.10 1281.22 1281.22
1/400 1187.16 1484.52 1484.52 1796.78 1961.72 2151.00 2501.40 2501.40
3/1000 2049.80 2564.00 2564.00 3104.00 3387.40 3714.20 4319.40 4319.40

Table 1: Buckling loads (in Newtons) for the box in compression at several t/a ratios.
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v̇1 v̇2 v̇3 v̇4

v̇5 v̇6 v̇7 v̇8

Figure 3: Buckling modes for the box in compression at t/a = 1/400.
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7.1.2. Post-buckling and imperfection sensitivity analysis

Some of the quadratic corrections (eq.1d) are shown in Figure (4) and used to recover the struc-

tural behaviour of the imperfect structure. Only geometrical imperfections ũ have been considered.

In particular, they are generated as linear combinations of the buckling modes v̇i, that is

ũ =

m∑
i

riv̇i (45)

where ri are random numbers, and m is the number buckling modes included in the expansion (1e).

For this example, m = 8 is used. Note that our aim is to �nd the worst imperfection. Then, the

real shape of the imperfection is not required and only the linear combinations of buckling modes

are considered. The maximum value of ũmax is assumed to be bound by a tolerance

ũmax/t ≤ tol (46)

For this example, ũmax/t = 1.5 is used, while in practice the amplitude of the imperfection depends

on the manufacturing process. Obviously, the amplitude of the imperfection a�ects the results in

term of limit loads, as shown in the following.

The equilibrium paths for 500 random geometrical imperfections have been graphed in Figure

(5) in terms of mode amplitude ξi, i = 1..8, and in Figure (6) in terms of nodal displacements. Loss

of stability in the post-critical range and the presence of attractive paths [20, 22] can be seen in the

�gures. Even if the random imperfections generate di�erent behaviour within a range, the imperfect

paths manifest a convergent behaviour to some particular paths (i.e. attractive paths). This is also

clear in Figure 7, where the interaction between the �rst mode and the remaining seven modes are

shown, as well as in Figure 8 in terms of deformed con�gurations. A-priori knowledge of attractive

paths could be used to increase the e�ciency of the Monte Carlo simulation, by reducing the space

of trial imperfections.

Monte Carlo simulation allows us to evaluate the frequency of occurrence of limit load (Figure

9), the worst imperfection (Figure 10), and the shape of the structure at the minimum limit load

(Figure 11).

Finally, to show the sensitivity of the structure to the worst imperfection magnitude ũw, further
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sensitivity analysis has been performed varying ũmax/t. The results are shown in Figure 12, showing

that this composite box is very sensitive to imperfections.

w11 w12 w13 w14

w15 w16 w17 w18

Figure 4: Quadratic corrections for the box in compression, with t/a = 1/400.

A

B

C

Figure 5: Equilibrium paths λ versus ξi, i = 1...8 for the box in compression, with t/a = 1/400.
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Figure 6: Equilibrium paths λ versus u for the box in compression, with t/a = 1/400. The displacement
component ux is measured at point A in Fig.(2).
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Figure 7: Interaction between the �rst mode (with amplitude ξ1) and the remaining modes ξj , j = 2..8. The
presence of attractive paths is clear.
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A B C

Figure 8: Deformed con�guration at points A, B and C, labeled in Figure (5).

Figure 9: Frequency distribution of the lowest limit load found λlim for the clamped box in compression and
several values of t/a.

Figure 10: Shape of the worst imperfection for the box in compression, with t/a = 1/400.
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Figure 11: Mode shape at minimum limit load with the worst imperfection for the box in compression, with
t/a = 1/400.
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Figure 12: Load sensitivity to worst imperfection amplitude ũmax/t for the box in compression at several
values of t/a.
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7.2. Imperfection sensitivity analysis of cylindrical shell

The proposed methodology for imperfection sensitivity analysis is general in the sense that it

can be applied to any type of slender structure. The particular FE formulation used in this work

is based on a �at shell �nite element (MISS-4,[14]) that is particularly suitable for the analysis

of folded plates [32]. However, curved shells can be analyzed using MISS-4 by approximating the

curved shell as a collection of small �at elements with characteristic size h, retaining h2 convergence

of the solution, as shown in [14, Section 4.3].

In this section, two cylinders labeled Z32 and Z33 [43], are analyzed. These cylinders have been

applied as benchmark cases of imperfection sensitivity [27, 44�47]. The ply properties are E1 = 123.6

GPa; E2 = 8.7 GPa; G = 5.7 GPa; ν12 = 0.32. The laminate stacking sequence is IN [−51/51/ −

45/45/ − 37/37/ − 19/19/0/0]OUT and IN [0/0/19/ − 19/37/ − 37/45/ − 45/51/ − 51]OUT for Z32

and Z33, respectively. The height is 510mm, the radius R = 250mm and the laminate thickness

t = 1.25mm. In addition to the radius/thickness R/t = 200, the ratios R/t = 50, 100, 400, 800 have

been analysed.

The cylinders are clamped on top and bottom, except for the axial displacement at the top edge,

which is free to allow the application of a distributed load. The imperfection sensitivity analysis

has been carried out for di�erent radius versus thickness ratio. A mesh of square elements (6.8×6.8

mm) is used for all cases.

The results on buckling loads are reported in Tables 2 and 3. Buckling modes are shown in

Figure 13, and the quadratic correction functions are shown in Figure 14. Eight buckling modes

have been considered for the multi-modal analysis. The limit load distribution considering one

thousand imperfections with maximum amplitude ũmax/t = 0.2 is shown in Figure 15. The shape

of the worst imperfection and the deformed shape at minimum limit load are shown in Figures 16

and 17, respectively. The load sensitivity as a function of the amplitude of the worst imperfection

is reported in Figure 18, where it can be seen that cylinder Z33 is more imperfection sensitive that

Z32.
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R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

50 1680.540 1689.500 1701.370 1701.370 1722.910 1722.890 1771.550 1771.560
100 411.049 413.328 413.613 413.612 417.888 417.891 422.512 422.514
200 103.349 103.562 103.578 103.578 104.278 104.278 104.662 104.660
400 26.744 26.756 26.756 26.767 26.885 26.885 26.887 26.886
800 7.215 7.215 7.217 7.220 7.231 7.231 7.242 7.242

Table 2: Buckling loads (in kN) for cylinder Z32 as a function of radius/thickness ratio.

R/t λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

50 3195.180 3195.200 3305.300 3305.820 3312.270 3313.840 3355.110 3355.580
100 800.113 800.100 800.496 800.497 804.968 804.982 824.417 825.567
200 199.055 199.055 200.314 200.313 201.449 201.454 202.234 202.236
400 50.578 50.578 50.579 50.579 50.674 50.674 51.056 51.056
800 12.945 12.945 12.957 12.957 13.034 13.034 13.066 13.066

Table 3: Buckling loads (in kN) for cylinder Z33 as a function of radius/thickness ratio.

v̇1 v̇2 v̇3 v̇4

v̇5 v̇6 v̇7 v̇8

Figure 13: Buckling modes for cylinder Z33 with R/t = 200.
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w11 w12 w13 w14

w15 w16 w17 w18

Figure 14: Quadratic corrections for cylinder Z33 with R/t = 200.

(a) (b)

Figure 15: Frequency distribution of the lowest limit load λlim for cylinders (a) Z32 and (b) Z33 at several
values of radius-to-thickness ratios.

R/t = 50 R/t = 100 R/t = 200

R/t = 400 R/t = 800

Figure 16: Shapes of the worst imperfection for cylinder Z33 at several radius-to-thickness ratios.
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R/t = 50 R/t = 100 R/t = 200

R/t = 400 R/t = 800

Figure 17: Mode shapes at minimum limit load with the worst imperfection for cylinder Z33 and several
radius-to-thickness ratios.

Figure 18: Limit load sensitivity to worst imperfection amplitude for cylinders Z32 and Z33 and several
radius-to-thickness ratios.
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7.2.1. Remarks

The imperfection sensitivity analysis in the context of Koiter's approach allows us to perform

Monte Carlo simulation with very low computational cost. Analysis time is reported in Table 4.

The computations are performed on a Intel(R) Xeon(R) CPU E5-2620 2.00Ghz Dual Core, 32 GB

Ram on a single core. Each value in Table 4 requires the solution of eq. (1h) for as many random

imperfections as indicated in the heading for that column.

The average time required for the steps i. to iv. have been studied [10], and they remain of the

order of seconds. The times are also a few seconds for a very large number of imperfections. This

could allow users to run Monte Carlo simulations to account for other types of imperfections (i.e.,

load imperfection, residual stress, and so on) in order to obtain even more realistic evaluations of

structural performance.

For the example studied, an imperfection in the shape of the �rst buckling mode (see v̇ in

Figure 13) does not necessarily produce the worst imperfection (see Figure 16). Also, the buckling

modes for minimum limit load do not resemble the worst imperfection. These observations provide

empirical justi�cation for performing a full exploration of the imperfection space, as proposed in

this work.

The accuracy, robustness, and reliability of the results are closely related to the use of geomet-

rically exact structural models and mixed formulation. The latter is necessary to prevent extrapo-

lation locking phenomena [13]. The use of a corotational formulation coupled with a mixed �nite

element allows to easily satisfy these requirements. Moreover, Koiter's approach being based on

asymptotic expansion, allows to recover the equilibrium path in an approximate fashion. The best

accuracy is available for the pre-critical and the initial post-critical behavior. A numerical compar-

ison between Riks' and Koiter's method for the recovery a single equilibrium path, as implemented

in this paper, can be found in [8�10].

The accuracy of imperfection sensitivity of Koiter's analysis compared to Riks' analysis are

shown (numerically) in Figure 19. The path-following solution is obtained using Riks' standard

implementation in Abaqus [48] along with Abaqus' S4R elements. The accuracy of our implemen-

tation of Koiter's method (Section 2) decreases with the imperfection amplitude. This is due to

the fact that the imperfections are incorporated during post-processing, i.e. eq. (1h), in order to

keep the computational cost to a minimum. A method for improving the imperfection amplitude
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range of Koiter's method is reported by [49] along with an extensive discussion on calculations of

imperfection sensitivity curves for unsti�ened and sti�ened cylinders is also reported.

Time (s)
R/t 100 imp. 500 imp. 1000 imp. 5000 imp. 10000 imp.

50 18.011 89.688 270.346 5344.72 10764.88
100 14.403 67.853 242.540 5434.89 10599.07
200 14.643 77.345 249.089 5350.40 10480.74
400 19.964 97.050 285.614 5275.00 10193.00
800 11.652 60.923 217.769 5106.57 10694.88

Table 4: Computational cost for cylinder Z33 and several radius-to-thickness ratios. The cost refers to the
solution of equation (1h).
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Figure 19: Load sensitivity to worst imperfection ũmax for cylinder Z33 with R/t = 200.
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8. CONCLUSIONS

The advantages of using Koiter's asymptotic approach for the analysis of slender elastic struc-

tures has been shown. The possibility of performing an e�cient and reliable imperfection sensitivity

analysis, including cases with modal interaction, based on Monte Carlo simulation has been demon-

strated. The computational cost needed to account for a large sample of imperfections is, on

average, in the range of a few seconds. The worst imperfections can be detected without a-priori

knowledge about the shape of such imperfections. The load capacity can evaluated statistically and

its sensitivity to the amplitude of the worst imperfection can be calculated easily.
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