
Mechanics of Advanced Composite Materials and Structures, 22(9):705–716, 2015.

Intralaminar Damage Model for Laminates
subjected to Membrane and Flexural

Deformations

Adi Adumitroaie1 and E. J. Barbero2

Mechanical and Aerospace Engineering, West Virginia University,
Morgantown, WV 26506-6106, USA

Abstract

Prediction of transverse damage initiation and evolution for not necessarily symmetric laminates
under membrane and/or bending loads is the subject of this work. The laminate stiffness reduction
is computed via crack opening displacement (COD) methods and the generalization to multiple
cracking laminas is made via continuum damage mechanics (CDM) concepts. Using available COD
solutions combined with homogenization techniques leads to an analytical constitutive model capa-
ble of predicting the initiation and evolution of crack density vs. applied strain, as well as laminate
modulus degradation, not only for symmetric laminates subjected to membrane deformation but
also for general laminates subjected to flexural deformations as well. To adjust the model parame-
ters, experimental data is required in the form of crack density, or modulus reduction, vs. strain for
two laminates of the same material system. Then, the model is capable of predicting crack density
and modulus degradation for other laminate stacking sequences. The model takes into account
crack closure, which is important under flexure, as well as the case of the center lamina straddling
the neutral axis. The effect of thermal stresses is incorporated in the formulation.
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1 Introduction

The problem of transverse matrix cracking in laminated composites has been extensively studied
for the particular case of symmetric [0m/90n]S laminates under membrane loads, for which matrix
cracking is found in the 90◦ laminas (transverse laminas). Extensions to other laminate configu-
rations such as [0/ ± θ/0]S and [0/θ1/θ2]S , models featuring cracks in the off-axis θ laminas have
been developed, but they are still limited to symmetric laminates under in-plane loading. In con-
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trast, the general case of a [θ1/θ2/ . . . /θn] laminate with matrix cracks with multiple laminas under
general membrane and flexural loading, is the subject of this work.

Continuum Damage Mechanics (CDM) models homogenize the cracks [1–7]. That is, they
calculate the degraded moduli of the laminas and laminate in terms of continuum damage variables.
Either strength or fracture mechanics failure criteria are used to detect damage initiation. Then,
damage evolution is predicted in terms of phenomenological equations set up in terms of additional
parameters. From a thermodynamics point of view, damage variables are the state variables of the
formulation. From a practical point of view, CDM major shortcoming is the need for additional
experimentation to determine parameters that are particular to each model.

Micromechanics of Damage Models (MMD) find an approximate elasticity solution for a lam-
inate with a discrete crack or cracks [8–29]. The solutions are approximate because kinematic
assumptions are made, such as a linear [30] or bilinear [31] distribution of interlaminar shear stress
through the thickness of each lamina, as well as particular spatial distributions of inplane displace-
ment functions [28], stresses, and so on. The state variable is the crack density. One advantage
of MMD is that the the reduction of laminate moduli as a function of crack density is calculated
without resorting to additional parameters as in the case of CDM. Still, additional parameters may
be required to deal with R-curve behavior. The main disadvantage of MMD is that most of the
solutions available are limited to symmetric laminates under membrane loads.

Crack Opening Displacement (COD) models [32–39] are based on the theory of elastic bodies
with voids [40]. The main advantage of COD models is that the laminate stiffness can be calculated
for any laminate configuration, even non-symmetric laminate stacking sequence (LSS), subject to
any deformation, including bending, featuring matrix cracking in any of its laminas. Based on this
distinctive advantage, the reduced stiffness analytical model in [35] is used in the present work in
order to implement the model of the progressive damage matrix cracking in general LSS laminates.

Numerical solutions, such as FEA, provide 3D solutions without the kinematic simplifications
of MMD and COD models [19, 35, 38, 41–43]. However, FEA solutions require a new mesh and
boundary conditions for each LSS, crack orientation, and so on, making them too cumbersome for
practical application. Another numerical approach is Monte Carlo simulation, where the probabilis-
tic distribution of flaws in material is considered [4,6,44]. Unfortunately, Monte Carlo simulations
require additional parameters that have to be adjusted by fitting the results of the model to the
damage evolution data obtained experimentally. Such data is scarce.

Synergistic Damage Mechanics (SDM) models combine elements of different modeling strategies
such as CDM and MMD [3, 4, 6, 45, 46], bringing the best features of each of the models involved.
The present work is in this category. That is, the laminate stiffness reduction is computed via
COD methods and the generalization to multiple cracking laminas is made via CDM concepts, but
unlike CDM models, no additional parameters are needed.

Models addressing flexural deformations are scarce and limited in applicability. A 1D beam
bending model for [0/90]S–like laminates where only one of the 90◦ laminas is allowed to crack is
offered in [47, 48]. The plane stress assumption in [49] restricts the flexural analysis to [0m/90n]S
laminates with cracks developing only in the 90◦ center lamina. The finite strip solution in [3, 50]
relies on the generalized plane strain assumption. To satisfy this assumption, all the cracking
laminas must have the same orientation and same crack density, which is unrealistic under bending
unless there is only one cracking lamina. The formulation in [4] uses the model in [50], which
in turn relies on the generalized plain strain assumption, thus introducing restrictions about the
number and orientation of cracking laminas.

A general LSS damage growth model including flexural deformation in developed in [36]. How-
ever, due to the complex phenomenon of the ply thickness dependent R-curve behavior in laminated
composites, an energy release based damage evolution law was claimed to be inappropriate [36].
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In [36], the proposed alternate damage evolution law relies heavily on experimentation and cannot
capture the experimentally observed ply thickness effect (insitu effect) on damage onset. Moreover,
the damage law is based exclusively on mode I experimental results, this being the reason the model
performs poorly when when mixed modes conditions result in matrix cracking in off-axis plies.

The objective of this work is to develop an analytical model of progressive damage in form of
matrix cracking in general LSS laminates subjected to general membrane and flexural deformation.
Both aspects of matrix cracking onset and evolution under external loading are addressed. The
process of matrix cracking under I, II, and mixed I-II modes conditions are included in the present
model. The loading case can be in-plane, flexural, or combination of the two. The effect of
thermal residual stresses and the experimentally observed in-situ and R-curve behaviors of fracture
toughness for laminated composites are included in the present model. There is no limitation on
the configuration of the laminate, on the number of the cracking plies, or on the type of loading
(membrane, flexural, or both) as it is the case for the most models available in the literature.

The proposed constitutive model is currently implemented as a stand alone program capable
of predicting initiation and evolution of damage at a single location (x, y) in a laminate, which is
loaded by membrane and/or bending stress resultants. The proposed model could be implemented
into a finite element program in order to solve boundary value problems of laminated shells but
that falls outside the scope of this work.

2 Laminate Stiffness

In this work, the laminate stiffness as a function of crack densities in the various laminas is calculated
using the crack opening displacement (COD) model in [35], which defines crack density as ρ(k) =
t(k)/d, where t(k) is the thickness of the cracking lamina and d is the distance between two adjacent
cracks.

The COD is defined as the average relative displacement between two faces of the same crack
lying along the fiber direction of a lamina

∆u
(k)
i =

1

t(k)

∫ t(k)

0

[
u
(k)(+)
i (z)− u(k)(−)i (z)

]
dz (1)

where the u
(k)(+)
i (z), u

(k)(−)
i (z), are the displacements of opposite surfaces of the crack in lamina

coordinate system (c.s.).
Since the COD are affected by the laminate stacking sequence (LSS), a generalization of analyt-

ical COD solutions for general laminate configurations has yet to be found. Thus, COD solutions
are approximated by either i) equations designed to fit the results of parametric FEA simula-
tions [32, 35, 39], or ii) extensions of the fracture mechanics solution for similar problems [32–35].
The latter uses FEA to asses the level of error of the solution to the problem of laminated compos-
ite with cracked laminas. For both cases, the COD in lamina k can be written empirically as a

linear combination of the surface tractions τ (l) at the laminas l times the COD compliances β
(kl)
ij ,

as follows

∆u
(k)
i = t(k)

N∑
l=1

β
(kl)
ij τ

(l)
j ; i, j = 1 . . . 3 (2)

where N is the total number of plies inside of the laminate.

The COD compliances β
(kl)
ij quantify the effect of traction in lamina l on the COD in lamina

k. The formulation can be simplified introducing uncoupling [35], i.e., β
(k)
ij = β

(kl)
ij δkl, where δkl
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is the Kronecker symbol. That is, the COD in lamina k only depends on the traction in lamina

k. The lamina tractions τ
(l)
j are computed using Classical Lamination Theory (CLT) on the intact

laminate.
For a given crack density array {ρ} representing the crack density in all the laminas, the laminate

A, B, and D matrices of the undegraded (intact) laminate are updated as follows[
A B
B D

](ρ)
=

[
A B
B D

]
−
[

∆A ∆B
∆B ∆D

]
(3)

where the reduction (degradation) of the membrane, bending-extension, and bending matrices is
given by [35]

∆A =
N∑
j=1

t(k)ρ(k)A
(k)
EE

∆B =

N∑
j=1

t(k)ρ(k)
[
z(k)A

(k)
EE +

1

2
t(k)A

(k)
BE

]

∆D =
N∑
j=1

t(k)ρ(k)
[
(z(k))2A

(k)
EE + z(k)t(k)A

(k)
BE +

1

4
(t(k))2A

(k)
BB

]
(4)

The 3× 3 matrices A
(k)
m for lamina k are computed as

A(k)
m = Q

(k)
(R(k))′β(k)m R(k)Q

(k)
(5)

where m = EE,BE,BB, denote extension, bending-extension, and bending, respectively; ()′ de-

note the transpose of a matrix, and Q
(k)

is the undamaged lamina stiffness in laminate c.s. The
R(k) matrices are transformation matrices from lamina k to laminate c.s., as follows

R(k) =

(
n
(k)
1 0 n

(k)
2

0 n
(k)
2 n

(k)
1

)
(6)

where n
(k)
1 , n

(k)
2 , are the direction cosines between lamina k coordinate system (c.s.) and laminate

c.s.
The COD compliances are given in [35] for the various cases including interior and exterior

cracks, extension and bending deformation, as well as mode I (opening) and mode II (shear, but
called mode III in [35]), as follows

Interior cracks :

– Extension:

- Mode I

βk =
π

2
γk2

10∑
j=1

aj
(1 + ρk)j

- Mode II

βk =
π

2
γk1

8

(πρk)2
ln

[
cosh

(
πρk

2

)]
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– Bending:

- Mode I

βk =
π

16
γk2

10∑
j=1

cj
(1 + ρk)j

- Mode II

βk =
π

16
γk1

10∑
j=1

bj
(1 + ρk)j

Surface cracks :

– Extension:

- Mode I

βk = 1.12152πγk2

10∑
j=1

dj
(1 + ρk)j

- Mode II

βk = πγk1
8

(2πρk)2
ln
[
cosh

(
πρk

)]
– Bending-extension coupling:

- Mode I

βk = −0.2364πγk2

10∑
j=1

fj
(1 + ρk)j

- Mode II

βk = −3π − 8

3
γk1

10∑
j=1

ej
(1 + ρk)j

– Bending:

- Mode I

βk = 0.1481πγk2

10∑
j=1

hj
(1 + ρk)j

- Mode II

βk =
3π2 − 16π + 24

3π
γk1

10∑
j=1

gj
(1 + ρk)j

where the coefficients γ1, γ2, are function of transversely isotropic material properties of the lamina,
i.e., γ1 = 1/(2GTL) and γ2 = (1− νLT νTL)/ET .

The values of the coefficients aj , bj , cj , dj , ej , fj , gj , hj represent numerical integration constants,
which are tabulated in [35,36], and β(k) = 0 for bending–extension coupling with interior cracks [35].

3 Lamina Stiffness

The degraded stiffness of the lamina are calculated by taking into account that at each step of
the solution, only lamina (c) is cracking and the remaining laminas are already homogenized using
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a previously converged crack density in those laminas. Therefore, the reduced properties of the
cracking lamina are computed as follows [46, (21)]

Q(c) =
1

t(c)

[
A(c) −

N∑
k=1

(1− δk,c)t(k)Q(k)

]
(7)

where A(c) is the degraded laminate in-plane stiffness matrix calculated with (3) when lamina (c)
is cracking and the remaining laminas are homogenized from a previous step. The degraded lamina
stiffness is saved so that it can be used in subsequent steps.

4 Damage Initiation and Evolution

Two main methodologies are available for damage initiation: strength based [3, 4, 51], and energy
based [8, 10,17,18,21–23,25,26,45,46,51–53]. The following equation

g = (1− r)
√
GI
GIc

+ r
GI
GIc

+
GII
GIIc

− 1 ≤ 0 ; r =
GIc
GIIc

(8)

was proposed in [18] as a failure criteria, and its applicability has been extended to damage evolution
criteria in [45,46]. GI , GII , are laminate energy release rates due to opening mode I and shear mode
II [54, Fig. 10.4], and GIc, GIIc, are critical energy release rates in mode I and II, i.e., material
properties of the laminate. The material remains undamaged as long as g ≤ 0. With (8) casted in
this way, standard tools from plasticity theory, such as the return mapping algorithm, can be used
to find the damage level that maintains the material point in equilibrium while simultaneously
satisfying the condition g = 0. Since GI , GII , are monotonically decreasing functions of crack
density, due to the concomitant reduction of stiffness, (8) provides automatic hardening in the
crack density vs. strain space, where the state variable ‘crack density’ and the thermodynamic
force ‘strain’ are thermodynamically conjugate. Comparison with experimental data in [45,46,55,56]
supports the use of this measure of hardening.

For damage evolution, the strength based initiation criteria are usually complemented by phe-
nomenological hardening equations [7], thus requiring additional adjustable parameters. Also,
strength based initiation criteria can be complemented by energy based evolution [57], but in this
case two sets of materials properties (strength and critical energy release rates) are required. On the
other hand, the energy based initiation criteria (8) can be used for damage evolution as well [45,46].
This later option does not require separate material properties to detect damage initiation and to
follow damage evolution. Also, it does not require additional adjustable parameters such as those
used in the hardening equations. Lastly, unlike strength criteria, energy criteria automatically take
into account insitu strength [1, 21, 22, 51]; although energy criteria regularize the transition thick-
ness [58], [59, §7.2.1]. Due to to these advantages, (8) is used in this work for both, initiation and
evolution criteria.

Taking into account that transverse cracks are discrete, i.e., they propagate suddenly through
the thickness and along the fiber direction [59, §7.2.1], the energy release rates (ERR) in mode I
and II are calculated as

Gi = −∆Ui
∆A

(9)

where ∆Ui, with i = I, II, are the changes in strain energy of the laminate due to a new (proposed)
crack in lamina (c), and ∆A is the area of the new (proposed) crack, calculated with (14). The
proposed crack is used to test whether or not (8) is satisfied.
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Since intralaminar cracks may propagate in mode I (opening) and mode II (shearing), the ERR
(9) needs to be decomposed into GI and GII . This is accomplished by writing all the quantities
involved in the c.s. of the cracking lamina (c). Then, GI is calculated with ε = {0, ε22, 0} and GII
is calculated with ε = {0, 0, ε12} [25]. The proposed mode separation is consistent with the method
of mechanical work during crack closure in classical fracture mechanics [60, (16)], which is the basis
for the Virtual Crack Closure Technique (VCCT) in FEA.

When subject to both membrane tractions and bending moments, the strain at the midsurface
of lamina k, located at coordinate z(k), is

ε(k) = ε0 + z(k)κ (10)

where ε0 is the membrane strain and κ is the curvature of the laminate. The total membrane strain
and curvature are the sum of a mechanical component, due to the applied traction and bending,
plus a thermal component, due to the shrinkage from processing at the stress free temperature
(SFT) to room temperature ambient (RTA), i.e.,

ε(k)tot = ε0M + α∆T + z(k)
(
κM + κT

)
(11)

were α is the coefficient of thermal expansion (CTE) of the laminate and ∆T = RTA− SFT < 0.
This expression of ∆T < 0 holds for the case of material processing at high temperature SFT, and
matrix cracking experiments performed at the room temperature RTA. However, the analytical
model works for any combination of processing and operating temperatures, for example the case
of material processing at room temperature and operating at high temperature, for which ∆T > 0.

Experimental data usually reports εexp as either the applied mechanical membrane strain
ε0M for extension experiments, or the applied mechanical curvature κM . The reported exper-
imental data εexp usually includes only one component of the 6 × 1 mechanical deformation
εM = {ε0x, ε0y, ε0xy, κx, κy, κxy}M , either extension or bending. The other 5 components are calcu-
lated by the program according to the boundary conditions of the experiment. For more complex
experiments, such as biaxial extension, two components of strain, say εx, εy, could be reported
simultaneously. In any case, the remaining components are calculated by the model according to
the boundary conditions of the experimental setup.

Due to CTE mismatch between laminas, only part of the lamina strain in 11 is involved in the
strain energy

ε(k) =
(
ε0M + α∆T − α(k)∆T

)
+ z(k)

(
κM + κT

)
(12)

were α(k) is the CTE of lamina (k). Then, the strain energy of lamina (k) is

U (k) =
S0
2

∫ t(k)

0
ε(k) Q

(k)
ε(k) dV (13)

where Q
(k)

is the lamina stiffness. Both stiffness and strain are set in the c.s. of the crack-
ing lamina (c) to allow for mode decomposition of the ERR. For each crack density set ρ =

{ρ(1), ..., ρ(k), ..., ρ(N)}, the Q
(c)

of the cracking lamina is calculated by (7). For the remaining lam-

ina, k 6= c, the Q
(k)

are stored from previous calculation. Lastly, the strain energy of the laminate
is calculated as U =

∑N
k=1 U

(k), and from it the ERR mode I and mode II are computed with (9).
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5 Algorithm

The crack density is defined as ρ(k) = t(k)/d(k), where t(k) is the thickness of the cracking lamina
and d(k) is the distance between two adjacent cracks. A system of equally spaced matrix cracks
in one lamina of a laminate is shown in Fig. 1. The algorithm is started with a very small crack
density ρ0 in each lamina, so that the initial crack spacing d0 is very large. From the figure, it

can be inferred that the total crack length is l(k) =
∑

i l
(k)
i and the surface of the laminate is

S = l(k) d(k) = l0 d0.
For each strain (load) step p, the algorithm loops over the N laminas in the laminate, using the

damage evolution criterion (8) to test whether of not the addition of one more crack in lamina (c)
satisfies the criterion (g > 0) or not (g ≤ 0). If it does, it increases the crack density, degrades the
lamina stiffness, and tries to add another crack until (8) is no longer satisfied. If more than one
lamina cracks during the loop, the program chooses the lamina with higher value of g to become
the current cracking lamina (c), then revisits the other laminas.

The number of cracks added to lamina (c) is denoted by i. Therefore, the crack density is
ρi = (i + 1)ρ0, the crack spacing is di = d0/(i + 1), the increment in crack density is ∆ρ = ρ0 for
all i, and the increment in crack area is

∆A = S ∆ρ = S ρ0 (14)

Once no further cracks propagate in lamina (c), the program moves to the next lamina. Because
of stress redistribution, cracks in one lamina may trigger cracks in another. The program loops
repeatedly over the laminas until no more cracks appear at a given load step. Only then the load
(strain) is incremented and the program begins again. The result is a data set for crack density vs.
strain. Furthermore, modulus vs. strain can be computed by using (3).

6 Crack Closure

Provision has been made to account for crack closure, which is important under flexure. Depending
on the sign of the transverse stress, the temporary crack density of the lamina k is chosen according
to

ρ
(k)
i =

{
(i+ 1)ρ0 if σ

(k)
22 > 0 ; crack is active

0 if σ
(k)
22 ≤ 0 ; crack is passive

(15)

To allow for non monotonic loading, the crack density in (15) is only temporary, and any prior
accumulated crack density is kept as a state variable of the lamina in case the sign of the stress
reverses. Equation (15) applies only to mode I. For mode II (shear), the cracks are always active.

As a result of crack closure, it is necessary to split the center lamina if it spans the midsurface.
This is because one side may be active and the other inactive under flexure. However, the COD are
a function of the ply thickness, thus accounting for insitu effects. For example, under membrane
tensile deformation, the COD in the center lamina of a [0/902/0] is larger than in a [0/90/90/0].
To solve this problem, the code tests whether or not there is crack closure on either side of the
midsurface in the center lamina. If there is, the laminate is analyzed with a split center lamina.
Otherwise, the laminate is reanalyzed without split.
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7 Resistance Curve

To obtain a better correlation between the model predictions and experimental results, the mode I
ERR is corrected for in–situ resistance curve (R–curve) behavior. According to Griffith principle of
classical fracture mechanics, the critical energy release rate for crack propagation Gc is a constant
material property. However, for the case of crack multiplication in laminated composites, Gc
increases with crack density λ, i.e., Gc = Gc(λ) [18, 36, 72–75]. This phenomenon is called the R–
curve behavior. Moreover, the crack growth resistance Gc also features ply thickness dependence,
Gc = Gc(λ, t). Both the critical ERR at damage initiation (Gc at λ = 0) and the subsequent slope
of the Gc = Gc(λ) variation are function of the ply thickness t. This is called in–situ R–curve
behavior.

The phenomenon of in–situ R–curve behavior is attributed to fiber bridging during matrix crack-
ing [61–66]. However, the micromechanics of fiber bridging, and consequently the phenomenological
modeling of R–curve behavior is different for UD laminae and multidirectional laminates. While
exponential equations were used in [67, 68], a linear R–curve model is proposed in this work. Due
to lack of experimental data, mode II ERR is not corrected for the in–situ R-curve behavior. Thus,
a constant value of GIIc, independent of ply thickness and crack density, is used.

The resistance behavior, i.e., the variation of mode I ERR with crack density, at the reference
ply thickness t = tref is modeled by the following proposed equation

GrefIc = GrefIc,0 + tan(βrefλ )λ (16)

where λ = ρ/t is the dimensional crack density, i.e., number of cracks per unit distance; tref is the

thickness of the cracking lamina in the experiment, GrefIc,0 is the mode I ERR at tref , and βrefλ is an
adjustable parameter chosen to help correlate the evolution of cracking when the thickness of the
cracking lamina is tref .

For lamina thickness different from tref , the insitu effect on the onset value of the critical ERR,
namely GIc,0, is approximated by the following proposed equation

GIc,0(t) = GrefIc,0 ·
[
1 + (t/tref − 1)

(
βt0 − 1

)]
(17)

where βt0 is an adjustable parameter, this time to help correlate the initiation of cracking at different
ply thicknesses.

Finally, the variation of mode I ERR is modeled by the following proposed equation

GIc(λ, t) = GIc,0(t) +
[
1 + (t/tref − 1)

(
βtλ − 1

)]
· tan(βrefλ ) · λ (18)

where βtλ is an adjustable parameter, this time to help correlate the evolution of cracking at different
ply thicknesses.

8 Results

First, model predictions are shown for the common case of symmetric laminates subjected to
membrane deformation. Experimental data for Carbon-Epoxy T300/934 laminates is reported
in [44, 69–71]. The thermoelastic properties of individual laminae are: E1 = 163.4 GPa, E2 =
11.9 GPa, G12 = 6.5 GPa, ν12 = 0.3, ν23 = 0.5, α1 = 0.35 · 10−6 oC, α2 = 28.8 · 10−6 oC, ply
thickness tk = 0.132 mm, and stress free temperature SFT = 150 oC.

The laminates include [±25/90n]S and [0m/90n]S for various values of m,n, which are reported
in the figure captions. The loading is uniaxial extension εx.
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A [±25/902]S laminate is used to adjust the parameters in (16) and [±25/904]S is used to adjust

parameters in (17)–(18), yielding: GrefIC,0 = 0.2 N/mm, βrefλ = 6 deg., βt0 = 1.2, βtλ = 2. Since
matrix cracking takes place only in mode I, the value of the critical ERR for mode II, namely
GII,C , is irrelevant for this particular set of experimental data.

Model prediction of matrix cracking onset and evolution are compared against experimental
results in Fig. 2–5, for various thicknesses of the cracking 90 ply stack in the [±25/90n]S laminates.
Model predictions are in good agreement with experimental data for different thicknesses of the
90n cracking stack. The expected trend of earlier damage initiation in the thicker plies is confirmed
by both experimental and analytical results.

Two additional Carbon-Epoxy systems, AS4/Hercules 3501-6 and IM6/Avimid-K, with lam-
inate stacking sequence (LSS) [0m/90n]S are evaluated using the experimental data presented
in [9,10]. The values of m,n, are given in the figure captions. The loading case is uniaxial extension
εx.

For AS4/Hercules 3501-6, the thermoelastic properties of the laminae are: E1 = 130 GPa,
E2 = 9.7 GPa, G12 = 5 GPa, ν12 = 0.3, ν23 = 0.5, α1 = −0.09 · 10−6 oC, α2 = 28.8 · 10−6 oC, ply
thickness tk = 0.125 mm, and stress free temperature SFT = 125oC.

The [0/90]S laminate is used to adjust the parameters in (16) and [0/902]S is used to adjust

parameters in (17)–(18), yielding: GrefIC,0 = 0.14 N/mm, βrefλ = 1.5 deg., βt0 = 1.1, βtλ = 2.
For IM6/Avimid-K, the thermoelastic properties of the laminae are: E1 = 134 GPa, E2 =

9.8 GPa, G12 = 5.5 GPa, ν12 = 0.3, ν23 = 0.5, α1 = −0.09 · 10−6 oC, α2 = 28.8 · 10−6 oC, ply
thickness tk = 0.125 mm, and stress free temperature SFT = 225oC.

The [0/902]S laminate is used to adjust the parameters in (16) and [0/903]S is used to adjust

parameters in (17)–(18), yielding: GrefIC,0 = 0.53 N/mm, βrefλ = 10 deg., βt0 = 1, βtλ = 1.4.
Since matrix cracking takes place only in mode I, the value of the critical ERR for mode II,

namely GII,C , is irrelevant for these laminates and loading cases.
Crack density vs. stress is shown Fig. 6 for AS4/Hercules 3501-6 and Fig. 7 for IM6/Avimid-K.

The effect of the cracking ply thickness can be assessed by observing the set [0m/90n]S with m
fixed and n variable. On the other hand, the constraining effect of the neighboring plies can be
assessed by observing the set [0m/90n]S with n fixed and m variable.

Good correlation between model predictions and experimental data for both damage onset
and damage progression for AS4/Hercules 3501-6 is observed in Fig. 6. Some differences between
predicted and the experimental values appear at high values of crack density λ, where the model
predicts a steeper increase in crack density than the experimental data.

The thickness effect of the cracking ply shown in Fig. 6 is predicted well by the model. The
constraining effect of the neighboring plies can be observed in Fig. 6 comparing the damage curves
corresponding to [0/902]S and [02/902]S laminate configurations. Damage initiates earlier in the
[0/902]S laminate featuring a thinner 0 neighboring ply than in the [02/902]S laminate. The same
observations and comments apply to IM6/Avimid-K.

To illustrate the performance of the model when bending deformations are included, a number
of laminates made of E-glass-Epoxy Fiberdux 913G-E-5-30% are evaluated. The laminate configu-
rations and loading cases are:

- [0/90n/0] featuring cracks in the 90n ply stack under uniaxial extension loading εx,

- [0n/90n/ + 45n/ − 45n]S and [0n/ + 45n/ − 45n]S featuring cracks in the 90n, +45n, and −45n
stacks under uniaxial extension loading εx,

- [90n/0n/− 45n/+ 45n]S under uniaxial bending κx.
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The material is Glass/Epoxy Fibredux 913G-E-5-30% with the following thermo-elastic proper-
ties [36]: E1 = 34 GPa, E2 = 18 GPa, G12 = 7.9 GPa, ν12 = 0.29, ν23 = 0.41, α1 = 6.72 · 10−6 oC,
α2 = 29.3 · 10−6 oC, ply thickness tk = 0.125 mm, and stress free temperature SFT = 125oC.

The [0/90/0] laminate was used to adjust the parameters in (16), and [0/902/0] was used to

adjust the parameters in (17)–(18), yielding: GrefIC,0 = 0.2 N/mm, βrefλ = 0 deg., βt0 = 1, βtλ = 1.
Since the experimental data set includes laminate configurations such as [0n/90n/+ 45n/− 45n]S ,
featuring cracks in off–axis plies under mixed mode loading, the value of mode II critical ERR is
assumed to be GII,C = 1 N/mm.

A set of experimental results is available in [36] for the [0/90n/0] LSS under uniaxial extension
εx. Reduced laminate modulus are presented in Fig. 8 for various laminates. Good agreement
between model predictions and experimental data can be noticed. Evolution of crack density vs.
strain curves are presented in Fig. 9–12. The comparison to experimental data is very good for 90
and 902 cracking plies, but only satisfactory for 904 and 908 thicknesses at high crack densities. The
observed discrepancy is may be caused by thicker plies being more prone to delamination induced
by intralaminar transverse matrix cracking. In this case, part of the stored deformation energy
is released for the formation of delamination damage, while the available energy for intra-laminar
matrix cracking is reduced, thus explaining the analytical model predicting higher crack densities
for thicker plies than reported by the experimental results. The delamination mechanism is not
accounted for in the present model, thus being a limitation of the present model when delamination
occurs simultaneously or as a result of intralaminar matrix cracks.

Additional experimental data, including flexural deformation κx under displacement control,
is available for the [902/02/ − 452/452]S and [902/ − 452/452]S laminates. Matrix cracking was
recorded at the surface ply, on the extension side of the bending specimen [36]. Comparison
between predicted and experimental bending moment–curvature plots are presented in Fig. 13,
where good agreement between predictions and experiments can be observed.

It is nevertheless true that, due to experimental setup difficulties, the matrix cracking ex-
perimental data for flexural deformation are very scarce in the literature, and for asymmetric
LSS are inexistent, at the best of the author’s knowledge. However, the predictive capabilities
of the analytical model for these two situations can be assessed and compared against the ex-
pected trends by considered an initially symmetric LSS and comparing the damage evolution
results for the case of pure extension εx, pure bending κx, and simultaneous extension–bending
εx − κx (a loading ratio of κx = 0.5 · εx is considered for the last case). The reason why a sym-
metric LSS can be used to test the ability of the model to treat asymmetric LSS’s is that the
symmetry of the laminate is lost in the moment of the matrix cracking initiation under flexu-
ral deformation. This is due to the fact that under bending loading matrix cracking is induced
only in the tension plies, which triggers a stiffness reduction only for these plies, and conse-
quently the material loses its symmetry. The LSS considered for this study, selected such that
to provide relevant information regarding the predictive capabilities of the analytical model, is

[0/90
(1)
2 /0/90

(1)
3 /02/90

(2)
2 /0/90

(2)
3 /0]. The superscripts (1) denotes plies at the bottom of the LSS

(under compression for pure bending deformation), and the superscripts (2) denotes plies at the
top of the LSS (under tension for pure bending deformation). The following Glass–Epoxy material
system is considered: E1 = 35 GPa; E2 = 9 GPa; G12 = 4 GPa; ν12 = 0.28; ν23 = 0.42,
α1 = 6.7 · 10−6 oC−1; α2 = 29.3 · 10−6 oC−1, GIC = 0.20 N/mm,GIIC = 1 N/mm, ply thick-
ness tk = 0.125 mm, and stress free temperature SFT = 130 oC. The in–situ R–curve fracture
toughness behavior is not considered for this case.

The damage process for the extension loading is presented in Fig. 14, for bending loading is
presented in Fig. 15, and for combined bending-extension loading is presented in Fig. 16. It can
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be observed that, for extension loading case, matrix cracking first initiates in the thicker 903 ply,
and then in the thinner 902 ply, this model prediction being according with the expected physical
behavior of the material. Also as expected, the damage process in the top 902 and 903 plies (on
the symmetric part of the laminate) is identical to the bottom 902 and 903 plies. The cracking
process in one of the 0 plies is additionally plotted in Fig. 14, which shown no matrix cracking
during extension loading, as expected.

On the contrary, for bending loading case damage initiates first in the thinner 902 ply, and then
in the thicker 903 ply. This is because of the outer position of the 902 ply inside of the laminate
under bending deformation, which translates in higher ply strain for the same applied curvature
κ on the laminate. According with the expected behavior of the damage process, matrix cracking
is not triggered at all in the mirror 902 and 903 plies, due to the fact that these plies are under
compressive strain.

For the combined extension–bending loading case the cracking process initiates almost simul-

taneous in the top 90
(2)
2 and 90

(2)
3 plies. It is interesting at this moment to make a qualitative

comparison with the damage onset for the cases of separate extension and separate bending pre-
sented in Fig. 14 and Fig. 15, respectively. For the pure extension case in Fig. 14 damage initiated
first in the 903 plies followed by the 902 plies, due to the thickness effect of the cracking plies. For

the pure bending case in Fig. 15 damage initiated first in the outer 90
(2)
2 ply followed by the 90

(2)
3

ply, due to the position of the plies inside of the laminate under bending. A combination of the two
effects can be noticed in Fig. 16 for the combined extension–bending deformation, when damage in
the top plies initiates almost simultaneous.

Regarding the damage process in the bottom 90
(1)
2 and 90

(1)
3 plies, it can be observed that

there is matrix cracking in the 90
(1)
3 ply, and there is no matrix cracking in the 90

(1)
2 ply. Even if

the bottom plies experience negative strains due to the bending deformation, they also experience
positive strain due to the extension deformation. This combination is more dominated by the

extension deformation for the 90
(1)
3 ply, and it is more dominated by the bending deformation for

the 90
(1)
2 , because of the position these plies have inside of the laminate. This is the reason why

matrix cracking appears in the 90
(1)
3 ply and it does not appear in the 90

(1)
2 ply.

9 Conclusions

The multiple aspects that influence transverse damage onset and evolution (growth) in laminated
composites subject to membrane and flexural deformations are accounted in this work. Comparison
of model predictions to experimental data are quite good. The effect of clustering, both on the
cracking lamina and on the supporting laminate, as well as the effect of the laminate stacking
sequence (LSS) are captured adequately, with the model providing the expected trends. Significant
R-curve behavior is noticed when the experimental data is compared to the model results. The
choice of damage variable, namely crack density, is fortunate in that it allows to adjust the model
parameters with experimental data in the form of crack density rather than modulus reduction;
the later being difficult to detect for Carbon-Epoxy composites.
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Figure 1: An equally spaced pattern of matrix cracks in one lamina of a laminate.
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Figure 2: Predicted matrix cracking evolution compared to experimental data [70, 71] for
[±25/902]S .
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Figure 3: Predicted matrix cracking evolution compared to experimental data [70, 71] for
[±25/903]S .
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Figure 4: Predicted matrix cracking evolution compared to experimental data [70, 71] for
[±25/904]S .
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Figure 5: Predicted matrix cracking evolution compared to experimental data [70, 71] for
[±25/906]S .
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Figure 6: Predicted matrix cracking evolution compared to experimental data [9,10] for [0m/90n]S
AS4/Hercules 3501-6.
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Figure 7: Predicted matrix cracking evolution compared to experimental data [9,10] for [0m/90n]S
IM6/Avimid-K.
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loading.
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Figure 9: Predicted matrix cracking evolution compared to experimental data [36] for [0/90/0]
under εx loading.
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Figure 10: Predicted matrix cracking evolution compared to experimental data [36] for [0/902/0]
under εx loading.
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Figure 11: Predicted matrix cracking evolution compared to experimental data [36] for [0/904/0]
under εx loading.
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Figure 12: Predicted matrix cracking evolution compared to experimental data [36] for [0/908/0]
under εx loading.
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Figure 13: Predicted moment-curvature evolution compared to experimental data [36] for [902/02/−
452/+ 452]S and [902/− 452/+ 452]S under flexural loading κx.
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Figure 14: Damage evolution under extension loading, λ = λ(εx).
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Figure 15: Damage evolution under bending loading, λ = λ(κx).
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