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Abstract

A mixed, quadrilateral, 3D plate element is proposed for static linear and buckling analysis of folded
laminated composite structures. Numerical results show accuracy, comparing to analytical and nu-
merical references, and convergence rate h2 measured using an s-norm. These characteristics are
due to the self-equilibrated, isostatic state of stress in the element, and to the element kinematics
leading to element compliance and compatibility matrix calculations based solely on the interpo-
lation along the element edges. For folded plates, the drilling rotations do not require penalty
functions or non-symmetric formulations, thus avoiding spurious energy modes. Buckling analysis
is achieved by a corotational formulation, which is possible thanks to the accuracy of rotation ap-
proximations. Benchmarking for laminated composite plates includes convergence of displacements
and stress-resultants, global error measures, and comparison with literature results.
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1 INTRODUCTION

Folded laminated plates are widely used in the form of structural pro�les [1, Fig. 10.1], sti�ened
panels [1, Section 11.3], cellular structures [2], cold formed steel sections [3], and so on. Open or
closed sections composed of �at walls are attractive because they maximize the bending and tor-
sional sti�ness for minimum weight and at the same time they take advantage of the high strength
of �ber reinforced materials. Using laminated panels a�ords high �exibility to the design by virtue
of the broad range of sti�ness and strength that can be imparted to the walls. Ever increasing de-
mands for lightweight structures for transportation vehicles of all kinds requires the use of optimized
thin-walled structures for which buckling become the design constraint. Accurate computation of
buckling loads, modes, mode interaction [4], and imperfection sensitivity [5, 6] is thus required.
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Since these calculations are computationally intensive, there is signi�cant interest in developing
accurate yet economical simulation methods. The use of corotational formulation is quite attrac-
tive in this regard because it allows for simple extension to nonlinear analysis of proven, accurate,
computationally e�cient linear analysis elements.

The aim of this work is to develop and to assess a high performance �nite element for linear
static and buckling analysis of laminated folded plates with the following features: i) accurate
recovery of the solution for very rough meshes, ii) high convergence rate with particular reference
to stress recovery, and iii) computational e�ciency in terms of total degree of freedom required for
the solution

The mixed/hybrid formulation based on Hellinger-Reissner variational formulation has several
advantages for the development of high performance �nite element [7, 8, 9]. Speci�cally, it allows
both stress and displacements to be represented independently as primary variables, each with its
own interpolation functions. It further allows the use of supplementary equilibrium �lters [10].

The geometry of folded plates poses additional problems due to the coupling of membrane and
bending deformations. Thus, an appropriate handling of drilling rotation is required [9]. Moreover,
an accurate recovery of rotational �elds is necessary when the geometrical nonlinearity are based on
corotational formulation [9]. The use of corotational formulation, decoupling the rigid part of the
motion form the elastic response, allows to easily reuse linear �nite elements for geometrically non
linear analysis, thus avoiding the necessity to setup an ad-hoc interpolation scheme for the nonlinear
range.

The literature on the analysis of laminated plate is very rich. A review paper [11] describes
the most recent available �nite elements based on various laminated theories for buckling and
post-buckling, free vibration, dynamics, failure, and damage. Similarly, [12] o�ers an overview on
di�erent strategies for modeling laminated composites plates. Recently proposed elements range
from assumed displacements [13, 14], mixed and hybrid formulations [15, 16, 17, 18, 19], mixed
interpolation of tensorial components (MITC) [20, 21], NURBS-based isogeometric elements [22],
radial point interpolation [23], thickness-stretch deformation elements [24] and zig-zag elements in
nonlinear context [25]. Comparison between various laminated composite plate and �nite element
results are provided in [26].

However, there are only a few �nite elements available in the literature that are based on hybrid
stress-displacement formulation for the analysis of laminated folded plates. The search for robustness
and high performance is ongoing. Recently, Maunder and Izzuddin [27] proposed a hybrid element
for folded plates and shells, with particular emphasis on the interpolation along the folded sides,
with the objective of obtaining an accurate, robust �nite element and computational less expensive
solutions.

Publications that describe geometrical nonlinearity with corotational formulation are few and
often they are not based on mixed formulation and/or free from using penalty constraints to the
handle the drilling rotation (see [28, 29, 30]).

In this sense, the present manuscript is one of the few available in which a simple mixed/hybrid
formulation is proposed for the static and buckling analysis of folded laminated folded plates, re-
sulting in a good compromise among simplicity, accuracy, and e�ciency.

The starting point is the available linear, mixed formulation element called MISS-4 [31]. The
stress resultant interpolation, which accounts for the average distortion of the element, is self-
equilibrated and isostatic. Only 18 stress parameters are used into 6 constant, 8 linear, and 4
quadratic stress shape functions. The kinematics uses 6 degrees of freedom (dof) per node for an
overall 24 dof. Convergence rate and accuracy is shown in this work to be comparable to that of 48
dof, displacement based elements such as Abaqus S8R.

The performance of the linear element has been shown previously to be very good for the case
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of isotropic material, both for the recovery displacements and rotations as well as for evaluation
of stress resultants. Numerical results have demonstrated s-norm h2 convergence rate [32]. In this
paper, this is shown to be the case also for laminated folded plates by using numerous and varied
examples. Furthermore, the element is free from locking. The element matrices are evaluated
analytically along the contour. Moreover, the element uses 6 standard degrees of freedom (dof) per
node (3 displacements and 3 rotations), thus allowing for trivial implementation as a user element
into commercial codes [31, 7].

The drilling rotations are implemented as per [33, 34], without un-symmetric formulation or
penalty constraints [35], allowing for an accurate recovery of drilling rotation �eld; thus enabling
the element to be used for geometrically nonlinear analysis using a corotational formulation [36, 37,
38, 39, 40]. An incompatible cubic mode is used to eliminate the spurious zero energy mode [9].

The novelty of this contribution resides in the incorporation of appropriate kinematics (FSDT)
and its corresponding constitutive equation into the hybrid-corotational element described in [31],
and more importantly, the assessment of the element performance, for the cases of linear static and
buckling analyses, for numerous and practical laminated composite folded plate examples, including
comparison with accepted test cases from the literature.

The laminate kinematics has been approximated by �rst order shear deformation theory (FSDT)
[41, 42], which o�ers a good compromise between simplicity and accuracy in the recovery of displace-
ments, rotations, and stress resultants. Furthermore, the mixed stress-displacement formulation
chosen for this work allows for better recovery of stress pro�les than displacement-only formulations
[43, 44].

Using the corotational formulation, the linear element is here extended for laminated folded
plates. Then, numerical comparison is presented to demonstrate the convergence with mesh re�ne-
ment, mesh distortion, and accuracy for coarse mesh. First, symmetric and unsymmetric laminated
plates with cross-ply and angle-ply laminate stacking sequences (LSS) are analyzed for di�erent
boundary conditions and thickness-to-span ratios, and the results are compared to analytical so-
lutions [42] and numerical ones available in literature [18]. Particular attention has been given to
the convergence of stress results. Then, buckling analysis of a square plate under uniaxial com-
pression (similar to that used by [45]) is presented and the convergence behavior is compared to
Abaqus results. Finally, three folded plates are considered, with particular attention to the global
convergence for linear static and buckling analysis. Two clamped beams with Ω- and C-shaped
sections subjected to shear force, and a clamped box under torsional couple are considered. The
discretization error is reported using the s-norm.

The assessment of performance con�rms a rate of converge h2 measured using s-norm with good
accuracy also for rough meshes. A similar behavior is shown for buckling analysis. A convergence
rate of h2 is shown in the case of buckling load. Also for this case, the buckling solution is very good
for very coarse mesh. The tests con�rm that our original aims are satis�ed in terms of accuracy and
computational e�ciency. The accuracy of the proposed element is comparable to that of commercial
eight node shell elements [46] but with a signi�cantly lower computational e�ort. (24 vs. 48 dof).

2 MIXED VARIATIONAL FORMULATION WITH FSDT

The Hellinger-Reissner functional is
Π = Φ−Wext (1)

where Φ is the mixed strain energy expressed in terms of stress resultants and generalized displace-
ments and Wext is the work done by external loads. Using FSDT, the mixed strain energy of the
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plate can written as

Φ[t,u] =

∫
Ω

{
tTDu− 1

2
tTE−1t

}
dΩ (2)

t =

[
tm
tf

]
, u =

[
um
uf

]
, D =

[
Dm 0
0 Df

]
where Ω is the two-dimensional domain, {x, y, z} is a Cartesian reference system with the z-axis
along the thickness direction, vectors tm and tf are the membrane stresses resultant and the bend-
ing/shear stress resultants, respectively

tm =

Nx

Ny

Nxy

 , tf =

[
tb
ts

]
with tb =

Mx

My

Mxy

 and ts =

[
Sx
Sy

]
(3)

The vectors um and uf are the in- and out-of-plane generalized displacements

um =

[
ux
uy

]
, uf =

uzϕx
ϕy

 (4)

The di�erential operators Dm and Df are de�ned as

Dm =

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

 , Df =


0 0 −∂/∂x
0 ∂/∂y 0
0 ∂/∂x −∂/∂y

∂/∂x 0 1
∂/∂y −1 0

 (5)

The constitutive matrix for a laminate with n layers can be written as

E =

Em Emb 0
Eb 0

sym. Es

 (6)

where

Em =
n∑
k

(zk − zk−1)E(k)
m

Emb =
1

2

n∑
k

(z2
k − z2

k−1)E(k)
m

Eb =
1

3

n∑
k

(z3
k − z3

k−1)E(k)
m

Es = κ�
n∑
k

(zk − zk−1)E(k)
s (7)

where zk, zk−1 are the top and bottom coordinates of k-th lamina, respectively, E
(k)
m ,E

(k)
s are the

lamina constitutive matrices referring to in-plane and transverse stress/strain, respectively [42] and
[1, Eq.(6.16)]. Finally, symbol � denotes the component product (.* in [47]) that allows us to
introduce di�erent shear correction factors for each component of the Es matrix [16, 48]

κ =

[
κ11 κ12

κ12 κ22

]
(8)
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3 MISS-4 ELEMENT

The geometry of the Mixed Isostatic Self-equilibrated Stress (MISS-4) element [31] is described by
four nodal coordinates on the plane Z = 0 of the global Cartesian system {X, Y, Z} and the element
connectivity (Fig. 1).

Figure 1: Global, local and internal coordinate systems.

Next, a dimensionless internal system is de�ned over the element mid surface with {ξ, η},
−1 ≤ ξ ≤ 1,−1 ≤ η ≤ 1, which is implicitly de�ned by{

X = a0 + a1ξ + a2ξ η + a3η

Y = b0 + b1ξ + b2ξ η + b3η
(9)

where 
a0 b0
a1 b1
a2 b2
a3 b3

 =
1

4


1 1 1 1
−1 1 1 −1
1 −1 1 −1
−1 −1 1 1



X1 Y 1

X2 Y 2

X3 Y 3

X4 Y 4

 (10)

where {Xi, Y i}, i = 1, .., 4 are the global nodal coordinates.
The third system is a local Cartesian system {x, y}, de�ned over the element mid surface,

centered and aligned with the element. To de�ne the local system, we introduce the Jacobian
matrix JG and its average J̄

G

JG =

[
X,ξ X,η
Y,ξ Y,η

]
=

[
(a1 + a2η) (a3 + a2ξ)
(b1 + b2η) (b3 + b2ξ)

]
J̄
G

=
1

4

∫ 1

ξ=−1

∫ 1

η=−1
JG dξ dη =

[
a1 a3

b1 b3

]
(11)

The average Jacobian J̄
G
is decomposed into an orthogonal matrix R and a symmetric matrix

J̄ , so that

J̄
G

= RJ̄ (12)

R =

[
cosα − sinα
sinα cosα

]
, α = arctan

(
a3 − b1
a1 + b3

)
, J̄ =

[
a c
c b

]
The local Cartesian system {x, y} has its origin at the element centroid (ξ = η = 0) and is

rigidly rotated by R with respect to {X,Y }. The coordinates {x, y} are de�ned according the
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transformation [
x
y

]
= RT

[
X − a0

Y − b0

]
(13)

The use of a local system {x, y} allows us to eliminate the rigid part of the global element
distortion, providing a �nite element description that is objective with respect to a rigid body
motion of the element.

3.1 Assumed stresses

The stresses are assumed to be self equilibrated and isostatic, leading to a minimum set of param-
eters, which are the 18 components of the vector βe. Then, the stress resultants can be written as

t = Bβe =

[
Bm 0
0 Bf

] [
βm
βf

]
(14a)

whereBm andBf are matrices representing the assumed stress modes for the membrane and �exural
generalized stresses, respectively, and βm,βf are 9-component vectors representing membrane and
�exural e�ects, respectively. For the membrane stresses, it is assumed that

Bm =

1 0 0 y 0 x 0 y2 −2 a2 x y
0 1 0 0 x 0 y −x2 2 b2 x y
0 0 1 0 0 −y −x 0 a2 y2 − b2 x2

 (14b)

For the �exural stress, it is assumed that

Bf =

[
Bb

Bs

]
with


Bb =

1 0 0 x 0 y 0 x y 0
0 1 0 0 x 0 y 0 x y
0 0 1 0 y c̄ x/c̄ 0 0 0


Bs =

[
0 0 0 −1 −c̄ 0 0 −y 0
0 0 0 0 0 −1/c̄ −1 0 −x

] (14c)

with c̄ = a2/b2. Both, membrane and �exural stresses are obtained starting from a polynomial
expansion in Cartesian coordinates x, y and using Pian's equilibrium �lter [31, 9, 10].

3.2 Assumed displacements

The interpolation of the displacement �eld u is controlled by the 24-component vector ue, collecting
displacements and rotations of the four nodes of the element. Since the stress approximation satis�es
the equilibrium equation, the internal work can be obtained by integrating on the element contour.
Therefore, only contour displacements are needed. The displacement interpolation uk along element
side k is de�ned as the sum of three contributions

uk[ζ] = ukl[ζ] + ukq[ζ] + ukc[ζ] (15a)

where −1 ≤ ζ ≤ 1 is a one-dimensional coordinate along element side k. The �rst term is a linear
expansion

ukl[ζ] =
1

2
[(1− ζ)ui + (1 + ζ)uj ],

{
ui = [uix, u

i
y, u

i
z]
T

uj = [ujx, u
j
y, u

j
z]
T

(15b)
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where superscripts i, j denote the nodes of element side k. The second and third terms correspond
to quadratic and cubic expansions for the normal component of the element side displacements

ukq[ζ] =
1

8
Lk(ζ

2 − 1)

[
(ϕiz − ϕ

j
z)nk

−(ϕi −ϕj)T · nk

]
, ukc[ζ] =

1

4
Lk(ζ − ζ3)

[
nk
0

]
θ (15c)

with
ϕi = [ϕix, ϕ

i
y]
T , ϕj = [ϕjx, ϕ

j
y]
T (15d)

where nk = [nkx, nky]
T is the normal to the element side and Lk is the side length; and θ is the

average in-plane distortional rotation, de�ned as

θ =
1

4

4∑
i=1

ϕiz − ϕ̄z (15e)

with ϕ̄z the average in-plane rigid rotation of the element

ϕ̄z = N θuem (15f)

N θ =
1

4Ωe
[−d4y, d4x, 0,−d1y, d1x, 0,−d2y, d2x, 0,−d3y, d3x] ; dk =

[
xj − xi
yj − yi

]
where Ωe is the are of the element and uem = {uxi, uyi, ϕzi, . . .}T collect membrane displacements at
nodes i = 1 . . . 4. The rest of the displacements, uef = {uzi, ϕxi, ϕyi, . . .}T , collect the displacements
associated to �exural and intralaminar shear at the nodes. By de�nition, the linear part ukl and
the quadratic part ukq are continuous at the inter-element boundaries. The cubic contribution ukc
corresponds to an incompatible mode, which is added to avoid rank defectiveness [9]. Finally, a
simple bilinear interpolation for bending rotations is used along the side

ϕk[ζ] =
1

2
[(1− ζ)ϕi + (1 + ζ)ϕj ], ϕk[ζ] = [ϕkx, ϕky]

T (15g)

3.3 Compliance and compatibility

Introducing assumed stress (14) and assumed displacements (15) into the mixed strain energy (2),
the mixed strain energy Φe of the element can be de�ned as follows

Φe = βTeQeue −
1

2
βTeHeβe (16a)

where He and Qe are the element compliance matrix and the compatibility matrix respectively.
The compliance matrix can be written as follows

He =

[
Hm Hmb

sym Hb +Hs

]
(16b)

where

Hm =

∫
Ωe

{
BT
mE

−1
m Bm

}
dΩ, Hmb =

∫
Ωe

{
BT
mE

−1
mbBb

}
dΩ (16c)

and

Hb =

∫
Ωe

{
BT
b E

−1
b Bb

}
dΩ, Hs =

∫
Ωe

{
BT
s E

−1
s Bs

}
dΩ (16d)
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Since the compatibility matrix is due to self-equilibrated stress interpolation, and it is evaluated
trough analytical contour integration, it can be written as follows

Qe =

[
Qm 0
0 Qf

]
, Qm =

4∑
k=1

Qmk, Qf =

4∑
k=1

Qfk (16e)

The matrices Qmk and Qfk are de�ned as follows

βTmQmkuem =

∫ 1

−1
tTm[ζ]NT

mkumk[ζ] dζ

βTfQfkuef =

∫ 1

−1
tTf [ζ]NT

fkufk[ζ] dζ (16f)

where umk = [ukx, uky]
T and ufk = [ukz, ϕkx, ϕky]

T . Finally, the matrices Nmk,N fk split the
components of the normal to the element side, as follows

Nmk =

[
nkx 0 nky
0 nky nkx

]
, N fk =

 0 0 0 nkx nky
nkx nky 0 0 0
−nky 0 −nkx 0 0

 . (16g)

4 NUMERICAL RESULTS

An investigation on the performance of the proposed shell element for linear static and buckling
analysis of laminated composite folded plates is presented. First, the static linear analysis of lami-
nated composite plates for di�erent laminate stacking sequences (LSS) and span-to-thickness ratios
is performed. Particular attention is given to the point-wise and global convergence of the stress
resultant to elucidate the behavior of the element for regular and distorted mesh. Then, buckling
of simply supported plates is reported. Buckling modes, loads, and their convergence are reported.
Finally, linear static and buckling analysis of three folded, laminated-composite, are reported. The
�rst is a clamped Ω section under shear force. The second is a clamped C shaped section under
shear force while the third is a clamped box under torsional couple. Di�erent LSS are considered.
Global convergence for linear static analysis and convergence on buckling load, buckling modes and
comparison with S8R are given.

4.1 Linear static analysis of laminated plates

The benchmark for static linear analysis is a simply supported square plate of side a (see �g. 2)
under uniform distributed load q. The lamina elastic properties are: E1 = 25, E2 = 1, G12 = G13 =
0.5, G23 = 0.2, ν12 = 0.25.

Cross-ply and angle-ply laminates are considered, as follows:

i.. A symmetric cross-ply laminate [0/90/0] with SS1 boundary [49, Section 3.1.3] and shear
factors k11 = 235445/404004, k12 = 0, k22 = 289/360 [18];

ii.. An antisymmetric cross-ply laminate [0/90], with SS1 boundary and shear factors k11 = k22 =
297680/362481, k12 = 0 [18];

iii.. An antisymmetric angle-ply [−45/45] [19];

iv.. An angle-ply [−30/60/− 60/30], with SS2 boundary condition and shear factors k11 = k22 =
k12 = 5/6 [19].
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Figure 2: Simply supported square plate. Geometry and mesh.

All results are obtained for side-length/thickness ratio a/t = 10, 20, 100. Analytical solutions
[42] are used as reference, using the following dimensionless parameters for displacement and stress
resultants:

w̄ = w
100E2

qt (a/t)4 , N̄x = Nx
100

q t (a/t)2 , S̄y = Sy
100

q t (a/t)
(17)

and  M̄x

M̄y

M̄xy

 =
100

q t2 (a/t)2

Mx

My

Mxy

 (18)

being w the transversal displacement of the plate.
Point-wise converge for displacements and stress resultant are listed in Tables 1, 2, 3 and 4.

The percentage error is de�ned as

error% = 100× numerical− analytical

analytical
(19)

It can be seen in Tables 1�4 that the convergence to the analytical solution is very fast for all
values of span-to-thickness ratio.

Stress resultant convergence are graphed in Figs. 3, 4, 5 and 6. The solid line representing h2

is shown for reference; where h is the element size of the regular mesh, or span over number of
elements per side for irregular meshes. It can be seen that the element displays h2 convergence for
a variety of laminates and span-to-thickness ratios, and that the h2 convergence is maintained for
distorted mesh (Fig. 7).

Point-wise and overall convergence properties are investigated using also distorted mesh with
d = 0.2 a (see Fig. 2). The convergence rate measured using s-norm [32], shows that the rate of
convergence is preserved also for distorted mesh (Fig. 7).

The results are compared with the S8R laminated plate elements implemented in the commercial
software Abaqus [46, 49] and when available with mixed �nite element available in literature [18].
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% error
a/t Mesh w̄A M̄E

x M̄E
y M̄E

xy S̄E
y

10 4x4 3.152 1.197 8.011 21.016 6.552
8x8 0.745 0.127 1.053 4.986 1.963
16x16 0.188 -0.019 0.2 1.199 0.506
32x32 0.051 -0.006 0.043 0.316 0.111
64x64 0.017 -0.001 0.009 0.095 0.016

20 4x4 3.931 -0.569 9.537 22.012 1.151
8x8 0.929 -0.174 1.441 4.463 1.402
16x16 0.226 -0.067 0.315 0.983 0.481
32x32 0.063 -0.017 0.079 0.227 0.11
64x64 0.013 -0.003 0.023 0.038 0.015

100 4x4 4.886 -4.264 9.921 24.363 -17.493
8x8 1.087 -0.338 1.711 4.56 -3.414
16x16 0.268 -0.086 0.38 0.904 0.015
32x32 0.06 -0.022 0.101 0.205 0.068
64x64 0.015 -0.004 0.025 0.041 0.005

Dimensionless analytical values
a/t - w̄A M̄E

x M̄E
y M̄E

xy S̄E
y

10 - -1.168 7.016 1.15 -0.317 18.955
20 - -0.796 7.432 0.888 -0.264 19.976
100 - -0.671 7.594 0.789 -0.243 20.448

Table 1: Percentage error with respect to the analytical solution values [41] on the transversal displacement
at point A, bending moments and shear forces at point E, for regular mesh and span-to-thickness
ratios on a simply supported square plate [0/90/0] under uniform distributed load.

% error
a/t Mesh w̄A M̄E

x M̄E
xy S̄E

y

10 4x4 1.553 1.683 7.541 -29.66
8x8 0.359 0.231 2.138 -16.246
16x16 0.087 0.032 0.474 -8.555
32x32 0.021 0.002 0.062 -4.389
64x64 0.005 -0.005 -0.025 -2.222

20 4x4 1 0.677 9.609 -30.793
8x8 0.244 0.126 3.044 -16.347
16x16 0.057 0.008 0.812 -8.538
32x32 0.006 -0.005 0.171 -4.372
64x64 0 -0.006 0.006 -2.213

100 4x4 0.724 -0.144 11.321 -32.146
8x8 0.194 0.008 4.041 -16.747
16x16 0.041 -0.008 1.257 -8.618
32x32 0.006 -0.008 0.34 -4.376
64x64 0 -0.008 0.071 -2.21

Dimensionless analytical values
a/t - w̄A M̄E

x M̄E
xy S̄E

y

10 - -1.951 6.268 -1.604 -34.703
20 - -1.759 6.291 -1.577 -34.881
100 - -1.698 6.301 -1.559 -34.937

Table 2: Percentage error with respect to the analytical solution values [41] on the transversal displacement
at point A, bending moments and shear forces at point E, for regular mesh and span-to-thickness
ratios on a simply supported square plate [0/90] under uniform distributed load.
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% error
a/t Mesh w̄A M̄A

x M̄C
xy S̄B

y N̄C
x

10 4x4 1.29 9.298 5.699 -30.38 -21.691
8x8 0.305 2.132 2.862 -16.845 -11.659
16x16 0.078 0.511 1.109 -8.961 -5.901
32x32 0.023 0.121 0.363 -4.621 -2.492
64x64 0.008 0.027 0.098 -2.345 -0.93

20 4x4 0.513 8.206 5.899 -31.78 -18.554
8x8 0.147 2.054 2.659 -17.046 -6.974
16x16 0.037 0.497 0.998 -9.026 -3.673
32x32 0.009 0.117 0.33 -4.656 -1.808
64x64 0 0.024 0.087 -2.365 -0.761

100 4x4 0.136 7.741 6.274 -33.255 -17.434
8x8 0.078 2.008 2.885 -17.702 -3.964
16x16 0.019 0.493 0.991 -9.173 -1.077
32x32 0 0.12 0.288 -4.679 -0.421
64x64 0 0.027 0.066 -2.371 -0.234

Dimensionless analytical values
a/t - w̄A M̄A

x M̄C
xy S̄B

y N̄C
x

10 - -1.279 3.72 -4.381 -32.788 -0.774
20 - -1.091 3.745 -4.479 -32.517 -0.697
100 - -1.031 3.755 -4.552 -32.398 -0.641

Table 3: Percentage error with respect to the analytical solution values [41] on the transversal displacement at
point A, bending moments at points A, C, shear forces at point B and membrane stress resultant at
point C, for regular mesh and span-to-thickness ratios on a simply supported square plate [−45/45]
under uniform distributed load.
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% error
a/t Mesh w̄A M̄A

x M̄A
y S̄D

y

10 4x4 2.818 0.413 2.057 -27.937
8x8 0.54 -0.211 0.038 -15.242
16x16 0.097 -0.1 -0.084 -7.994
32x32 0.011 -0.034 -0.034 -4.096
64x64 0 -0.014 -0.014 -2.071

20 4x4 2.313 -0.345 1.507 -28.723
8x8 0.397 -0.32 -0.02 -15.368
16x16 0.055 -0.121 -0.091 -8.029
32x32 0 -0.04 -0.036 -4.109
64x64 0 -0.016 -0.014 -2.08

100 4x4 2.066 -0.465 1.573 -29.419
8x8 0.329 -0.366 -0.034 -15.88
16x16 0.045 -0.128 -0.088 -8.1
32x32 0 -0.042 -0.036 -4.11
64x64 0 -0.016 -0.016 -2.078

Dimensionless analytical values
a/t - w̄A M̄A

x M̄A
y S̄D

y

10 - -0.926 7.126 4.419 -37.18
20 - -0.731 7.274 4.413 -37.117
100 - -0.668 7.326 4.412 -37.109

Table 4: Percentage error with respect to the analytical solution values [41] on the transversal displacement
at point A, bending moments at point A and shear force at point D, for regular mesh and span-to-
thickness ratios on a simply supported square plate [30/− 60/60/− 30] under uniform distributed
load.
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Figure 3: Simply supported square plate [0/90/0]. Convergence of bending moments and shear forces at
point E, for regular for various values of span-to-thickness ratio. The solid line represents h2

(shown for reference). S8R (Abaqus) and HQ4 [18] results are shown for comparison.
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Figure 4: Simply supported square plate [0/90]. Convergence graphs for �exural moments, shear stress
resultant, and axial stress resultant at point E for di�erent span-to-thickness ratio using regular
mesh. S8R (Abaqus) and HQ4 [18] results are shown for comparison.
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Figure 5: Simply supported square plate [−45/45]. Convergence graphs for �exural moments resultant at
points A and C for di�erent span-to-thickness ratios using regular mesh. S8R (Abaqus) and HQ4
[18] results are shown for comparison.
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Figure 6: Simply supported square plate [30/ − 60/60/ − 30]. Convergence graphs for �exural moments
resultant at points A for di�erent span-to-thickness ratio using regular mesh. S8R (Abaqus) and
HQ4 [18] results are shown for comparison.



Composite Structures, 116:223�234, 2014. 17

-4

-3

-2

-1

 0

-2 -1  0

lo
g

(E
σ/

E
re

f)

log(h)

-4

-3

-2

-1

 0

-2 -1  0

lo
g

(E
σ/

E
re

f)
log(h)

[0/90/0] [0/90]

-5

-4

-3

-2

-1

 0

-2 -1  0

lo
g
(E

σ/
E

re
f)

log(h)

-4

-3

-2

-1

 0

-2 -1  0

lo
g
(E

σ/
E

re
f)

log(h)

[−45/45] [30/− 60/60/− 30]

Figure 7: Simply supported square plate for di�erent LSS. Convergence graphs using s-norm, for di�er-
ent span-to-thickness ratio using regular and distorted mesh. Eref calculated with the proposed
element, using a very �ne mesh.
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4.1.1 Buckling analysis of a laminated square plate

The buckling analysis of a laminated square plate (l×l×t) is presented here. The geometry, material
properties, boundary, and load conditions are taken from [45]. The plate is simply supported on
its boundary and loaded with a uniform edge pressure λ. The thickness is t = 1.272 10−4 m. The
length is l = 0.508 m. The LLS is [0/90/90/0]S . The lamina materials properties are E1 = 181
GPa, E2 = 10.27 GPa, G12 = 7.17 GPa, ν12 = 0.28. The critical loads are listed in Table 5 and the
buckling modes are shown in Fig. 8. Note that h2 convergence is achieved for buckling loads (i.e.,
eigenvalues) as shown in Fig. 9. While the results obtained using the proposed element coincide
with those obtained using Abaqus S8R elements when both use a 64x64 mesh, it must be noted
that the proposed element has only 24 dof in comparison to 48 dof for S8R.

mesh λ1 λ2 λ3 λ4 λ5 λ6

4x4 1.757 4.505 11.140 11.852 17.938 19.140
8x8 1.548 3.575 7.083 8.008 10.677 11.827
16x16 1.500 3.365 6.202 7.166 8.9565 10.438
32x32 1.489 3.315 6.006 6.968 8.5765 10.131
64x64 1.486 3.303 5.959 6.911 8.4855 10.057

64x64 (S8R) 1.486 3.299 5.944 6.904 8.460 10.033

Table 5: Square plate [0/90/90/0]S under uniaxial compression. Convergence of buckling loads with mesh
re�nement.

λ1 λ2 λ3

λ4 λ5 λ6

Figure 8: Square plate [0/90/90/0]S under uniaxial compression. Buckling modes.
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re�nement. The solid line represents h2 (for reference).
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4.2 Linear and buckling analysis of laminated folded plates

The linear static and buckling analysis of three folded plate structures are here presented here.
The �rst is a clamped beam with Ω-section under shear force, the second is a clamped beam with
C-section under shear forces, and the third is a clamped box beam subjected to torque. Each
folded section is analyzed for various laminate stacking sequences (LSS). For the �rst section, static
linear analysis is performed and the convergence using s-norm is reported. For the second and
third sections, buckling convergence as a function of mesh re�ning is discussed. The predictions are
compared with results obtained using element S8R in Abaqus.

4.2.1 Clamped beam with Ω-section under shear force

Linear static analysis of a clamped beam with Ω section is reported here. The geometry is shown
in Fig. 10. The length is l = 100 mm and the width is a = 2.5 mm. Three thickness are considered
a/t = 2, 5/2, 10/3. The mechanical properties of each lamina are E1 = 104 GPa; E2 = 10.3 GPa;
G = 5.15 GPa; ν12 = 0.021 and two LSS are analyzed, [0/90/0/90] and [0/45/0/45]. A line load
q = 25 kN/mm is applied. The global convergence using s-norm is reported in Fig. 11 and a rate of
convergence h2 is shown.

Figure 10: Clamped beam with Ω-section. Geometry, boundary conditions and mesh.

4.2.2 Clamped beam C-section under shear force

The buckling analysis of folded C-section [50] is presented here. The geometrical data (Fig. 12)
are l = 36 m, b = 2.025 m, a = 6.05 m and t = 0.05m. The concentrated load is F = 250 KN.
The mechanical properties of each lamina are E1 = 30.6 GPa; E2 = 8.7 GPa; G12 = 3.24 GPa;
G23 = 2.29 GPa; ν12 = 0.29 and two LSS, here called LSS1 and LSS2, are analyzed. LSS1 is shown
in Fig. 12 and LSS2 is a [0/90/0] for all three panels in the C-section. Buckling loads are reported
in Table. 6, achieving h2 convergence, as shown in Fig.13. The corresponding modes are graphed
in Fig. 14.
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Figure 11: Clamped beam with Ω-section for di�erent LSS. Convergence graphs using s-norm, for di�erent
values of a/t using regular mesh. The solid line represents h2 (shown for reference). Eref

calculated with the proposed element, using a very �ne mesh.

Figure 12: Clamped beam C-section. Geometry, boundary condition and mesh.
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LSS1 LSS2

mesh λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4
2 1.1209 1.5855 2.1198 2.1807 0.6902 1.6842 2.0256 2.0550
4 1.1010 1.5750 1.6623 1.6963 0.6714 1.5714 1.6667 1.6882
8 1.0952 1.5483 1.5767 1.5859 0.6668 1.5299 1.5836 1.6029
16 1.0935 1.5242 1.5541 1.5760 0.6657 1.5186 1.5633 1.5811
16 (S8R) 1.0736 1.5164 1.5450 1.5919 0.6670 1.5200 1.5865 1.6080

Table 6: Clamped beam C-section for di�erent LSS. Convergence of buckling loads with mesh re�nement.
The values on the �rst column refer to the numbers of the element along b.
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Figure 13: Clamped beam with C-section under shear forces for di�erent LSS. Convergence of buckling loads
with mesh re�nement. The solid line represents h2 (for reference). Eref calculated with Abaqus
S8R element, using a very �ne mesh.
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λ1 λ2

λ3 λ4

Figure 14: Clamped beam with C-section for LSS=LSS1. Buckling modes corresponding to buckling loads
λ1..λ4.
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4.2.3 Clamped box under torsional couple

The buckling analysis of a clamped box under torsional couple is presented here. The geometry,
boundary conditions, and load are shown in Fig. (15). The geometrical data are l = 1000 mm,
a = 100 mm and t = 10 mm. The line load is q = 25 kN/mm. Two LLS are considered: [45/ −
45/45/ − 45/45]s and [15/ − 15/15/ − 15/15]s. The elastic modula for the lamina are: E1 = 104
GPa; E2 = 10.3 GPa; G12 = 5.15 GPa and ν12 = 0.021.

Figure 15: Geometry, boundary conditions, and load for clamped box subjected to torque load.

The lower four buckling modes are listed in Table 7, where comparison with S8R elements have
been made, and h2 convergence is shown in Fig. 16. Finally, buckling modes, for LSS [45/ −
45/45/− 45/45]s, are shown in Fig. 17.
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Figure 16: Clamped box under torsional couple for di�erent LSS. Convergence of buckling loads with mesh
re�nement. The solid line represents h2 (for reference). Eref calculated with Abaqus S8R element,
using a very �ne mesh.

λ1 λ2

λ3 λ4

Figure 17: Clamped box under torsional couple with LSS [45/ − 45/45/ − 45/45]s. Buckling modes corre-
sponding to buckling loads λ1 · · ·λ4.
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[45/− 45/45/− 45/45]s [15/− 15/15/− 15/15]s
mesh λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4
2 424.81 453.06 488.72 535.83 195.29 204.22 272.38 278.44
4 241.50 306.71 316.28 391.71 123.95 130.78 193.82 200.86
8 202.34 261.70 273.92 334.97 111.71 119.92 171.88 179.67
16 190.19 246.10 263.15 314.52 107.76 116.36 167.09 175.02
20 187.82 242.93 261.78 311.30 107.08 115.71 166.43 174.38
24 186.18 240.76 260.90 309.56 106.64 115.29 166.03 173.99
24 (S8R) 184.83 242.78 258.47 307.13 106.53 115.63 165.14 173.40

Table 7: Clamped box under torsional couple for di�erent LSS. Convergence of buckling loads with mesh
re�nement. The values on the �rst column refer to the numbers of the element along a.
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5 CONCLUDING REMARKS

A simple mixed quadrilateral 3D plate �nite element with 6 dof/node for linear static and buckling
analysis of plate/folded plate has been presented. An assessment of performance is given. In
the linear analysis case, numerical results show a global convergence h2 measured in s-norm for
di�erent LSS and thickness-to-span ratios. The point-wise convergence is comparable to that of
displacement based elements with higher number of dof, such as S8R. This makes the proposed
element particularly suitable for stress resultant recovery in the case of coarse meshes. The use
of drilling rotation, within a symmetric formulation and without penalty functions (thus avoiding
spurious modes), and accurate evaluation of displacements and rotation, makes the element suitable
for folded plate structures and geometrically nonlinear analysis when coupled with a corotational
formulation. The same behavior shown in linear analysis of plates is preserved for linear analysis and
buckling analysis of folded plates. Not only h2 convergence is shown for the evaluation of buckling
loads but also very low errors are seen, on average, for coarse meshes.
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