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abstract

Degradation of laminate moduli and laminate coefficients of thermal expansion, as well as degrada-
tion of the cracked lamina moduli and lamina coefficients of thermal expansion, are predicted as a
function of crack density for laminated composites with intralaminar matrix cracks. The method-
ology assumes linear elastic behavior and periodicity of the transverse cracks. The representative
volume element is discretized into finite elements. Stress free conditions on the crack surfaces are
enforced. Periodic boundary conditions are applied so that any state of applied far-field strain can
be simulated. An averaging procedure is used to yield the average stress field. Three uniaxial states
of strain and a null state of strain coupled with a unit increment of temperature are used to obtain
the degraded stiffness and coefficients of thermal expansion. Results are presented for a number
of laminates and materials systems that are customarily used in the literature for experimenta-
tion. The modeling approach and results can be used to assess the quality of approximate models.
Comparisons are presented to the predictions of one such model and to experimental data. Also,
comparisons are presented to classical lamination theory for asymptotic values of crack density.
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1 Introduction

Numerous approximate methods have been developed to predict the onset and evolution of trans-
verse matrix cracking in laminated composites. Micromechanics of Damage Models (MMD) find an
approximate elasticity solution for a laminate with a discrete crack or cracks [1–22]. Crack Open-
ing Displacement (COD) models [23–30] are based on the theory of elastic bodies with voids [31].
The methods are approximate because kinematic assumptions are made, such as a linear [32] or
bilinear [33] distribution of intralaminar shear stress through the thickness of each lamina, as well
as particular spatial distributions of inplane displacement functions [21], stresses, and so on.
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The predictions attained with various approximate methods have been compared in the lit-
erature to available experimental data in order to assess the quality of the predictions. Since
experimentation is very difficult and laborious, validations are limited to comparing crack density
vs. laminate strain (or stress) and laminate modulus reduction vs. laminate strain (or stress). No
data exists regarding, for example, degradation of the coefficients of thermal expansion at lamina
and laminate levels. Ply degradation has to be inferred from laminate modulus reduction. Since
physically observing and counting off-axis cracks is very difficult, the measured crack density is
limited to that observed in a single lamina (a 90 deg ply) with the cracks perpendicular to the load
direction. However, the available approximate methods are able to predict damage in off axis plies,
as well as degradation of shear modulus and Poisson’s ratio at the ply level. Unfortunately, those
predictions cannot be validated easily.

Several authors have compared approximate solutions to finite element simulations [12, 26, 29,
34–36]. Along those lines, this work proposes a finite element analysis methodology that provides a
numerical solution to the 3D equations of elasticity for cracked laminated composites with no addi-
tional assumptions other than linear elastic material and periodically spaced cracks. The objective
is to produce solutions for a number of responses that are very difficult to tackle experimentally.
These solutions could then be used as a benchmark to evaluate the quality of the approximations
in various models. As an illustration, the solutions obtained in this work are compared to discrete
damage mechanics (DDM) solutions [50]. Also, comparisons to experimental data are presented.
Most of the predictions for laminate #1 and #6 are reported herein, and all the results for all six
laminates listed in Table 1 are provided as supplementary materials in the online edition of the
manuscript.

The model is set up to predict the reduction of stiffness and CTE when only two symmetrically
located laminas contain periodically spaced transverse cracks. This is sufficient to validate the
approximate models in the literature. Once the reduction of stiffness and CTE for this case is
obtained, it is possible to use a CDM approach to address the general case of multiple laminas
cracking [50], but such a study is beyond the scope of this work.

2 Periodicity and Homogenization

Since all the approximate methods assume linear elastic material, the proposed methodology retains
such assumption, but it must be noted that linearity can be easily removed in the context of finite
element analysis (FEA). Next, the proposed methodology assumes that transverse (matrix) cracks
occupy the entire ply thickness, are periodically spaced, and are infinitely long along the fiber
direction. Once again, these are common assumptions among the approximate models for which
we wish to provide a benchmark solution. The justification for these geometric assumptions are well
documented in the literature, e.g., [37, Section 7.2.1]. As a result of periodicity, a representative
volume element (RVE) is selected and analyzed. The RVE includes the entire thickness of the
laminate, it spans the distance between two consecutive cracks, and it has a unit length along the
fiber direction (Figure 1). Symmetric laminates subjected to membrane loads are chosen as these
are common laminate and load configurations used in virtually all experiments and approximate
modes in the literature. A generalization to flexural deformation is possible but not trivial.

Periodicity conditions are carefully applied and verified in such a way that the volume average
εi of the inhomogeneous strain field inside the RVE equals the applied applied strain ε0i . Other
boundary conditions (b.c.) faithfully reflect the stress free condition at the crack surfaces and also
allow for the application of any state of far field strain. The analysis yields inhomogeneous strain
and stress fields from which it is possible to calculate the degraded stiffness matrix of the laminate.
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To calculate the degraded stiffness matrix of the laminate when lamina (k) is cracked, the RVE
is subjected to an average strain εi, where i = 1, 2, 4, 5, 6, using Voigt contracted notation in the
the coordinate system (c.s.) of the cracked lamina. The c.s. of the cracked lamina is chosen so that
the stress free b.c. at the crack surface are easily applied. With reference to Figure 1, the averaged
strain is applied by enforcing the following b.c. on the displacements
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where t is the thickness of the laminate, λ = 1/(2l) is the crack density for cracks spaced a distance
2l. Note that the applied strains ε0i result in average strains εi.

Equation (1) is applied on faces with normal in the x-direction and (2) is applied on faces with
normal in the y-direction. Note that the x-direction is the fiber direction of the cracked lamina.
Since the laminate is in a state of plane stress, no b.c. are imposed in the z-direction.

In finite element analysis, equations such as (1) are applied via constraint equations (c.e.)
between the master node on one face and the slave node on the opposite face. In three dimensional
(3D) analysis, every node has three degrees of freedom (dof) representing the displacements u, v, w
at the node. By specifying a fixed relationship between two nodes at opposite faces, the slave dof
is eliminated. With reference to (1), if the x-face with normal in the positive direction of x, which
is called +x-face, is chosen as master surface, then the dof u, v, w, are eliminated at the slave,
−x-face.

Both (1) and (2) apply at the four edges where the ±x-faces and ±y-faces intersect, but the
equations cannot be applied independently, as it is done for the faces, because applying (1) elimi-
nates the slave dof that are necessary to apply (2) at the same edges, i.e., at edges where intersecting
faces share the same dof. The solution for this problem is to combine (1) and (2) [38, p. 155], in
such a way that both boundary equations can be applied simultaneously between a master/slave
pair of edges. It turns out that this is only possible among for diagonally opposite edges.

With reference to Figure 2, for edges XpYp (master) and XmYp (slave), equations (1) and (2)
are added together, as follows
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For edges XmYp (master) and XpYm (slave), equations (1) and (2) are subtracted from each
other, as follows
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Since the ±z-faces are free, the eight vertices can be constrained along with their edges [38,
p. 163]. To aid in the programming of the Python script used to automate the modeling, the edges
are labeled as the faces that define them (see Fig. 2).
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3 Laminate Stiffness and Coefficient of Thermal Expansion

In the context of this manuscript, the objective of homogenization is to obtain the apparent stiff-
ness of a homogenized material where the crack is not geometrically present but having its effect
represented by an apparent, degraded stiffness Q. In this work, it is assumed that all cracks are
subjected to a combination of tensile and shear loads, without compression. For a discussion of the
effects of interfacial crack compression, see [39,40].

The point wise, linear, elastic constitutive equation, with ∆T = 0, is

σ = Q̃ : ε (5)

where Q̃ is the virgin stifness. A volume average is defined as

φ =
1

V

∫
V
φ dV (6)

The apparent stiffness Q is defined in such a way that it relates the average stress and strain
over the volume V of the RVE as follows

σ = Q : ε (7)

The volume V = VS + VV encompasses the volume of the solid VS plus the volume of the void
VV left by the opening of the crack. If a single crack is placed in the center of the periodic RVE,
VV is the volume of the void from that single crack. If the periodic RVE is defined between two
successive cracks, as it is done in this work, then VV is composed of two half volumes of the cracks
on the boundary.

The average strain over the RVE can be decomposed into the strain in the solid plus the
deformation of the void

ε =
1

V

∫
VS

ε dVS +
1

V

∫
∂VV

u⊗ n dVV (8)

where u, n,⊗, are the displacement vector, the outward unit normal to the void surface, and the
symmetric dyadic product operator, respectively. The first term on the RHS is not equal to the
applied strain ε0, as it is clearly explained in [39, Eq. (2)]. Once the deformation of the void is
added, the total average is equal to the applied strain ε0 [41].

Since the stress inside the void is zero, the average stress over the RVE is

σi =
1

V

∫
VS

σi dVS (9)

Substituting ε0 for ε in (3), the columns of the apparent stiffnessQ can be obtained by calculating
the average stress for a canonical set of applied strains, namely

Qij =
1

V

∫
VS

σj dVS ; ε0j = 1 (10)

Since transverse matrix cracking primarily affects the inplane properties [26], the intact proper-
ties can be used for the intralaminar components of the stiffness, i.e., Q∗

ij with i, j = 4, 5 [37, (5.47)].
The components of the degraded stiffness matrix Qij are found by solving the discretized model

of the RVE subjected to three loading cases, where only one component of the in-plane strain εj is
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different from zero at a time [38, (6.18)] and ∆T = 0. By choosing a unit value of applied strain,
and taking into account the enforced state of plane stress, the degraded stiffness matrix is found as

Qij =
λ

t

∫
V
σidV ; with ε0j = 1; ∆T = 0 (11)

For each of the three cases, the stress σi is computed by the FEA code and the components of
the averaged stress σi are calculated by a post processing script that evaluates the volume integrals
within each element using Gauss quadrature, then adds them for all the elements, and divides the
result by the volume of the RVE.

The first column of Qij is obtained by applying a strain ε0 = {1, 0, 0, 0, 0} on the boundary
(faces and edges), using (1)-(2). The second column of Qij is obtained by applying a strain ε0 =
{0, 1, 0, 0, 0}. The third column of Qij is obtained by applying a strain ε0 = {0, 0, 0, 0, 1}. In all
three cases, the b.c. are periodic for all laminas and stress free on the cracked surfaces.

Next, periodic boundary conditions simulating zero strain at the uncracked laminas, stress
free conditions at the cracked lamina, and a unit change of temperature ∆T = 1 over the entire
laminate, allowing us to obtain the average thermal stress field as

σthermali =
λ

t

∫
V
σidV ; with εj = 0 ∀j; ∆T = 1; i = 1, 2, 6 (12)

Once the averaged thermal stress is known, the laminate coefficient of thermal expansion (CTE)
of the laminate is calculated as

αi = Q−1
ij σthermal

j (13)

Once the laminate stiffness Qij in the c.s. of the laminate is known, the laminate moduli are
computed using [37, (6.35)],

Ex =
Q11Q22 −Q2

12

Q22
Gxy = Q66

Ey =
Q11Q22 −Q2

12

Q11
νxy =

Q12

Q22

(14)

The energy release rate (ERR) is a quantity of interest for predicting the onset of intralaminar
cracks and the subsequent evolution of crack density. To calculate the ERR, it is convenient to
use the laminate stiffness Qij in the c.s. of the cracked lamina, because in this way, the ERR can
be decomposed into opening and shear modes. Since the laminate stiffness is available from the
analysis as a function of crack densityλ, the ERR can be calculated, for a fixed strain level (load),
as

GI =
V

2∆A
(ε2 − α2∆T ) ∆Q2j (εj − αj∆T ) ; opening mode (15)

GII =
V

2∆A
(ε6 − α6∆T ) ∆Q6j (εj − αj∆T ) ; shear mode (16)

where V,∆A, are the volume of the RVE and the increment of crack area, respectively; ∆Qij is
the change in laminate stiffness corresponding to the change in crack area experienced; and all
quantities are laminate average quantities expressed in the c.s of the cracked lamina in order to
allow for ERR mode decomposition [18]. It can be seen that the proposed methodology provides
the key ingredients for the computation of the ERR; namely the degraded stiffness and degraded
CTE of the laminate, both as a function of crack density.
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4 Lamina Stiffness and CTE

Unlike approximate methods, in this work the degraded stiffness of the cracked lamina is calculated
directly by averaging the stress field in the cracked lamina. The procedure is identical to that for
the laminate but integrating over the volume of the lamina

Q
(k)
ij =

λ

tk

∫
Vk

σidV ; with εj = 1 (17)

where tk, Vk, are the thickness and volume of the cracked lamina, respectively. Since this is done
simultaneously with the analysis of the laminate, there is no additional computational cost or any
additional assumption involved.

Once the degraded stiffness of the cracked lamina is known, the reduction of stiffness can be
interpreted in terms of damage variables. Assuming damage in the form of a second order tensor
with principal directions aligned with the c.s. of the cracked lamina, the degraded stiffness can be
written as

Qij =

Q11 Q12 0
Q12 Q22 0

0 0 Q66

 =

(1−D11)Q
0
11 (1−D12)Q

0
12 0

(1−D12)Q
0
12 (1−D22)Q

0
22 0

0 0 (1−D66)Q
0
66

 (18)

where Q0
ij are the coefficients of the intact lamina. In other words, the presence of the crack on the

boundaries of the RVE (Figure 1) is homogenized. The damage variables can be calculated from
the results of the analysis as

Dij = 1−Qij/Q0
ij ; i, j = 1, 2, 6 (19)

Various hypothesis have been made in the literature about the relationship, or lack thereof,
between the coefficients of the damage tensor. For example, [19,20] propose that the minor Poisson’s
ratio ν21 and the transverse modulus E2 degrade at the same rate; in other words, that D12 ≈ D22.

Furthermore, [42], [43] propose that D66 = 1− (1−Dt
11)(1−Dc

11)(1−Dt
22)(1−Dc

22), where the
superscripts t, c, indicate tension and compression. Since polymer matrix composites are relatively
brittle in tension/compression along the longitudinal direction and in transverse compression, Dt

11 ≈
Dc

11 ≈ D2
22 ≈ 0, resulting in D66 ≈ D22. The present work allows us to asses these assumptions

in the context of linear elastic behavior without the kinematic assumptions of other models in the
literature.

Simultaneously with the laminate thermal analysis, the average thermal stress in the cracked
lamina is obtained by averaging over the volume of the cracked lamina only, i.e.,

σ
(k) thermal
i =

λ

tk

∫
Vk

σidV ; with εj = 0 ∀j; ∆T = 1; i = 1, 2, 6 (20)

Once the averaged thermal stress in lamina (k) is known, the laminate coefficient of thermal
expansion (CTE) of the craked lamina is calculated as

α(k) =
(
Q

(k)
ij

)−1
σ
(k) thermal
j (21)
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5 Implementation

Since periodic boundary conditions are not readily available in Abaqus, they were implemented in
this work by developing a Python script for Abaqus/CAE 6.10-2. The script generates the RVE,
meshes, then generates constrains in the faces that are periodic, and finally solves the model and
stores the averaged stresses.

The script was validated against known solutions and experimental data. First, when no crack
is present, the solution must coincide with Classical Lamination Theory (CLT). Since the strain and
stresses in this case are piecewise constant throughout the body, no mesh refinement is necessary.
Still, different meshes were used to verify that the solution does not change as a function of the
number of nodes at the faces, i.e., the nodes that enforce both periodicity and the applied strain.
With reference to Table 1, laminate #1 was used for this validation. The inplane degraded stiffness
matrix predicted by CLT, in the laminate c.s., is defined as

QCLT
ij =

1

t

N∑
k=1

Q
(k)
ij tk ; with i, j = 1, 2, 6 (22)

where N is the number of laminas in the laminate and t, tk, are the laminate and lamina thickness,
respectively. For laminate #1 without any cracks (intact), (22) was calculated using [44]

QCLT, intact
ij, laminate c.s. =

 22108.664 9062.480 0
9062.480 26379.612 0

0 0 10993.620

 (23)

The QCLTij matrix can be transformed to the c.s. of the cracked lamina by standard coordinate
transformation [37, § 5.4.3], yielding

QCLT, intact
ij, lamina c.s. =

 27979.25 6057.74 −90.29
6057.74 26518.51 2096.98
−90.29 2096.98 7988.88

 (24)

Therefore, the quality of the finite element simulation of intact laminate can be benchmarked
by this result.

5.1 Intact RVE

The procedure followed to construct the model for the undamaged (intact) RVE is as follows:

1. Create the part: The python script generates an extruded square of dimensions x = y = tk,
z = t, The dimension in the x- and y-directions is chosen as the thickness of one lamina to
have a good element’s aspect ratio. Subsequently, the script creates a part embodying a 3D
deformable body.

2. Define the material: An elastic material of type Engineering Constants is created and the
properties from Table 2 are assigned to it.

3. Create the section: A homogenous solid section is created with the previous material.

4. Create the sets: In order to apply the boundary conditions a number of sets are defined,
namely, the faces whose normal points either in x or y direction, positive or negative orien-
tation, excluding the edges, and the edges between those faces. An algorithm was devised to
search for these features using Python classes available in Abaqus/CAE.
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5. Create the LSS: Planes are created to delimit the laminas. A datum plane is generated
offsetting the xy-plane by the accumulated thickness. Immediately afterwards, the part is
partitioned using those planes. The partition process creates a cell for each lamina in the
laminate. A material orientation, relative to (k), is assigned to each cell. The section created
in step 3, which is independent of the orientation, is then assigned to every cell.

6. Create the instance: A new instance is created in the root assembly and translated so the
mid-plane is located at coordinate z=0.

7. Create the Step: The python script creates a new Static General step.

8. Define the Field Output Requests: The variables required for the analysis are requested from
the solver: E (Strain), S (Stress), IVOL (Integration Volume), U (displacements).

9. Create a Reference Point: A reference point is created and a unit constant displacement is
assigned to it. This point is necessary because the constraint equations in Abaqus relay on
degrees of freedom. Since the periodic boundary conditions (equations (1)-(2)) contain a
constant term that represents the applied strain, a degree of freedom is needed to apply such
constrain throughout the simulation; this can only be achieved by using a Reference Point.

10. Create the Mesh: A C3D8 (8-node brick) or C3D20 (20-node brick) element for each layer is
generated by the python script.

11. Restrain Rigid Body Motion: The node closer to the center of the RVE is fixed in x-, y-, and
z-directions to prevent rigid body motion.

Once the RVE is constructed, the model is used as a template to generate each of the three
cases, as follows:

1. The template model is copied to new models named case-a, case-b, case-c, and case-d.

2. Create Periodic Boundary Conditions for opposite faces. The procedure followed to pick the
master and slave edges is as follows:

(a) X axis: The face whose normal is in the direction of x positive is chosen as the master,
while the face whose normal is in the negative direction is slave. The nodes in the slave
face are searched to pair with the nodes in the master face. This is done by looping
through the array of nodes in the master face and selecting the slave node with the
minimum distance in the yz plane. Both faces, master and slave, must have the same
number of nodes, which is not a problem for a parallelepiped RVE such as the one used
in this study or when using a structured meshing algorithm. In the interaction module,
a constraint equation, such as equations (1) or (2), is created for each direction (x, y and
z). This equation relates the displacement of the master and the slave node with the
displacement that results from the imposed strain field multiplied by unit displacement
at the reference node.

(b) Y axis: The same procedure used for the x axis is repeated for the y axis.

3. Create Periodic Boundary Conditions for edges. As explained before, the constraint equations
at the edges are the combination of the equations at the intersecting faces. The procedure
followed to pick the master and slave edges is as follows:
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(a) In the xy plane (Figure 1) there are four edges and the equations have to relate two
pairs: XmYm with XpYp and XmYp with XpYm. If we think of m as 0 and p as 1,
then the pairs can be generated with a loop with i= 0,1 (the two pairs). The master is
the loop index value i while the slave is the bitwise negation (word size is two bits).

(b) A truth table for this relation is shown in Table 3. This procedure automates the
selection of pairs of edges in the python script.

(c) Once the master and slave edges have been defined, a pair algorithm is used to find the
slave node for each master node. The algorithm looks for the pair with the minimum
distance in the z direction.

(d) A constraint equation, such as equation (3) for XpYp-XmYm or (4) for XmYp-XpYm,
is added to the model for each pair of master-slave nodes, relating the displacement in
x-, and y-direction with the displacement that results from the imposed strain field.

4. Create job: A job is created and submitted. The number of physical processors is assigned
to execute the job in parallel.

5. Get the Reduced Stiffness Matrix column: For each case, a, b, and c, in item 1, the field
output corresponding to the stress in the c.s. of lamina (k), which is the global c.s. for the
model, is looped over the integration points and an accumulation variable is incremented by
the stress value times the integration volume. The same procedure is followed for the strain.

At the end of the loop, the total stresses and strains are divided by the total volume, yielding the
average strains and stresses in the laminate. For each case, a, b, and c, the three components of
stress yield the column 1, 2, and 3, of the degraded stiffness matrix of the laminate.

The degraded stiffness matrix for laminate #1, calculated using eight C3D8 elements and thirty-
six nodes is obtained, in the c.s. of the cracked lamina, as

QCLT, intact
ij, lamina c.s. =

 27979.25 6057.74 −90.29
6057.74 26518.51 2096.98
−90.29 2096.98 7988.88

 (25)

The accuracy of the FEA solution is measured by the number of significant digits to which the
FEA result concides with the CLT result

Significantij = − lg10
QFEA
ij −QCLT

ij

QCLT
ij

(26)

which, for laminate #1 yields

Significantij =

 7 7 6
7 7 8
5 6 7

 (27)

Equation (25) coincides with (24) up to single precision. Since Abaqus results are written in
single precision, we conclude that no error is found between the Abaqus solution and the CLT
solution. The homogenized (averaged) strains for each case are shown in Table 4. Note that all the
zeros are zeros up to single precision accuracy and ones are ones up to single precision accuracy.
The strain component 3 is not zero, thus confirming the plane stress state.



Composite Structures, 98:242–252, 2013. 10

5.2 Cracked RVE

Once the procedure used to build the intact RVE has been validated, the damaged RVE was
simulated. In this section, the differences with the intact template model are explained.

1. Create the Part: The RVE size in the y-direction is the inverse of the crack density because
the cracks are assumed to be equally spaced along that direction by a distance 2l = 1/λ. The
RVE size in the x-direction is the minimum between the inverse of the crack density (1/λ)
and the lamina thickness (tk), leading to elements with a good aspect ratio while minimizing
the number of elements required for a good discretization.

2. Normalization: The lengths, elastic moduli, and coefficients of thermal expansion of the
lamina are normalized by the maximum value of each type of data. This is done to minimize
numerical errors. The scale factors are saved for subsequent use to denormalize the results.

3. Sub-laminate partition: Because the crack faces are normal to the y-axis, the periodicity in
the faces normal to the y-axis is broken at the cracking laminas. Therefore, the part is divided
in five cells so each cell can be treated separately:

(a) Homogenized laminas below the (k) lamina (Lamina number 1 in Figure 2)

(b) Cracked lamina (k) (Lamina number 2 in Figure 2)

(c) Homogenized laminas between (k) and symmetric cracked lamina (N + 1 − k), i.e.,
Laminas number 3 to 6 in Figure 2.

(d) Cracked lamina N + 1− k (Lamina number 7 in Figure 2)

(e) Homogenized laminas above the N + 1− k lamina (Lamina number 8 in Figure 2)

4. Create the sets:

(a) In the homogenized cells (1, 3 and 5), constraints equations are set in pairs for the four
faces whose normal is in the x- and y-directions, plus and minus orientation. This is
done in the same fashion as in the intact case. The sets exclude the edges between the
x- and y-faces. Those edges feature constraint equations that are the combination of the
periodic boundary conditions for x- and y-faces (see (3)–(4)).

(b) In the cracked lamina cells (2 and 4), constraint equations are set only for the faces
whose normal is in x-direction, plus and minus direction. The sets exclude the edges
between the x- and z-faces because these nodes were included in the homogenized cells
sets. The cracks faces (normal in y-faces) are left unconstrained because they are stress
free surfaces (σ2 = 0).

5. Create the LSS: Cells 1, 3, and 5 may contain several laminas, therefore these cells (or sub
laminates) are partitioned further into laminas, and a similar procedure described for the
intact case is followed for the assignment of the material orientation and section.

6. Create the mesh: The initial seed size is calculated based on the aspect ratio of the RVE,
and then it is modified until the number of elements in the mesh is in the desired range that
ensures accuracy and affordable computational time.

Similarly to the intact case, once the template model has been defined, each strain case is
executed and the resultant homogenized stresses stored. The differences between the intact and
cracked models are highlighted below.
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1. Create Periodic Boundary Conditions in Homogenized Cells:

(a) Face constraints: For each homogenized sub-laminate (1, 3, and 5) and for each normal
axis (x and y) the nodes are paired following the procedure explained for the intact
model. Afterwards, constrains equations in x, y, and z, are created between the nodes
in the minus and plus orientation.

(b) Vertical edge constraints: The same procedure to find the pair master-slave edges out-
lined in the intact model is followed for the x-y edges in the homogenized cells.

2. Create Periodic Boundary Conditions: in cracked (k) and (N + 1− k) cells.

(a) X Face constraints: For each cracking lamina (cells 2 and 4) the nodes in the faces whose
normal is in the x-direction are paired following the procedure explained for the intact
model. Afterwards, constrains equations in x, y, and z, are created between the nodes
in the plus (p) or minus (m) orientations. The crack surfaces are left unconstrained.

6 Results

A mesh convergence study was performed for Laminate # 1 with crack density λ = 1/tk. The
percent error is calculated as

%error =
|Q11(n)−Q11(N)|

Q11(N)
× 100 (28)

where n,N, are the number of nodes of a given discretization and the maximum number of nodes,
respectively. The % error is show in Figure 4. Computations were performed with N = 3, 390 for
C3D8 elements and N = 1, 000 for C3D20 elements. As it can be seen in Figure 4, once a threshold
number of elements is exceeded, the error decreases rapidly, converging to a negligible value. In
this work, all the computations were performed, if at all possible in terms of displacements, which
are more accurate than stresses in a displacement FEM formulation, and besides, they are stored
as double precision in Abaqus.

A contour plot of normalized strain is shown in Figure 5, where the RVE is replicated eight
times to aid the visualization. The strain field in the homogenized laminas matches the applied
strain, while cracked laminas experience less deformation. In the proximity of the crack tip the
strain increases up to 30% from the applied strain (ε2 = 1.3).

Calculated longitudinal laminate modulus vs. crack densities for laminates #1 and #6 are
shown in Figures 6-7. Results for the remaining laminates listed in Table 1 are shown as additional
material accompanying the online edition of this manuscript.

The asymptotic values of Ex for very low (λ = 10−2) and very high (λ = 103) crack density
coincide with the CLT solution obtained assuming that the cracked laminas are intact and fully
damaged, respectively. In between those values, the FEA solution is the best solution available, in
the sense that it is obtained with the minimum set of assumptions and simplifications. That is, a 3D
elasticity problem of a periodically cracked media is discretized with a mesh that has been shown
to yield negligible discretization error (Figure 4). The periodicity conditions are applied exactly
as far as the discretization allows it. No other approximations are introduced. In this sense, the
DDM solution is compared to the FEM solution, with the latter considered to be the benchmark
solution. Note that DDM assumes linear distribution of intralaminar shear stress σ4 and σ5 in each
lamina, while the FEM solution, with a large number of elements through the lamina thickness,
does not impose any significant kinematic assumption.
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Transverse laminate modulus Ey in laminate c.s. vs. crack density plots are shown in Figures 8-
9. Again, the CLT solution validates the asymptotes and the FEM solution becomes the benchmark
in between.

Note that, when compared to the intact value, the magnitude of degradation for Carbon/Epoxy
(Figures 7 and 9) is very small. Such degradation would be very difficult to detect experimentally.
Approximate models such as Abaqus and ANSYS progressive damage analysis (PDA) require
modulus reduction data to adjust their phenomenological material parameters, i.e., the fracture
energy [45]. Since modulus reduction is so difficult to detect experimentally, the identification of
material parameters in approximated models such as those could be unreliable. An alternative is
to generate modulus reduction data through simulation using the methodology proposed herein,
namely (Figure 9), and use such simulation results to adjust the phenomenological parameters in
the approximate model.

Apparent laminate coefficient of thermal expansion (CTE) in both x- and y-directions vs. crack
density are shown in Figures 10-11 for laminates #1 and #6, respectively. Unlike the laminate CTE
shown in Figures 10-11, the cracked lamina CTE remains constant for the six laminates analyzed,
i.e., α(k) = constant.

Experimental results are compared to the FEA solution in Figures 12-13 for laminate #2,
displaying good agreement.

All the comparisons, including those reported in the online edition, are good. The comparison
experimental data to FEM is good. The comparison of DDM to FEM is good. The most notable
difference occurs in the Poisson’s ratio versus crack density shown in Figure 14 for laminate #3
when the crack spacing is about seven lamina thickness, but even then, the difference is small.

The damage variables calculated with (19) for laminate #1 and #6 are shown in Figures 15-16.
Again, the DDM solution is close to the FEM benchmark. Note in Figures 17-18 that D12 = D22

for all values of crack densities. Therefore

Q12

Q22
= ν12 = constant (29)

Since E1 ≈ constant, then ν21/E2 = constant, which agrees with the hypothesis in [19, 20]
that is also used in several damage models such as [46–48]. While the major Poisson’s ratio of
the lamina ν12 remains constant, the Poisson’s ratio of the laminate νxy does degrade as shown in
Figures 13–14.

Also, it can be observed in Figures 19-20 that although D66 is not exactly equal to D22, it is not
far from it either, thus supporting the assumption indirectly made in [42,43], i.e., that D66 = D22.

7 Conclusions

The proposed benchmark solution is validated by the CLT solution for asymptotic values of crack
density. Also, experimental data compares well with the FEM solution. Confirmation is provided
for the hypothesis that D12 = D22, for all of the six laminates reported, which include both
Glass/Epoxy and Carbon/Epoxy laminates. A novel finding is provided showing that D66/D22 ≈ 1
for all of the six laminates reported. Also, the cracking lamina CTE was found to be remain
constant, i.e., unaffected by crack density. The comparison between the approximate DDM solution
and FEM solution reveals that the shortcomings introduced by the approximations in DDM are not
severe. The results provided can be used to benchmark the accuracy of approximate solutions. The
procedure can be applied to generate additional results for other laminates. Since modulus reduction
of Carbon/Epoxy is difficult to detect experimentally, the identification of material parameters in
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approximated models such as PDA could be based on modulus reduction results generated through
simulation using the methodology proposed herein.

Future work may implement a global-local strategy where the proposed methodology provides
the local solution. However, this would require additional effort, as explained in [49]. The model
presented herein only provides the degraded stiffness of any lamina for a given crack density in
that lamina. Calculating the crack density as a function of the applied loads (stress, strain, or
temperature), requires additional considerations (see for example [50]). The degraded stiffness
calculated at the local level by the model presented herein can then be used as homogenized
properties in any type of laminated element, such as laminated shell or solid elements, at the global
level. Additional work would be required to account for localization at the global level. Finally,
the tangent stiffness could be calculated by numerical differentiation, based on the secant stiffness
provided by the current model.
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Figure 2: Labeling the edges.

Lamina 1 (Homogenized)

Lamina 2 (Cracked)

Laminas 3-6 (Homogenized)

Lamina 7 (Cracked)

Lamina 8 (Homogenized)

Z faces are free.
Plane Stress

PBC in X and Y faces
Displacements in x, y and z.

PBC in edges are a combination
of the faces PBC.

PBC in X faces only.
Displacements in x, y and z.

Figure 3: Solid model showing the boundary conditions.
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Figure 5: Strain field in eight consecutive RVEs for ε02 = 1.
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for laminate #2.
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Figure 14: Inplane Poisson’s ratio νxy vs. crack density for laminate 3.
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Figure 15: Damage D11 vs. crack density for Laminate #1.
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Figure 16: Damage D11 vs. crack density for Laminate #6.
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Figure 17: Damage D22, D12, and D66 vs. crack density for Laminate #1.
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Figure 18: Damage D22, D12, and D66 vs. crack density for Laminate #6.
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Figure 19: D66/D22 for laminate #1.
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Tables

Table 1: Laminates and materials.
Laminate Stacking Sequence Material Reference

1 [0/554/− 554/01/2]S Fiberite/HyE 9082Af [51]

2 [0/908/01/2]S
3 [0/704/− 704/01/2]S
4 [0/902]S Avimid K Polymer/IM6 [2]
5 [0/903]S
6 [02/902]S

Table 2: Material properties.
Property Fiberite/HyE 9082Af [51] Avimid K Polymer/IM6 [2]

E1 [GPa] 44.7 134
E2 [GPa] 12.7 9.8
G12 [GPa] 5.8 5.5
ν12 0.297 0.3
G23 [GPa] 4.5 3.6
α1 [10-6/K] 8.42 -0.09
α2 [10-6/K] 18.4 28.8
tk [mm] 0.144 0.144

Table 3: Truth table used to find the slave edges corresponding to chosen master edges.
i Binary Negated Binary Master Slave

0 00 or mm 11 or pp XmYm XpYp
1 01 or mp 10 or pm XmYp XpYm
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Table 4: Averaged strains for the three cases. Intact laminate #1.
Case (a) Case (b) Case (c)

ε1 1+4E-08 -8E-09 -1E-08
ε2 -8E-09 1+4E-08 1E-08
ε3 -0.43 -0.43 0.00058
ε6 4E-08 -6E-09 1+4E-08
ε5 -2E-16 -8E-16 7E-16
ε4 -9E-15 -1E-14 6E-15
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