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Abstract

A new formulation for mechanical analysis of 2D biaxial orthogonal woven fabric reinforced composite ma-
terials is proposed, as required by the wide variety of fabric types offered by the textile industry. Twill and
satin weaves are defined as generic families of weaving patterns based on a general 3D geometrical model of
the fabric architecture presented in Part I. Thermoelastic material constants, progressive failure behavior,
and strength are evaluated The nonlinear stress–strain response and the strain to failure are predicted. Com-
parisons with available experimental data is presented. The present formulation is amenable for computer
implementation in both analytical and numerical models.
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1 Introduction

Woven fabrics are used as reinforcements for composite materials used in automotive, marine, aerospace,
and many more applications. A large variety of fabric architectures are available besides plain weave. While
most of past research has focused on plain weave fabrics, designing and engineering this class of materials
requires analysis tools for dealing with the multitude of woven fabric structures now available.

A comprehensive classification of fabric reinforcements is offered in [1, 2]. The focus of the present work
is on 2D biaxial orthogonal woven reinforcements, among which plain, twill, and satin weave are distinct
categories. 2D means that the woven fabric features only in-plane reinforcing properties. Biaxial means
that tows are aligned along two directions: the fill and warp directions. Orthogonal means that the fill and
warp tows are laid down at 90o with respect to each other.

The main advantages offered by textile reinforcements are: lower manufacturing costs, easier handling
and processing, better forming in complicated geometrical shapes of the composite part, the possibility of
applying a variety of processing techniques (e.g., hand lay-up, resin transfer molding, resin film infusion,
chemical vapor infiltration), improved impact resistance and damage tolerance, reduced notch sensitivity,
improved out of plane mechanical properties (e.g., as reduced delamination crack growth and improved peel
strength) and the possibility of choosing among a large number of fabric architectures.

The aforementioned advantages of fabric reinforcements are accompanied by new aspects that affect the
mechanical behavior of the composite material. The manufacturing process of tows interweaving results
in a complex 3D internal architecture of the fabric. Even if the fabric reinforcement features 2D in-plane
reinforcing properties, it has a 3D internal architecture due to the waviness induced by the weaving process.
This 3D architecture results in complex strain/stress field in the composite material, triggering new failure
mechanisms and failure modes not seen in traditional unidirectional laminates. For example, specific failure
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mechanisms encountered in fabric reinforced composites include: intra-ply delamination (i.e., delamination
between overlapping tows of the same woven ply), transverse normal and shear failure modes under axial
loading, and failure of pure matrix regions. As a consequence, the internal 3D structure of the reinforcement
translates in degradation of stiffness and strength properties of the composite material. For example, knock-
down factors of up to 10−30% for stiffness and up to 15−23% for axial strength are reported in [1]. Similar
trends can be identified from experimental observations [3–5].

Two different approaches can be used while studying the mechanical behavior of fabric reinforced com-
posites: analytical and numerical models. Analytical models are easier to use in practical applications,
facilitating parametric studies. Usually, analytical models rely on simplifying assumptions that might re-
strict the degree of generality of the model. Numerical models are able to better describe the interactions
inside the 3D structure of the fabric composite. However, a higher modeling effort and custom numerical
discretizations for individual fabric architectures are required. Most modeling approaches are based on the
repetitive unit cell (RUC) technique; i.e., to analyze the smallest geometrical repetitive unit of the textile
reinforced composite material. The resulting RUC properties are considered to be representative for the
material.

Three analytical models are proposed in [6, 7] to evaluate the elastic properties of plain and satin weave
reinforcements, namely the mosaic, crimp and bridging models. The mosaic model does not consider the
undulation of fill and warp tows, it is used to predict in-plane elastic properties of the composite material
only, and it does not addresses material strength. The crimp model (fiber undulation model) considers the
tow waviness along only one direction and it is used to predict the failure initiation only, but not strength.
The bridging model, which is a combination of the previous two models, is dedicated to more accurate
evaluation of the material properties of satin weaves. The mosaic model is generalized in [8] in order to
calculate the elastic material properties of hybrid woven fabrics, which are fabrics with different dimensions
or containing different types of fibers.

Improvement of the fiber undulation model is done in [9, 10] for the case of plain weave only. Addi-
tional aspects of the material mechanics are considered, as the extension-bending local coupling specific to
unsymmetric stacking sequences and the out of plane stress components generated by the out of plane tow
waviness. However, the model in [9, 10] features the same limitations of the geometrical representation as
the fiber undulation model (i.e., a 2D geometrical model considering the tow undulation along only one
direction). In plane stress distribution under axial tensile loading is reported in [9] in order to perform
progressive failure analysis of the composite material, by considering early failure modes generated by the
complex geometry of the woven fabric. The simplified 2D geometrical model requires for the use of iso-stress
assumption in order to perform stress analysis, which drastically over simplifies the stress distribution in
the reinforcing structure. Although an improved 3D geometrical model (considering tow undulation in both
fill and warp directions) for plain weave fabrics is proposed in [10], the model is used only for calculating
material elastic constants.

Analysis of plain weave fabric reinforced composites is made in [11–17]. In [12, 14] an accurate 3D geo-
metrical model considering the fiber undulation on both fill and warp directions of plain weave is presented.
The material thermo-elastic properties are calculated based on either iso-strain, or combined iso-stress /
iso-strain model. The analysis is performed at ply level and the whole set of in-plane thermo-elastic con-
stants of the composite material are calculated. The model is further developed in [15–17] where failure
behavior of the composite material is addressed. A very detailed 3D geometrical analysis of the plain weave
reinforcement is presented in [15]. Stress calculation and progressive failure behavior are performed in [16].
Multiple failure modes that can be encountered due to the complex spatial structure of the plain weave
reinforcement are accounted for. Multiple sources of non-linearity are considered: material nonlinearity due
to nonlinear constitutive behavior of the matrix constituent, material nonlinearity due to progressive failure
and stiffness reduction, and geometrical nonlinearity due to straightening of the wavy tows under tensile
loading. The analysis is performed in an incremental, iterative manner. A special geometrical model is
generated for stress calculation, and stresses are evaluated based on the method of cells and combination
of iso-stress and iso-strain assumptions. A beam on elastic foundation model is used in order to simulate
the tow behavior after matrix failure initiation, when the bridging effect between adjacent tows (i.e., the
capacity of adjacent tows to transmit loads from each other, due to the matrix connection between them)
in progressively lost. All these modeling features are expected to confer a high level of accuracy, but at the
same time they confine the applicability of the model to plain weave only under uniaxial loading only. The
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effect of tow width, tow thickness, and inter-tows gap is analyzed in [17].
A higher level of generality for the reinforcing architecture is sought in [18, 19], where the case of two

particular types of satin weaves (5– and 8–harness satin) and two cases of braided fabrics are analyzed based
on 3D geometrical description. The elastic properties are modeled in [18] based on iso-strain assumption
over RUC. The stress and failure analysis are performed in [19] based on iso-strain assumption over RUC.
However, only the classical plain weave case and one case of braided fabric are analyzed in [19]. Nonlinearities
are considered in the form of nonlinear matrix behavior, nonlinearity due to progressive failure and stiffness
reduction, and geometrical nonlinearity due tow reorientation under axial loading.

3D geometrical models of particular cases of twill and satin weave are presented in [20, 21]. Elastic
material properties are calculated based on iso-strain assumption in [20] and stress analysis is carried out
based on iso-stress assumption in [21]. The model is able to identify failure initiation in different components
(fill, warp, matrix) of the composite, allowing for the application of a stiffness reduction scheme. However,
individual failure modes in the same tow are not identified because the failure analysis is based on quadratic
failure criteria, which does not allow to clearly state if failure in the main load carrying tows is secondary
(matrix dominated), or primary (fiber dominated). Hybridization is considered in the description of the
woven fabric architecture in [20,21].

The same approach of calculating stresses based on a iso-stress assumption over RUC is applied in [22]
for plain weave case. Only the failure initiation is predicted. Stiffness properties are evaluated based on
either iso-stress, iso-strain, or combinations of the first two, obtaining in this way lower and upper bounds
of stiffness, as well as intermediate values.

The plain weave and particular cases of 5– and 8–harness satin weaves (5/3/1 and 8/3/1 in the nomen-
clature of the present paper) are treated in [23], where only elastic analysis is performed. Local bending-
extension coupling terms of classical laminate theory (CLT) are included.

An attempt of analyzing families of weaving styles rather than building individual models for individ-
ual weaves is made in [24, 25]. The RUC is discretized in elements, and composite material properties are
calculated by assembling the properties of individual elements, based on either iso-stress or iso-strain as-
sumptions. Iso-stress or iso-strain models over RUC are used to calculate local stresses at fiber and matrix
constituents level, using the bridging micro-mechanics model [26]. The strength analysis is carried out at the
level of fiber and matrix constituents. Local stresses in individual fiber/matrix components are averaged over
different locations of the same tow, and between different orthogonal tows, and the resulting averaged value
for fiber/matrix stress is casted in a maximum stress failure criteria. This procedure of failure analysis does
not identify any mode of early damage in the fabric structure, and the averaging procedure is not justified.
The elastic analysis is carried up for plain weave and one particular case of each 5–harness and 8–harness
weaves, as well as two types of braids. Strength analysis is performed for braids only.

A systematic approach to model woven fabric reinforcements in a generalized manner is attempted in [27].
However, only elastic properties are calculated, based on either iso-stress or iso-strain assumptions at RUC
level.

The second method of analyzing mechanical properties of fabric reinforced composites is through finite
element analysis (FEA) [28]. While more accurate, the FEA method is difficult to use for parametric
studies, unless automatic parametric mesh generation based on automatic geometrical model generation is
implemented.

In [29] the FEA method is used to predict the elastic material properties, but the approach is not suitable
for stress and failure analysis. The volume of calculations is reduced by considering the RUC discretization
with only one element through the thickness, as opposed to 3D discretization of each fill, warp and pure
matrix constituents in other FEA models. The individual elastic properties of each element are assigned
based on effective properties of the fill-warp-matrix stacking sequence and orientation at the element location,
which are calculated based on combined in-plane iso-strain and out-plane iso-stress hypothesis. 3D overall
elastic properties of RUC are calculated by solving the FE model with periodic boundary conditions. The
simplified technique of only one element through the thickness can be afforded because only the elastic
problem is addressed.

Failure analysis by FEA method is more involved [30–32]. The problem of plain weave is treated in [30],
where incremental-iterative analysis for the tensile and shear loading cases are performed. Nonlinear effects
generated by the matrix constitutive behavior and the local stiffness reduction (at individual Gauss points of
each FE) due to progressive failure inside of the reinforcing structure is considered. Early modes of failure are
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Figure 1: Geometrical parameters of the woven reinforcement. A 4/1/2 twill is depicted. Subscripts denote:
f=fill, w=warp, r=resin.

identified and monitored, individual stiffness reduction coefficients are assigned to individual failure modes,
and stress-strain curves up to final failure are recorded. The same method is considered in [31], where the
geometric nonlinearity is also considered in the incremental-iterative procedure. Different weaving patterns
(plain weave and particular cases of 4–, 5–, 8–satin, and twill) are analyzed. The influence of the weaving
style on the failure behavior and strength properties of of the composite material is for the first time assessed
in an analysis of woven fabric composites. Due to the large number of elements required for a fine mesh of the
RUC, reduced representative portions of the RUC are selected for the FEA analysis, based on accordingly
modified periodic boundary condition imposed to the model.

Due to the inability of existing methods to predict strength of broad families of 2D fabric reinforced
composites, a new approach is needed. Therefore, the objective of the present paper is the evaluation of the
mechanical properties of families of 2D biaxial orthogonal woven fabric reinforced composites in an auto-
mated general way. In-plane thermo-elastic material constants are calculated. Progressive failure behavior
is modeled. Individual modes of failure in fill/warp/matrix constituents are monitored while applying an
incremental, iterative loading procedure. A stiffness reduction scheme is proposed in order to account for
the effect of progressive damage on the stress-strain behavior of the composite material up to failure under
uniaxial tensile and shear loading. The geometric model described in Part I [33] for families of twill/satin
woven fabric reinforcements is used as starting point.

The reinforcing configuration includes the geometrical parameters of tows and the parameters describ-
ing the weaving pattern. Detailed analysis of the influence on strength of the reinforcing configuration is
performed. The parameters having a major influence are identified, and methods for improving the mate-
rial properties of the composites are concluded from the results. Comparison between the present woven
fabric (WF) model and simplified methods of strength evaluation is performed. Comparison between the
analytically predicted stress-strain behavior up to final failure and experimental results is presented for both
uni-axial tensile and shear loading.

The ability of the proposed model for parametric studies based on varying both the reinforcing weaving
style and the geometrical parameters of individual weaving styles are considered to be of interest for the
design and analysis of woven fabric reinforced composite materials.
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2 Material Properties of Woven Fabric composites

A model to predict mechanical properties, i.e., hygro-thermo-elastic constants and progressive failure be-
havior and strength of 2D biaxial orthogonal woven fabric (WF) reinforced composite material is proposed
in this section. The model is based on the analysis of a representative unit cell (RUC). The geometrical
parameters of the reinforcement, which are required as input data, are (Fig. 1):

• The fill (f) and warp (w) tow width af , aw, tow thickness hf , hw, and gap between two adjacent tows
gf , gw.

• The harness ng, which is the number of tows in the repetitive unit cell (four in Fig. 1.)

• The shift ns between interlacing regions of two consecutive fill tows (one in Fig. 1) and

• The interlacing ni, which is number of warp tows over a fill tow, in the interlacing region (two in
Fig. 1.)

Additional geometrical quantities are calculated based on the aforementioned input parameters, as shown
in Part I [33]:

• The fill/warp local undulation angles θf (x, y), θw(x, y)

• The length of a fill/warp tow inside RUC Lf , Lw

• The fill/warp cross-sectional areas Af , Aw

• The volume of a fill/warp tow inside RUC vf , vw

• The total volume of RUC vRUC , and

• The meso-scale volume fraction Vmeso of fill and warp tows inside RUC.

Two coordinate systems (c.s.) are defined in order to analyze the properties of individual tows inside of
the composite:

• The material c.s. 1, 2, 3 of each fill/warp tow regarded as UD composites, having the axes oriented
along the local principal material directions of the tow, and

• The global c.s. x, y, z of the RUC, having the in-plane axes oriented along the fill and warp orthogonal
directions.

2.1 Tow and RUC fiber volume fractions

Two important parameters for the evaluation of the elastic properties and strength of the fabric reinforced
composite material are the overall fiber volume fraction inside the RUC, V f

o , and tow fiber volume fraction

V f
f and V f

w , i.e., the fiber volume fraction inside the fill and warp tows. The overall fiber volume fraction is
different in value from the tow fiber volume fraction for the case of woven fabrics reinforced composites due
to waviness of the tows and lenticular shape of tow cross-section, which requires pure matrix pockets to fill
the space between the tows.

The governing parameters in the mechanical model are the tow fiber volume fractions V f
f and V f

w .
Mechanical properties (elastic constants and strength values) of the tow, regarded as uni-directional (UD)



Composite Structures, 93:1449–1462, 2011. 6

fiber reinforced composite, are evaluated based on V f
f and V f

w through the use of micro-mechanical models [2,
chapter 4]. Tow properties are then translated into woven fabric (WF) reinforced composite properties
considering the influence of three fabric reinforcement parameters: tow waviness, tow cross-sectional shape,
and gap between tows. Thus, precise evaluation of the tow fiber volume fractions V f

f , V
f
w , is a requirement

for the mechanical model of the WF composite material.
Many models in the literature [6,9,10,23] assign arbitrary values (0.7 − 0.85) to V f

t , where t stands for
tow, whether it is fill or warp. However, such approximations are not necessary. A direct way to evaluate
V f
t for WF composites is through image analysis measurement of tow cross-sectional area and total area of

the fibers inside the tow cross-section. While this method might be more precise because the influence of
all manufacturing parameters is included in the direct measurement procedure, it might also be tedious and
requiring special equipment and techniques. In this paper, the fiber volume fraction inside the tow V f

t is
calculated in terms of available data.

If the number of fibers Nf inside a tow, the diameter of individual fibers df , and the cross-sectional area
of the tow At are known quantities, then, the tow fiber volume fraction can be calculated as

V f
t = Nf

πd2f
4At

(1)

If the density of the fiber material ρ and the tow linear density λL defined as the mass per unit length
of tow (also known as denier or TEX ) are known, then the tow fiber volume fraction can be calculated as

V f
t =

λL
ρAt

(2)

Equations (1) and (2) have the advantage that they allow for individual evaluation of fill and warp
fiber volume fractions if their linear density are different. The tow cross-sectional area At is found after
compaction by photomicrographic observation or estimated from experience.

A direct method for evaluating the overall RUC fiber volume fraction V f
o is through standardized burn-

out or chemical dissolution methods [34, 35]. However, if these experimental methods are not at hand,
indirect ways of evaluation are available [2, chapter 4].

Thus, if the tow linear density λL and fiber density ρ are known, then the overall fiver volume fraction
V f
o can be calculated as

V f
o =

λL
ρ

ng(Lf + Lw)

vRUC
(3)

If the fabric surface density λS , defined as the mass of dry fabric per unit surface, the fiber material
density ρ, and the thickness of the lamina hc are known, then V f

o can be calculated as

V f
o =

λS
ρhc

(4)

Equations (3) and (4) assume identical fill and warp tows. This assumption makes (3) and (4) not
applicable for hybrid fabrics. Moreover, the possible ply nesting effect is not reflected in (3) and (4).

The volume fraction of tows inside the RUC is

Vmeso = (vf + vw)/vRUC (5)

where vf , vw, are the volumes of the fill and warp tows, respectively; both computed by the model. The
volume of the RUC is denoted by vRUC .

Finally, a direct relationship exists between the overall and tow fiber volume fractions, as follows

V f
t = V f

o /Vmeso (6)

The advantage of using (6) is that the tow fiber volume fraction is calculated rather than being assumed
at an arbitrary value as it is sometimes done in the literature. Accurate values can be calculated through
(6), provided the geometrical model used to calculate Vmeso is accurate. Equation (6) assumes identical fill
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Figure 2: Fill and warp undulation for the case of 4/1/2 twill weave. See also Fig. 1

and warp tows, and no nesting effect is included. Even more accurate values of the tow fiber volume fraction
V f
t can be calculated based on (6) if the overall fiber volume fraction V f

o is determined experimentally.

Calculation of V f
t based on this method is utilized in the present work.

An approximate method, called equivalent cross-ply (CP) method, is sometimes used in practice for
estimating the properties of fabric reinforced composites [2, chapter 9]. In the (CP) method, the WF
composite is approximated by a symmetric cross-ply laminate with the same total thickness as the WF
composite, and having a fiber volume fraction equal to V f

o . This method might be considered for tight WF
reinforcements, with no gap between adjacent tows. However, the method is grossly inaccurate for WF with
gaps. Furthermore, it has been shown in [11] that the method of equivalent cross-ply laminate provides some
good results for thermo-elastic properties, but not so for strength properties.

Another approximate method, the equivalent UD lamina, is proposed in [15–17], namely approximating
the WF composite as an uni-directional (UD) composite having a fiber volume fraction equal to V f

e , where
V f
e is the effective fiber volume fraction defined as the ratio between the total cross-sectional area of the

fibers inside the load carrying tow, and the total cross-sectional area of the RUC transverse to the load
direction, i.e.,

V f
e = V f

t

At

wthc
(7)

where the quantities At, wt = at + gt, V
f
t refers to the tow that plays the role of load bearing for the case

of uniaxial loading (e.g., the fill tow if the load is applied along the fill direction), and hc = hf + hw + hr
is the lamina thickness (see Fig 1). This approach applies only for uniaxial tensile loading case and it is
unconservative in many cases.

2.2 Hygro-thermo-elastic properties

Due to different undulation angle and different cross-sectional thickness of the fill, warp, and matrix con-
stituents at different (x, y) locations in the RUC (Fig. 2), a field of hygro-thermo-elastic material properties is
generated over the RUC. At each (x, y) location, classical laminate theory(CLT) is applied considering a local
cross-ply stacking sequence of fill, warp, and matrix constituents. The order and the number of constituents
is given by the (x, y) position inside RUC. The hygro-thermo-elastic properties of each constituent at each
(x, y) location is required and CLT is then point-wise applied in order to calculate the field of composite
material properties at each (x, y) location.

Based on this point-wise CLT approach, the field of composite material stiffness coefficients is calculated
as

[A(x, y)], [B(x, y)], [D(x, y)] =

∫ hc/2

−hc/2

(1, z, z2) ·
[
Q(x, y)

]
dz (8)
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where Q(x, y) is the reduced (in-plane) stiffness matrix of the fill, warp, and matrix constituents, transformed
according with the local θf (x, y), θw(x, y), undulation angles (Appendix 1, (29), and hc = hf + hw + hr is
the ply thickness (see Fig. 1.))

Similarly, the field of local in-plane hygro-thermal induced loads is calculated as

{N(x, y)}T = ∆T

∫ hc/2

−hc/2

[
Q(x, y)

]
· {α(x, y)} dz (9)

{N(x, y)}M = ∆M

∫ hc/2

−hc/2

[
Q(x, y)

]
· {β(x, y)} dz

where {α(x, y)} = {αx, αy, αxy} (x, y), {β(x, y)} = {βx, βy, βxy} (x, y) represent the reduced (in-plane) ther-
mal and moisture linear expansion coefficients vectors of the fill, warp, and matrix constituents, transformed
according with their local θf (x, y), θw(x, y), undulation angles (Appendix 1, (32)). The superscripts T,M in
(9) stand for thermal and moisture respectively, and ∆T,∆M are the change in temperature and moisture
content, respectively.

The pure matrix requires no coordinate transformation in (8) and (9) because it is isotropic. Only the
thickness of the pure matrix layer at each (x, y) location has to be calculated from the geometrical model.

Additional assumptions are required in order to assemble the 2D field of mechanical properties (8) and
(9). Common assumptions made in the analytical models available in the literature are based on the elastic
theory of the non-homogeneous body [1]. These assumptions are made in order to homogenize (integrate) the
local material properties into overall properties (8), (9). Thus, either the iso-stress (i.e., compliance average,
also called Reuss model) or the iso-strain (i.e., stiffness average, also called Voigt model) assumption are
used, providing lower and upper bonds for the overall properties of the composite material, respectively.

In this work, the overall in-plane stiffness coefficients are evaluated using the iso-strain assumption

[A] =
1

(ngwf )(ngww)

∫ ngwf

0

∫ ngww

0

[A(x, y)]dxdy (10)

because it is shown to give better correlation with experimental data [12,24].
The overall in-plane thermal and moisture loads are evaluated using a combined iso-stress and iso-strain

assumption

{N}T,M =
1

(ngwf )(ngww)

∫ ngwf

0

∫ ngww

0

{
NT,M (x, y)

}
dxdy (11)

because it is the best model for thermal/moisture loads, as shown in [12, 24]. In (10), (11), [A(x, y)] is

provided by (8), {N}T,M
= {Nx, Ny, Nxy}T,M

is provided by (9), wf = af + gf , and ww = aw + gw. The
later is simply the width of the tow plus the gap. Therefore, the integration is carried out over the length
and width of the RUC, i.e., over the pitch of the fabric, pf = ng wf and pw = ng ww.

The in-plane engineering elastic constants are calculated as

Ex = (α11hc)
−1

Ey = (α22hc)
−1

Gxy = (α66hc)
−1

νxy = −α12

α11
(12)

and the in-plane thermal and moisture expansion coefficients vectors {α} = {αx, αy, αxy} and {β} =
{βx, βy, βxy} are calculated as

{α} =
1

∆T
[A]−1{N}T (13)

{β} =
1

∆M
[A]−1{N}M

A similar averaging procedure can be applied for flexural components of stiffness coefficients and mois-
ture/thermal expansion coefficients, if required.
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2.3 Strength properties

In this work, stress analysis, progressive failure, and strength evaluation are performed using an incremental–
iterative procedure and the maximum stress failure criterion. The procedure was proposed in [11] for the case
of plain weave, and it is extended here for the general case of twill/satin weave reinforcements. Modifications
are made to the progressive failure model in [11] regarding the stiffness reduction procedure, in order to
achieve better agreement with experimental data for both stress and strain to failure.

2D discretization of the RUC (similar to FEA meshing, see Fig. 2) along both x and y directions is
done in order to perform the progressive failure and strength analysis. The discretization procedure results
in a number of elements with in-plane dimensions δx × δy, having a trough-thickness stacking sequence of
matrix–fill–warp–matrix constituents, with the order of the constituents given by the (x, y) location of the
center of each element. Also, the number of the constituents in each element is function of the position (x, y).
The constituents may be matrix–fill–warp–matrix for an element situated at a cross-over region of fill and
warp, matrix–warp–matrix or matrix–fill–matrix for an element situated inside of the gap region between
two adjacent fill/warp tows, or only matrix for the whole thickness of the element for the matrix pockets at
the intersection between two consecutive fill tows with two consecutive warp tows, in the case of WF with
gaps between adjacent tows.

The progressive failure analysis is based on an element stiffness reduction procedure. For this, stresses
in each fill–warp–matrix constituent (at position z) in each element are calculated at the x, y, center of each
element. The mesh is refined until the computed strength value converges within a prescribed tolerance
(5% tolerance for mesh convergence and 5N/mm2 load step are used in this study). An automatic meshing
procedure has been implemented in order to perform the meshing operation for any weaving pattern.

The first assumption in the stress analysis is to consider the RUC as being bending restrained. This
assumption implies that the local extension–bending coupling due to the unsymmetric nature of the stacking
sequence at any RUC location is restrained by the constraining effect of the neighboring plies. Thus, the
simplified expression (14) of the local constitutive equation of the material is used, without involving the
flexural stiffness matrices [B(x, y)], [D(x, y)] from (8). The bending restrained assumption is more accurate
as the number of WF reinforced plies increases. Models based on CLT and bending restrained assumption
can be found in [20–22]. The assumption is also implicitly involved in the 3D stiffness models in [24,27,29,36],
where despite additional information regarding the out of plane elastic constants, the plate behavior of the
WF reinforced composite material (i.e., extension–bending coupling) is actually neglected. Models based on
CLT taking into account the effect of local bending deformation are presented in [9, 10,23].

The second assumption in the stress analysis is the iso–stress load distribution from RUC level to element
level. The load distribution problem is difficult to be set to a high level of precision in an analytical model,
especially when a high level of weave pattern generality is sought as in the case of the present model. The
iso–stress and iso–strain assumptions have been accepted for the calculation of composite material elastic
properties as providing bounds of the actual material properties. Good agreement with experimental data for
elastic modulus has been found for the case of plain weave reinforcement in [11] under iso-stress assumption.
The same assumption for stress calculation is used in [21, 22, 24], while the iso-strain assumption is used
in [19, 24]. A method different from iso–stress/iso–strain is developed in [16, 19] based on a model of beam
on elastic foundation for the load carrying tow, which is expected to represent more accurately the internal
mechanics of the fabric reinforcement. However, the beam on elastic foundation model in [16,19] is developed
only for the case of plain weave under uniaxial loading.

As a result of the bending restrained and iso–stress assumptions, the local constitutive relationship at
any (x, y) location of RUC is 

ε0x
ε0y
γ0xy

 (x, y) = [A(x, y)]−1

 Nx

Ny

Nxy

 (14)

where {ε0}(x, y) is the local strain, [A(x, y)] is the local in-plane stiffness matrix (8), and {N} is the applied
stress. Equation (14) provides the strain field over RUC.

The methodology for stress analysis is based on point–wise CLT. Thus, local stresses in laminate coordi-
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nate system in each fill, warp, and matrix constituent of each element in the RUC are σx
σy
σxy


q

(x, y) = [Q(x, y)]q

 εx
εy
γxy

 (x, y) (15)

where q = f, w,m indicates the fill, warp, and matrix, respectively; [Q(x, y)]q is the reduced transformed
stiffness matrix (29) and {ε}(x, y) is the strain vector (14) of the element at the location (x, y).

Local stresses in material coordinate system in each element in the RUC are

{σ1, σ2, σ3, σ4, σ5, σ6}Tq (x, y) = [T ]q(x, y) {σx, σy, 0, 0, 0, σxy}Tq (x, y) (16)

where q = f, w indicates fill and warp, respectively, and [T ]q(x, y) is the stress rotation matrix (24).
Failure indices at each position x, y, in the mesh are computed with the maximum stress failure criteria

for each fill and warp constituent (position z) as
I1
I2
I3
I4
I5
I6


q

=


σ1/F1t

σ2/F2t

σ3/F3t

σ4/F4

σ5/F5

σ6/F6


q

(17)

where q = f, w indicates fill and warp, respectively; F1t, F2t, F3t, F4, F5, F6 are the strength properties of the
tow regarded as UD composite with tow fiber volume fraction V f

t (see Section 2.1). The strength values
F1t · · ·F6 are either evaluated experimentally or based on micro-mechanical models [2, 37–39].

The failure indices I1 · · · I6 (17) account for six different possible failure modes in the fill/warp con-
stituents:

• I1 – longitudinal tensile failure along 1 axis of the tow (fiber direction),

• I2 – transverse tensile failure along 2 axis of the tow,

• I3 – transverse tensile failure along 3 axis of the tow,

• I4 – shear failure in the (2, 3) plane of the tow,

• I5 – shear failure in the (1, 3) plane of the tow,

• I6 – shear failure in the (1, 2) plane of the tow.

The matrix constituent of each element is also monitored for failure using the von Misses failure criterion.
Local failure in fill, warp, and matrix constituents is checked at each load increment by calculating the

failure indices (17). When one mode of failure is detected in any constituent of an element, the stiffness of
the respective constituent is reduced according with the detected mode of failure. The stiffness reduction
model in [37, Section 8.2] is implemented in the present WF progressive failure model. Thus, the stiffness
matrix of a damaged constituent is calculated as

Cq =



C̃11Ω4
1 C̃12Ω2

1Ω2
2 C̃13Ω2

1Ω2
3 0 0 0

C̃12Ω2
1Ω2

2 C̃22Ω4
2 C̃23Ω2

2Ω2
3 0 0 0

C̃13Ω2
1Ω2

3 C̃23Ω2
2Ω2

3 C̃33Ω4
3 0 0 0

0 0 0 C̃44Ω2
2Ω2

3 0 0

0 0 0 0 C̃55Ω2
1Ω2

3 0

0 0 0 0 0 C̃66Ω2
1Ω2

2


q

(18)

where C̃ij are the components of the undamaged (virgin) stiffness matrix; the integrity tensor Ω is based
on the damage tensor D as Ω =

√
I−D, and I is the 3×3 unit matrix. The damage tensor D is expressed
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as function of the damage coefficients di (i = 1 · · · 3) as Dij = diδij (no sum on i); and δij is the Kronecker
delta function.

Initially, the damage coefficients di (i = 1 · · · 3) are set to zero (non-damaged material). When damage is
detected, the damage coefficients di are selectively assigned non-zero values according to the detected mode
of failure:

• d1 for failure affecting the 1 principal direction of the tow
(i.e., failure mode 1),

• d2 for failure affecting the 2 principal direction of the tow
(i.e., failure mode 2, 4 or 6),

• d3 for failure affecting the 3 principal direction of the tow
(i.e., failure mode 3 or 5).

The assigned values of the damage coefficients di when failure is detected in one of the the six failure
modes are: d1 = 0.99, d2 = d3 = 0.8. The reason for assigning a lower value to d2 and d3 is because the
implemented stiffness reduction model considers one single damage coefficient (d2 or d3) for multiple modes
of failure (2, 4, 6 and 3, 5, respectively). However, due to friction on the local damage surfaces, it is expected
that the material keeps some of its shear stiffness when failure takes place in a transverse mode (either
tensile or shear), and the lower values d2 = d3 = 0.8 account for this observation. Another approach of the
same method of stiffness reduction coefficients would be to assign different di (i = 1 · · · 6) coefficient for all 6
modes of failure I1 · · · I6 as in [30,31]. When one damage mode is detected in one constituent of an element,
and the stiffness of that constituent is degraded accordingly, stress redistribution to the other constituents
of the element is accounted for by iterating at the same load level.

Under tensile loading, early mode 1 failure is encountered in elements of RUC due to the geometrical
features of RUC (undulation) combined with the ‘iso-stress’ load distribution. In this case, the stiffness
reduction coefficient of the tow is accordingly set to d1. Then, the longitudinal load is increased on undamaged
elements situated along lines of the discretizing mesh parallel to the longitudinal load direction. The internal
increase in longitudinal load on the undamaged elements is made proportional with the dimension of the
damaged element. For example, N ′x = Nx ·Ly/δy for the case of longitudinal loading along x direction of the
RUC (see Fig. 3), where Nx is the external longitudinal applied load, N ′x is the internal longitudinal load on
the undamaged elements considering the load redistribution effect, Ly = ngwf is the transverse dimension of
the RUC, and δy is the transverse dimension of the element featuring longitudinal failure in its longitudinal
constituent. This load redistribution mechanism is considered only for the case of longitudinal loading, not
for shear loading. The overall effect of load redistribution is accounted for by iterating at the same load
level.

The overall material behavior after failure initiation is evaluated by calculating the global in–plane
stiffness matrix [A] in (10) considering the reduced stiffness matrix (18). The RUC overall deformations are{

ε0x, ε
0
y, γ

0
xy

}T
= [A]−1 {Nx, Ny, Nxy}T (19)

and overall stresses are

{σx, σy, σxy}T = {Nx/hc, Ny/hc, Nxy/hc}T (20)

where {N} is the applied load and hc = hf + hw + hr is the ply thickness (see Fig. 1.)
The final failure for longitudinal loading is predicted when one element of each line of elements along the

load direction have failed in mode 1. The final failure for in–plane shear loading is predicted when all the
elements in the mesh have failed in shear mode.

3 Results

A parametric study predicting thermo–elastic constants and strength is presented in the following. The
material system considered is E–Glass/Epoxy with constituents properties given in Table 1 [16]. The study
has the objective to analyze the influence of two principal classes of parameters on the the material properties:
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mode 1
undamaged elements

mode 1
damaged element

N
x

N’
x

N
x

N’
x

> N
xx

y

Ly

dy

a) b)

Figure 3: Load redistribution due to mode 1 damage.

Table 1: Mechanical properties of E–Glass fibers and Epoxy matrix ( [16])
Property Symbol Units Value
E-Glass fiber
Modulus Ef GPa 72.0
Poisson’s ratio νf 0.3
Strength (manufacturer specification) F f MPa 3450.0

Strength (in-situ) F f
is MPa 1995.0

Thermal Expansion Coefficient αf µε/oC 5.4
Moisture Expansion Coefficient βf ε 0.0
Density ρf g/cm3 2.62
Epoxy matrix
Modulus Em GPa 3.5
Poisson’s ratio νm 0.35
Tensile Strength (bulk, manufacturer specification) Fm

t MPa 60.0
Tensile Strength (in-situ) Fm

is MPa 36.6
Shear Strength (bulk, manufacturer specification) Sm MPa 100.0
Shear Strength (in-situ) Fm

is MPa 43.0
Thermal Expansion Coefficient αm µε/oC 63
Moisture Expansion Coefficient βm ε 0.33
Density ρm g/cm3 1.17
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• Parameters defining the tow geometry: af , gf , hf , aw, gw, hw, and

• Parameters defining the weaving pattern of the fabric reinforcement: ng, ns, ni.

A large variety of twill/satin weaving styles can be described by the ng/ns/ni combination of the weaving
pattern parameters, as shown in Part I [33]. Comparison with available experimental data is presented last,
in section 3.4.

In this section, for simplicity, the fill and warp geometrical parameters are taken to be equal to each
other. Therefore, the subscripts f, w, are not needed, and the parameters are thus referred simply as tow
width a, tow thickness h, and gap g.

A range of gap to tow width g/a = (0.05 − 1) and tow thickness to tow width h/a = (0.05 − 0.5) is
considered for the parametric analysis, for fixed tow width a = 2mm. The influence of g/a and h/a is
studied for the 2/1/1 weaving pattern (i.e., plain weave).2 The influence of weaving pattern is studied for
the case of twill family ng/1/1 with ng = (1 · · · 11).

For each of the aforementioned cases, two situations are presented: 1) constant tow fiber volume fraction

V f
t = 0.7 and 2) constant overall fiber volume fraction V f

o = 0.35. Constant tow fiber volume fraction is
achievable by controlling the compaction level during composite material manufacturing. Constant overall
fiber volume fraction is more difficult to achieve in practice due to the complex 3D configuration of the
composite material architecture, but it is presented here in order to build a complete picture of the material
behavior. Note that an explicit relationship exists (6) between V f

t and V f
o .

The subscript notations m and M are be used in the following for the minimum and maximum values
of the g and h variables, respectively, at the extremes of their variation intervals.

Constituent in-situ strength properties listed in Table 1 are different from manufacturer specifications—
longitudinal strength values are different due to fiber misalignment [2, Sect. 4.4.3]; transverse strength
values are different due to imperfections [2, Sect. 4.4.4]. Because of this, the in-situ strength values of the
constituents have to be back-calculated based on known (experimental) strength values of UD composites
at a given fiber volume fraction and micro-mechanical strength models, including in this way the influence
of manufacturing parameters. The back-calculated strength values are regarded as in-situ strengths. These
values are then the input to the analytical model.

3.1 Fiber volume fraction

The influence of the tow geometrical parameters g/a and h/a on overall fiber volume fraction V f
o at constant

tow fiber volume fraction V f
t = 0.7 is presented in Fig. 4. The lines with square and circle symbols depict

overall fiber volume fraction as a function of gap g/a for constant thickness h, so their abscissa must be read
on the bottom horizontal axis. The lines with triangular symbols depict overall fiber volume fraction as a
function of thickness h/a for constant gap g, so their abscissa must be read on the top horizontal axis.

The curves for minimum thickness hm and maximum thickness hM display a pronounced downward trend
because the gap is made out entirely of pure matrix, thus the larger the gap the lower the overall fiber volume
fraction. These two curves are not very different from each other because the thickness plays a minor role
in the overall volume fraction. Such minor role is linked to the increased undulation as the thickness grows,
so the curve with square symbols (maximum thickness hM ) decreases a bit faster than the curve with circle
symbols (minimum thickness hm).

A large difference in overall fiber volume fraction can be seen between the curves with minimum gap gm
and maximum gap gM for the whole range of h/a. Therefore, we can conclude that the overall fiber volume
fraction is very sensitive to the magnitude of the gap and almost insensitive to the thickness, and thus almost
insensitive to the undulation.

The influence of harness ng on overall fiber volume fraction V f
o at constant tow fiber volume fraction

V f
t = 0.7 is presented in Fig. 5. It can be seen that harness has some influence only at low gap gm and

high thickness hM . At constant tow fiber volume, the overall fiber volume decreases with harness. This can
be explained as follows. The tow length is longer in the region with undulation than in the region without

2Note that the plain weave 2/1/1 is generated by the general code used for all other examples, which also is capable of
generating any ng/1/ni and ng/ns/1 weave.



Composite Structures, 93:1449–1462, 2011. 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.3

0.35

0.4

0.45

g/a

vf o

 

 0 0.1 0.2 0.3 0.4 0.5

0.25

0.3

0.35

0.4

0.45

h/a

vf
o
@h

m

vf
o
@h

M

vf
o
@g

m

vf
o
@g

M

Figure 4: Variation of overall fiber volume fraction with tow geometrical parameters (constant V f
t = 0.7).
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Figure 5: Variation of overall fiber volume fraction with weaving style (constant V f
t = 0.7).

undulation (see Fig. 2). The tow volume is simply the tow length times the tow area. The undulation is
concentrated over the interlacing region, which for a ng/1/1 is only one tow (ni = 1) out of ng tows along
each direction, fill and warp, in the RUC. Therefore, the higher the harness, the less percentage of RUC
volume is comprised by undulating tows, and by virtue of (5) the volume fraction of tows in the RUC, namely

Vmeso, decreases with harness. Then, by virtue of (6) rewritten as V f
o = V f

t Vmeso, the overall fiber volume
fraction decreases also with harness.

It is interesting to note that the large difference in V f
o between the curves in Fig. 5 (circle and square

symbols vs. triangular symbols) is almost entirely attributable to the gap, not to the thickness. For any
harness, overall fiber volume fraction is controlled by the gap, thus reinforcing the conclusions drawn from
Fig. 4. The higher the gap, the lower the volume fraction. In hindsight, this result seems to be obvious,
which begs a reminder that the conclusion herein was reached from the model results, which not only are
able to predict the correct trend but also to quantify the influence of harness, gap, thickness, and pitch for
a broad variety of twill, satins, and of course plain weave fabrics.
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The influence of harness ng on tow fiber volume fraction V f
t , at constant overall fiber volume fraction

V f
o = 0.35 is presented in Fig. 6. The trend is the opposite of that observed in Fig. 5. At constant overall

fiber volume, the tow fiber volume increases with harness. This is the opposite effect to that observed in
Fig. 5 and it can be explained in the same way. At constant overall fiber volume, the less length of tow
there is, the higher it’s fiber volume fraction must be in order to keep the overall fiber volume constant. As
explained before, the higher the harness, the higher the percentage of volume is made of flat tows, the later
having shorter tow length.
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Figure 6: Variation of tow fiber volume fraction with weaving style (constant V f
o = 0.35).
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3.2 Thermo-elastic material properties

The influence of the (dimensionless) gap g/a on thermo-elastic properties of the composite material, at

constant tow fiber volume fraction V f
t = 0.7, is presented in Fig. 7 and Fig. 8. The undesired knock-down

of material elastic moduli due to dimensionless gap g/a is notable in Fig. 7. The variation of Poisson ratio
and CTE can be observed in Fig. 8.

Regarding Young’s modulus Ex in Fig. 7, it can be observed that the gap g/a has higher influence at
small thickness, as it is displayed by the curve at minimum thickness hm. This is due to the undulation that
is less at small thickness hm for the same tow width a. The larger the gap, the lower the Young’s modulus.
The in-plane shear modulus Gxy is equally sensitive to gap whether the thickness, and thus the undulation,
are small hm or large hM . The larger the gap, the lower the shear modulus.

The values of Poisson ratio νxy and CTE αx shown in Fig. 8 are quite sensitive to gap. The larger the
gap, the larger the CTE and Poisson’s; both being deleterious effects of the gap.



Composite Structures, 93:1449–1462, 2011. 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

12

14

16

18

20

22

g/a

E
x [M

P
a]

 

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.5

3

3.5

4

4.5

G
xy

 [M
P

a]

E
x
@h

m

G
xy

@h
m

E
x
@h

M

G
xy

@h
M

Figure 7: Variation of Young and shear modulus with tow geometrical parameters (constant V f
t = 0.7).
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Figure 9: Variation of Young and shear modulus with weaving style (constant V f
t = 0.7).

The influence of hardness ng on Young’s modulus Ex and shear modulus Gxy, at constant tow fiber

volume fraction V f
t = 0.7, is illustrated in Fig. 9. The shear modulus Gxy is shown to be virtually insensitive

to harness. The Young modulus varies the most at minimum gap gm and maximum thickness hM . Also,
the Young modulus varies significantly at maximum gap gM and maximum thickness hM . To understand
this, please refer to Fig. 10, which depicts the case ng/ns/ni = 7/1/1. One can see that the reinforcement
consists of two distinct regions: the interlacing regions and long regions where the tows are flat and straight.
On a ng/1/1 weave, the higher the harness ng, the longer the flat regions. These flat regions contribute more
to the Yong’s modulus than the interlacing regions, because the later have undulation. Note on Fig. 9 that
the plain weave (ng = 2) looses almost 30% of the modulus when compared to a high hardness case.

Also in Fig. 9, note that Young’s modulus is higher when the gap is small (square symbols for a gap gm)
than when the gap is large (triangular symbols for a gap gM ). This is due to the gap lowering the overall
volume fraction, which has a direct effect on lowering Young’s modulus. Noticeable variation in CTE and
Poisson’s ratio are observed on Fig. 11 as well. Lower CTE and lower Poisson’s ratio are achieved for high
hardness because, being both fiber dominated, they follow exactly the opposite trend as Young’s modulus.
With the fiber modulus larger than the matrix modulus, and fiber CTE and Poisson’s ratio smaller than
those of the matrix, the trends for modulus must be opposite to that of CTE and Poisson’s ratio. Again,
not only logical trends, but also quantitative values, are predicted by the proposed formulation.
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Figure 10: Reinforcement weave described by ng/ns/ni = 7/1/1.
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Figure 11: Variation of Poisson ratio and CTE with weaving style (constant V f
t = 0.7).
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The trends observed in Fig. 9 and Fig. 11 for constant tow fiber volume fraction V f
t = 0.7, basically

reproduce themselves onto Fig. 12 and Fig. 13 for constant overall fiber volume fraction V f
o = 0.35, with

some differences. Still, a noticeable knock-down in Young’s modulus is observed in Fig. 12 for low harness
(e.g., plain weave). The undesirable increase in CTE and Poisson’s ratio is also observed in Fig. 13 for low
harness. The explanation for this behavior is identical to that offered for the previous case.

Note that in Fig. 9, the Young’s modulus curve for low gap (gm, square symbols) is above the Young’s
modulus curve for large gap (gM , triangular symbols). This is because, at constant tow fiber volume, a large
gap decreases the overall fiber volume, thus the modulus. On the contrary, in Fig. 12, the Young’s modulus
curve for low gap (gm, square symbols) is below the Young’s modulus curve for large gap (gM , triangular
symbols). This is because, at constant overall fiber volume, a large gap forces the tow fiber volume to
increase, increasing the longitudinal modulus of the tow, thus the modulus of the composite.
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Figure 12: Variation of Young and shear modulus with weaving style (constant V f
o = 0.35).
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Figure 13: Variation of Poisson ratio and CTE with weaving style (constant V f
o = 0.35).
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Table 2: Longitudinal tensile and shear strength of the laminate. WF: present formulation, CP: cross-ply
approximation, UD: unidirectional approximation.

Fig. 14 Fig. 15 Fig. 16 Fig. 17
uniaxial Fxt[MPa] uniaxial Fxt[MPa] uniaxial Fxt[MPa] shear Fxy[MPa]

ng WF CP UD WF CP UD Exp. WF CP UD Exp. WF
2 320 451.4 499.7 255 380.6 412.1 318 325 428.09 490.74 35.2 32.72
5 320 451.1 499.7 265 380.6 422.3 - - - - - -
8 320 451.0 499.7 265 380.6 424.9 - - - - - -

3.3 Progressive failure and strength

Stress–strain curves for weaving styles (plain weave ng = 2, and twill ng = 5, 8), at constant tow fiber

volume fraction V f
t = 0.7, are presented in Fig. 14. At such high tow fiber volume fraction, the influence of

the the weaving style is small. The fabric configuration is a = 2mm, g = 0.1mm, h = 0.1mm. The loading
case is uniaxial tension along the fill direction. For this case, predicted strength values are insensitive to
harness ng and weaving style (Table 2).

Stress–strain curves for weaving styles (plain weave ng = 2, and twill ng = 5, 8), at constant overall
fiber volume fraction V f

o = 0.35, are presented in Fig. 15. The fabric configuration is a = 2mm, g =
0.1mm, h = 0.64mm. The loading case is uniaxial tension along the fill direction. The stress–strain plot for
twill (ng = 5, 8) is different than for plain weave (ng = 2). The ultimate strength predicted by the proposed
method (WF) are different also, but not much, as it can be seen in Table 2. On the same table, notice how
unconservative the approximate methods are, namely the cross-ply and unidirectional approximations (see
section 2.1). The CP and UD strength values in Table 2 have been calculated based on the ply discount
method implemented in [40], and micro-mechanical strength models for UD composites [2, 38], respectively.
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Figure 14: Constitutive behavior up to failure for different ng/1/1 weaving patterns, uniaxial tensile loading

case (constant V f
t = 0.7).
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Figure 15: Constitutive behavior up to failure for different ng/1/1 weaving patterns, uniaxial tensile loading
case (constant V f

o = 0.35).
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3.4 Comparison with Experimental Data

The predicted constitutive behavior up to failure is compared to experimental data in Fig. 16 and Fig. 17.
Comparison for the case of uniaxial tensile loading experiments [16] is shown in Fig. 16 and Table 2 for the
following fabric configuration

af = 0.68mm, gf = 0.04mm, hf = 0.09mm,
aw = 0.62mm, gw = 0.10mm, hw = 0.09mm, V f

o = 0.40,

Comparison for the case of in–plane shear loading experiments [5] is shown in Fig. 17 and Table 2 for the
following fabric configuration

af = aw = 0.45mm, gf = gw = 0.30mm, hf = hw = 0.048mm, V f
o = 0.23.

Good agreement between experimental data and results predicted with the present formulation (WF) can
be observed for both tensile and shear loading. Note that no experimental values are available for ng > 2.
Also note that the approximate methods CP and UD are not able to compute an estimate for the shear
strength reported in and Table 2 (Fig. 17.)
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Figure 16: Predicted vs. experimental [5] uniaxial tensile loading of 2/1/1 plain weave reinforced composite.
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Figure 17: Predicted vs. experimental [16] in–plane shear loading of 2/1/1 plain weave reinforced composite.
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4 Conclusions

When the tow fiber volume fraction is constant, the overall fiber volume fraction decreases rapidly with
increasing gap (Fig. 4) and to some extent with harness (Fig. 5). The elastic constants are highly influenced
by the fiber volume fraction, thus gap (Fig. 7). Elastic constant are also affected by undulation, which is
shown to be increased by both higher gap and higher tow thickness (Fig. 9). As expected, increasing g/a and
h/a values knock down the thermoelastic properties of the composite. A larger gap g/a increases undulation
and the volume of pure matrix pockets. Tow thickness h/a increases undulation as well. The shear modulus
is not influenced by undulation (represented by h/a) but it is only influenced by the gap g/a, which reveals
a direct dependency to the fiber volume fraction, not to the geometry of the tow (Fig. 9). On the other
hand, Young’s modulus, Poisson’s ratio, and CTE behave similarly; they are all influenced by undulation
and fiber volume alike.

From the thermo–elastic material properties point of view, the ideal reinforcing weave is one with mini-
mum gap and minimum undulation. However, other material properties such as drapeability or manufactur-
ing constraints may require a larger gap or larger tow thickness, both of which will have an undesirable effect
on the material properties. For this cases, it is important to note the trend in Fig. 9 – 13, which reveals that
considerable improvement in material properties at high tow thickness values can be achieved by modifying
the weaving style toward higher harness ng.

The shift ns and interlacing ni are defined in Part I. Their influence on composite properties was found to
be negligible. Identical results are obtained for ng/1/1, ng/ns/1, and ng/1/ni weaving classes, for all values
of ns, ni. Only the harness ng has an effect on properties, as shown in this paper. However, the shift and
interlacing do have an effect on the drapeability, which may therefore be exploited advantageously since, as it
has been noted, they do not affect the properties of the composite. Additionally, shift and interlacing have an
influence on the location of the maximum undulation θmax, thus the stress concentration, and consequently
on the location of failure initiation.

Harness, tow thickness, and gap influence the failure initiation load, the location of initiation inside the
RUC, the mode of initial failure, and the sequence of progressive failure. The initiation and progressive
failure affects the shape of the nonlinear stress–strain plot due to degradation of the elastic constants, as it is
shown in Figs. 14– 15. Furthermore, it has been found that the governing parameter for the ultimate strength
value under uniaxial tensile loading is the tow fiber volume fraction V f

t . This can be inferred from Table 2,
where the same strength value is predicted for three weaving styles having the same tow fiber volume fraction
(column 1). Slight differences among the strength values on the second column in the table are due to slightly
different values of tow fiber volume fraction obtained by imposing constant overall fiber volume fraction for
the three weaving configurations reported in column 2 of the same table. Similar nonlinear behavior and
trends, obtained by finite element analysis, for different weaving styles under constant overall fiber volume
fraction are reported in [31]. The approximate methods CP and UD were found to be unreliable.

In summary, the formulation proposed is capable of quantifying the effects of fiber volume fraction,
weave style (namely harness, shift, and interlacing), as well as tow width, tow thickness, and gap (which
combined with harness define the pitch of the fabric) for broad families of weaving patterns such as twill and
satin, including plain weave as a particular case. The predicted trends are in agrement with the physics of
the problem and are further corroborated by similar conclusions from other works in the literature and by
comparison to experimental data for those few cases, notably for plain weave, for which such data exists.
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Appendix 1: Mechanical properties of tows inside of the composite
material

The following equations regarding hygro-thermo-elastic properties of individual tows are based on [2,11,37].
The 3D compliance matrix of tow regarded as UD composite in material c.s. is

S =


1/E11 −ν21/E22 −ν31/E33 0 0 0
−ν12/E11 1/E22 −ν32/E33 0 0 0
−ν13/E11 −ν23/E22 1/E33 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G12

 (21)

where Eij , νij , Gij are the engineering elastic constants of the UD tow calculated through micro-mechanical

models [2, 38,41] at tow fiber volume fraction V f
t (see Section 2.1).

The rotation matrices form material (1, 2, 3) to RUC (x, y, z) c.s. are defined by the following relations
for fill and warp tows, respectively

Θf (x, y) =

 l1 m1 n1
l2 m2 n2
l3 m3 n3

 =

 cos θf 0 sin θf
0 1 0

− sin θf 0 cos θf

 (22)

Θw(x, y) =

 l1 m1 n1
l2 m2 n2
l3 m3 n3

 =

 0 cos θw sin θw
−1 0 0
0 − sin θw cos θw

 (23)

where li,mi, ni (i = 1 · · · 3) are the direction cosines between the RUC and material coordinate systems, and
θf , θw, are the local undulation angles of fill and warp tows.

Based on (22), (23) the fill/warp stress rotation matrices are calculated as

Tq(x, y) =


l21 m2

1 n21 2m1 n1 2l1 n1 2l1m1

l22 m2
2 n22 2m2 n2 2l2 n2 2l2m2

l23 m2
3 n23 2m3 n3 2l3 n3 2l3m3

l2 l3 m2m3 n2 n3 m2 n3 + n2m3 l2 n3 + n2 l3 l2m3 +m2 l3
l1 l3 m1m3 n1 n3 m1 n3 + n1m3 l1 n3 + n1 l3 l1m3 +m1 l3
l1 l2 m1m2 n1 n2 m1 n2 + n1m2 l1 n2 + n1 l2 l1m2 +m1 l2

 (24)

Performing the calculations indicated in (24) for the fill and warp yields

Tf (x, y) =



c2f 0 s2f 0 2cfsf 0

0 1 0 0 0 0
s2f 0 c2f 0 −2cfsf 0

0 0 0 cf 0 −sf
−cfsf 0 cfsf 0 c2f − s2f 0

0 0 0 sf 0 cf

 (25)

Tw(x, y) =


0 c2w s2w 2cwsw 0 0
1 0 0 0 0 0
0 s2w c2w −2cwsw 0 0
0 0 0 0 −cw sw
0 −cwsw cwsw c2w − s2w 0 0
0 0 0 0 −sw −cw

 (26)
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where s = sin θ(x, y) and c = cos θ(x, y). Based on (21) and (25), (26), the transformed fill and warp 3D
compliance matrices in global (x, y, z) c.s., at any (x, y) location of the RUC, are

Sf (x, y) = (Tf (x, y))
T · S · Tf (x, y)

Sw(x, y) = (Tw(x, y))
T · S · Tw(x, y) (27)

which after performing the calculations become

Sf (x, y) =


S11 S12 S13 0 S15 0
S21 S22 S23 0 S25 0
S31 S32 S33 0 S35 0
0 0 0 S44 0 S46

S51 S52 S53 0 S55 0
0 0 0 S64 0 S66


f

(x, y)

Sw(x, y) =


S11 S12 S13 S14 0 0
S21 S22 S23 S24 0 0
S31 S32 S33 S34 0 0
S41 S42 S43 S44 0 0
0 0 0 0 S55 S56

0 0 0 0 S65 S66


w

(x, y) (28)

By considering the plane-stress assumption in the (x, y) plane of the laminate, the reduced stiffness matrices
of the fill and warp constituents, at any (x, y) location of the RUC, are calculated as

Qq(x, y) =

 Q11 Q12 0
Q21 Q22 0

0 0 Q66


q

=

 S11 S12 0
S21 S22 0
0 0 S66

−1
q

(29)

where q = f, w indicates fill and warp, respectively, and the required Sij (i, j = 1, 2, 6) terms in (29) are
taken from the corresponding terms in (28).

From the configuration of the compliance matrices in (28) it can be seen that, due to 3D undulated
configuration of the fill and warp tows, out of plane compliance terms exist (i.e., any term with subscript
indices different from 1, 2, 6). The out of plane compliance terms induce out of plane coupling stress-strain
components in the fill/warp constituents under in-plane loading. The above plane-stress assumption implies
dropping the out of plane coupling therms, which has to be recorded as a simplification of the analytical
model.

A similar approach based on the theory of UD ply can be applied for the calculation of the hygro-thermal
properties of individual fill/warp tows. Thus, the 3D vectors of thermal and moisture expansion coefficients
at any (x, y) location inside RUC are

αx

αy

αz
1
2αyz
1
2αxz
1
2αxy


q

(x, y) = [T ]−1q (x, y) ·



α1

α2

α3

0
0
0


q

(30)



βx
βy
βz

1
2βyz
1
2βxz
1
2βxy


q

(x, y) = [T ]−1q (x, y) ·



β1
β2
β3
0
0
0


q

(31)
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where αi, βi (i = 1 · · · 3) are the thermal and moisture expansion coefficients of the tow regarded as UD

composite at tow fiber volume fraction V f
t (see Section 2.1), calculated based on micro-mechanical models

[2, 37–39]. The in-plane terms of interest are calculated as

αf
x(x, y) = α1c

2
f + α2s

2
f αf

y(x, y) = α2 αf
xy(x, y) = 0

αw
x (x, y) = α2 αw

y (x, y) = α1c
2
w + α2s

2
w αw

xy(x, y) = 0
βf
x (x, y) = β1c

2
f + β2s

2
f βf

y (x, y) = β2 βf
xy(x, y) = 0

βw
x (x, y) = β2 βw

y (x, y) = β1c
2
w + β2s

2
w βw

xy(x, y) = 0

(32)
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