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Abstract

In response to the large variety of weaving styles offered by the textile industry, a new general approach
for the geometrical modeling of 2D biaxial orthogonal woven fabric reinforcements for composite materials
is proposed here. New geometrical parameters are introduced in order to describe general families of twill
and satin woven patterns, and a new classification of woven fabrics is proposed based on these parameters.
Generation of the 3D internal geometry of the woven fabric families is achieved based on new geometrical
functions that consider the actual configuration of the composite material in all its complexity. The proposed
geometrical model is intended as the foundation for further analytical or numerical modeling of the mechanical
properties of the composite materials reinforced with these fabrics.
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1 Introduction

Textile reinforcements are widely used as an alternative to traditional unidirectional reinforcements for struc-
tural applications of composite materials in aerospace, automotive, civil, marine and other industries. The
most commonly used textile structures are woven, braided, knitted, and non-woven fabrics. A comprehensive
classification of textile reinforcements is offered in [1, 2].

The present study focuses on 2D woven reinforcements, among which plain, twill, and satin weave are
distinct categories. 2D woven fabrics are obtained by interlacing two sets of tows, strands, or yarns in the
weaving machine. The tows running along the weaving direction are called warp, while the ones running
transverse to the weaving direction are called fill or weft. This type of fabrics are labeled 2D because they
provide only in-plane reinforcing properties at the laminate level; similar to traditional unidirectional ply
laminates, there are no through the thickness reinforcing elements. 2D weaves are biaxial (i.e., the tows are
aligned along only two directions, which are the fill and warp directions) and orthogonal (i.e., the fill and
warp tows are laid down at 90◦ with respect with each other). Even if the fabric reinforcement features
in-plane 2D reinforcing properties, it still has a 3D internal architecture due to its waviness. Waviness
results in complex stress-strain fields, which usually translates in reduction of the material properties and
the generation of new failure modes compared to unidirectional reinforcements.

Most of the literature deals with plain weave fabric reinforcements [3–14], or with particular cases of
twill/satin weaves by building individual models for each of them [15–21]. Recently, efforts have been made
to construct general models, applicable to classes of weaving styles rather than to particular cases [22–24].

The capacity of a model to predict damage initiation and strength is directly related to the quality of
the geometrical description of the reinforcing architecture. Simplifying assumptions made on the internal
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geometry result in loss of accuracy in the resulting stress-strain field. A certain degree of geometrical
simplification may be insignificant if the model is dedicated to evaluating the thermo-elastic properties of
the material, but becomes significant when the model is dedicated to evaluate progressive damage.

If the model is based on a geometry description considering the tow undulation in both fill and warp
directions, as in [3–6, 8–10, 14, 18–26], it is regarded as a 3D model. Opposite, a model may involve simpli-
fications (e.g., considering the tow undulation in only one of the fill/warp directions [11, 12, 15, 16, 27]) that
reduce the model to a 2D model. Furthermore, various assumptions can be identified in different models in
the literature regarding the tows cross-sectional shape, tow undulated shape, and the gap between adjacent
tows. Higher accuracy in modeling the geometry of the reinforcing structure results in higher accuracy of
the model output, but higher model setup effort, computational effort, and severely limited variety of fabric
architectures, often limited to plain weave only. The most accurate geometrical descriptions are usually used
in numerical (FEA) models, while analytical models rely on various geometrical simplifications.

Elastic properties of plain and satin weave reinforced composite materials are predicted in [15, 27] using
mosaic, crimp and bridging models. The mosaic model does not consider the undulation of any fill/warp
tows, and the material is considered as an assemblage of cross-ply type elements. The crimp model, also
called the fiber undulation model, considers the tow waviness along one direction only. The bridging model
is a combination of the previous two models, being dedicated to more accurate evaluation of the elastic
material properties of satin weaves. The bridging model is based on repetitive unit cell (RUC) technique,
and the selected RUC applies to only 8–harness satin, with the results being latter applied to other satin
types.

Improvement of the fiber undulation model is done in [11, 12] for plain weave only. Additional aspects
of the material architecture are considered, as the phase shift in between different layers of the laminate,
but without considering the plies nesting triggered by the phase shift. The model features the same 2D
geometrical representation as the fiber undulation model, considering the tow undulation along one direction
only. A more advanced 3D geometrical model for plain weave fabrics is developed in [12].

A comprehensive analysis of composite materials based on plain weave fabrics is made in [3, 4, 6, 8–10].
In [3,6] a 3D geometrical model considering the fiber undulation on both fill and warp directions, as well as
the gap in between individual tows, and the possibility for different cross-sectional parameters of fill and warp
tows is presented. A very detailed analysis of the possibilities of geometrical modeling of the 3D architecture
of the plain weave reinforcement is presented in [8], clearly pointing out the possible inaccuracies induced
by different geometrical representations. The possible phase shift in between different plies of the laminate,
and the nesting effect triggered by phase shift is accounted for.

Two specific cases of satin weave (5– and 8–harness) are modeled in [18,19]. Particular cases of twill weave,
the twill family “1–under/n–over” featuring the thinnest diagonal rib and the twill pattern “2–under/2–over”,
are presented as separate models in [20,21].

Individual cases of plain, 5–harness, and 8–harness weaves are treated in [17], based on a not very accurate
3D geometrical model that uses rectangular cross-sections for the yarns. The geometrical models for these
three cases are regarded as separate problems, without generalizing the process to generate the geometry.

An attempt towards generalizing the analysis of 2D weaves and braids is made in [23, 28], where a set
of four parameters is assigned to each fill and warp tow in order to describe the inter-weaving position (top
or bottom) and length of tow segments inside RUC. The goal is to describe the undulation of fill/warp
tows at any location of the RUC, based on the four-parameter sets assigned to each individual fill/warp
tows. However, the model in [23, 28] does not have the ability to automatically generate weaving families,
because individual sets of parameters must be assigned to individual fill/warp tows for individual weaving
styles. Moreover, the value of each parameter in the set is also a function of the weaving style. Because of
these drawbacks, only braiding cases are treated in [23,28] for fixed interlacing pattern and only varying the
braiding angle.

Another attempt to systematically treat the problem of woven fabric families is done in [22]. The
dependence of final composite material properties on the geometrical configuration of the reinforcement are
stated, and the model is meant to deal with the challenge of the large variety of woven fabric architectures,
being able to accommodate tow orientations other than orthogonal. Geometrical functions are provided for
individual segments of the undulated tows, but no methodology is provided to generate general weaving
patterns. Because of this, the analysis is performed on the particular cases of plain weave and “1–under/2–
over” twill weave, which are actually described by separate geometrical models.
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The need for accurate and precise geometrical model is the objective of some of the research studies that
focus exclusively on the geometrical description of the architecture of the fabric reinforcement [24–26,29,30].
In [26] some of the inaccuracies of the previous models are identified and corrected for the particular case
of plain weave fabric. In [29] a new methodology of building generic geometrical models is launched, even
if accurate details are not considered (e.g. the tow cross-section is rectangular, and the fill and warp
tow are identical). The method consists of generating libraries of building blocks, including all the possible
combinations of fill/warp stacking and undulation, and assembling these building blocks (similar to a puzzle)
to generate a certain woven pattern. In this way, the final outcome is not a specific description of a specific
woven fabric, but it is rather a collection of small pieces that can generate any weaving style, if assembled
in the right way. The assemblage of the blocks is a separate aspect of the problem, and it is done manually
in [29], by laying down in the right way individual building blocks, piece by piece, filling separate tows of the
RUC, which is tedious and prone to mistakes. The final result is a 3D geometrical model, and the technique
is pretty much similar to CAD modeling designated to subsequent meshing for FE analysis.

The geometrical modeling technique in [29] is further developed [24, 25] by increasing the accuracy and
generality of the building blocks. Normally, the higher the number of the aspects considered (e.g. different
geometrical parameters for fill and warp tows, or considering the hybridization for material properties and/or
geometrical parameters of the fill/warp tows), the wider the resulting library of the building blocks, and the
more complicated the assemblage of the blocks into a certain fabric type. This is done in [25], where a
meshing procedure is also proposed, which will be further used in [30] in order to calculate the 3D elastic
properties of the material, based on either iso-strain or iso-stress assumption at the RUC level. The inherent
complexity of assembling building blocks is obvious in that the only case illustrated in [30] is that of a plain
weave. This problem is addressed in [24], where, besides an accurate geometry description, the assembly
of the geometrical blocks is automatically done based on a mapping of the RUC. According with this map,
which becomes an input of the geometrical model generation, individual blocks are assigned to individual
locations of the RUC, and the 3D representation of a certain weaving style is obtained. In addition to the
mapping matrices, two vectors describing the centroidal coordinates of the individual blocks along the fill
and warp directions are also required as input data. The amount of input data is large, and categories of
weaves (e.g. a whole set of satins or a whole set of twills) cannot be obtained automatically. The geometrical
model generation is exemplified by the particular cases of plain weave and 4–, 5–, 8–harness satin weave. Is
has to be noted that the problem becomes even more complicated when tow width, thickness, and gap are
different for fill and warp.

In view of the limitations of the available model generation techniques, the objective of the present work
is to propose an analytical formulation capable of generating the 3D geometry of broad families of weaves,
such as twill and satin, in terms of a few parameters.

2 Description and classification of weaving styles

Examples of 2D, biaxial, orthogonal woven fabrics are presented in Fig. 1.
The fill and warp tows are described by the following parameters (see Fig. 2):

• The width of fill af and warp aw,

• The tow thickness of the fill hf and warp hw, and

• The gap between two adjacent tows gf and gw.

The geometrical parameters of the tow play a role on the drapeability and snag resistance of the dry
fabric, on the permeability of the fabric during resin infusion, and on the final properties of the fabric
reinforced composite material, including the thermo-elastic properties, damage onset, and strength. Often a
trade-off between manufacturability and performance is necessary, thus requiring the ability to predict the
material performance for a number of candidate fabric weaves.

Fabrics can be woven in different styles and patterns (Fig. 1, 3), namely plain, twill, satin, and basket
weaves, each of them featuring some advantages and disadvantages from the processing and manufacturing
point of view, as well as having a different impact on the mechanical properties of the composite material.
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Figure 1: Examples of 2D, biaxial, orthogonal weaving patterns: a) plain, b) twill, c) satin.

The plain weave (Fig. 1 a) is the most common weaving style, thus enjoying the highest attention from
the research community. The fill and warp tows are interlaced in an “one under – one over” pattern that
generates a chessboard pattern with equally exposed fill and warp tows on both faces of the fabric. Plain
weave fabrics consolidate well, are easy to handle, are wear and snagging resistant, but they do not drape
well to complex mold shapes, tending to wrinkle.

The twill weave (Fig. 1 b, Fig. 3 b and c) is characterized by continuous rib diagonals on the faces of
the fabric. In the figures, the fill and warp tows are depicted horizontally and vertically, respectively. In
a twill, the fill tows are interlaced in a pattern of “m under – n over”, with at least one of the m,n > 1,
and featuring a shift ns (Fig. 4 a) in the fill direction of at most m, i.e., ns ≤ m, so that a diagonal rib is
generated on each face of the fabric. Many twill weave styles can be designed, having different width of the
diagonal ribs, or having a balanced (Fig. 2) or unbalanced (Fig. 3 b and c) fill and warp exposure on the
faces of the fabric. The main characteristic of the twill weave is its improved drapeability as compared to
plain weave, being at the same time prone to snagging when the harness is large and/or the diagonal ribs
are thin.

Satin weaves are depicted on Figs. 1 c, 3 d, and 3 e, again with the fills horizontal and the warps vertical.
A twill is generated by assigning values to the “m under – n over” parameters of fill interlacing in such a
manner that no continuous diagonals can be identified on the faces of the fabric. This can be achieved by a
shift ns > m (Fig. 4 b). Exposure of the tows on the faces of the fabric is unbalanced, dominated by either
fill or warp on opposite faces. A satin provides the best drape, being at the same time the most prone to
snagging due to lack of connectivity between adjacent, parallel tows.

Similar appearance to plain weave is featured by the basket weave, where the “one under – one over”
interlacing pattern is replaced by a balanced “m under – m over” one, with a shift equal to m in between
tow groups, with the particularity that, in this case, the shift is applied to a whole group of m adjacent
tows rather that to individual tows. In this manner, the fabric face has a chessboard appearance, with each
square composed by m individual tows, with m = 1 for the case of plain weave. The drapeability of the
basket weave is improved in this way, compared to plain weave.

The repetitive unit cell (RUC) is used here for geometrical and mechanical analysis. There are multiple
ways to select a RUC for the same fabric, using either one or the other face of the fabric, setting the horizontal
axis along either fill or warp direction, and describing the fabric architecture as it develops on the positive
or negative side of the axes. Once a RUC is selected, it becomes representative for the material, and the
calculated properties are unique, regardless of the way the RUC was selected. However, a unique way of
selecting the RUC is required for computer implementation of the model. In order to establish uniqueness, to
be in accordance with the notation used in the present paper (i.e., the horizontal x direction of the coordinate
system along the fill tow), and to assure consistence with the model formulation, the RUC of any weaving
style has to be selected such that the origin of the coordinate system, corresponding to the left–bottom
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Figure 2: Geometrical parameters of individual fill and warp tows of a 4/1/2 twill. Subscripts denote: f=fill,
w=warp, r=resin.

corner of the RUC, is located at the beginning of an “under” segment of the fill (see Fig. 1, 2, 3).
In this way, an unique RUC can be selected, which is in agreement with the geometrical parameters

introduced in this work in order to describe the weaving pattern in a manner amenable for computer imple-
mentation. These parameters are ng, ns, ni (Fig. 4), defined as follows:

• The harness ng is the dimension of the repetitive unit cell (RUC), expressed in number of tows (e.g.,
ng = 3 in Fig. 1 b.)

• The shift ns in the fill direction required to repeat the interlacing pattern on consecutive fill tows (look
at fill f2 in Fig. 4 a, and count the shift to the right required for fill f3 to display the same interlacing
pattern; i.e., ns = 1.)

• The interlacing ni is the number of warp tows over a fill tow in the interlacing region (e.g., ni = 2 in
Fig. 4 a)

Making use of these parameters, a new codification system for 2D biaxial orthogonal woven fabrics is
proposed and used here. According to this system, any weaving style is described by the combination of
the three parameters ng/ns/ni, without the necessity of generating individual geometrical descriptions for
particular cases.

3 Geometrical model of weaving patterns

A complete geometrical representation of the fabric structure, at any (x, y) location of the RUC, requires to
know:

• The undulation along the fill and warp tows, zf (x, y) and zw(x, y) (see Fig. 5) and

• The cross-sectional shape of the tows, ef (x, y) and ew(x, y) (see Fig. 5.)



Composite Structures, 93:1424–1432, 2011. 6

tw
ill

satin

a)

b) c)

d) e)
1  2  3  4  5

5
4
3
2
1

1  2  3  4  5

1  2  3  4  51  2  3  4  5

5
4
3
2
1

5
4
3
2
1

5
4
3
2
1

i=1  2  3  4  5

j=5
j=4
j=3
j=2
j=1

RUC

Figure 3: Twill and satin weaving patterns, having ng = 5 and different values of ns, ni parameters: a) 5/1/1,
b) 5/1/2, c) 5/1/3, d) 5/2/1, e) 5/3/1.

These functions are different for each type of weave, namely twill and satin. Therefore, they are given
separately in Sections 3.1, 3.2, and 3.3.

Once the undulated shape and cross section of the tow are known at any (x, y) location of the RUC, all
other quantities required by a mechanical model can be calculated in terms of the geometrical parameters
af , gf , hf , aw, gw, hw of individual fill/warp tows (Fig. 2), as follows:

The top and bottom surfaces of the fill and warp tows

ztopf (x, y) = zf (x, y) +
1

2
ef (x, y)

zbotf (x, y) = zf (x, y)− 1

2
ef (x, y)

ztopw (x, y) = zw(x, y) +
1

2
ew(x, y)

zbotw (x, y) = zw(x, y)− 1

2
ew(x, y) (1)

The fill and warp undulation angles

θf (x, y) = arctan

(
∂

dx
zf (x, y)

)
θw(x, y) = arctan

(
∂

dy
zw(x, y)

)
(2)
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Figure 4: Geometrical parameters of the weaving pattern.

The length of a fill/warp tow inside the RUC

Lf =

∫ ng·ww

0

√
1 +

(
d

dx
zf (x, y)

)2

dx

Lw =

∫ ng·wf

0

√
1 +

(
d

dy
zw(x, y)

)2

dy (3)

where wf = af +gf and ww = aw+gw. The crimp of fill/warp tows is defined as the percent fraction between
the total length of the tow inside the RUC Lf , Lw, and the length of the RUC along the corresponding tow
direction L′f , L

′
w, as follows

cf = 100

(
1−

L′f
Lf

)
[%]

cw = 100

(
1− L′w

Lw

)
[%] (4)

where L′f , L
′
w dimensions are calculated as L′f = ng(aw + gw) = ngww and L′w = ng(af + gf ) = ngwf .

The individual fill/warp cross-sectional areas

Af =

∫ wf

0

ef (x, y)dy

Aw =

∫ ww

0

ew(x, y)dx (5)

The volume of a fill/warp tow inside RUC

vf = Af Lf

vw = Aw Lw (6)
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Figure 5: Geometrical representation of the fabric reinforcing structure of a 4/1/2 twill weave.

The meso-scale volume fraction of fill and warp tows inside the RUC

Vmeso =
ng(vf + vw)

vRUC
(7)

The total volume of the RUC

vRUC = n2g wf ww h (8)

These quantities can be used in a mechanical model of the fabric reinforced composite material in order to
calculate the thermo-elastic constants, damage initiation, and strength. The input data for the geometrical
model are:

• The individual fill/warp tows geometrical parameters af , gf , hf , aw, gw, hw and

• The parameters describing the weaving pattern ng, ns, ni.

The 3D internal architecture of the reinforcement is accounted for by considering the tow undulations
in both fill and warp directions as well as the lenticular shape of the tow cross-section, according with
experimental photomicrographic observation of woven fabric reinforced composite materials [31, 32]. The
proposed model allows for different input geometrical parameters of individual fill and warp tows (tow
width, tow maximum thickness, or the gap between adjacent tows), as it might be the case as a result of
engineering design or processing conditions.

The tow waviness zf (x, y), zw(x, y), (Fig. 5) can be described by continuous undulated shapes, or by
combinations between undulated and straight segments. Continuous sinusoidal undulation functions have
been used in [3–10] for the plain weave case and in [20,21] for few particular cases of twill and satin weaves.
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The tow cross-section ef (x, y), ew(x, y), (Fig. 5) can be described by circular, elliptical or trigonometrical
shapes, with or without flattened segments. These functions are presented in Sections 3.1, 3.2, and 3.3
in order to describe complete families of twill and satin weaves with arbitrary values of weave parameters
ng, ns, ni and tow parameters af , gf , hf , aw, gw, hw.

3.1 Twill weave family with ng ≥ 2, ns = 1, ni = 1

All twills have ng > 2, with plain weave being a particular case at ng = 2.
The geometrical functions zf (x, y), ef (x, y), zw(x, y), ew(x, y) presented here are meant to describe a class

of twill weaves with arbitrary harness ng, but having shift ns = 1 and interlacing ni = 1, as depicted in
Fig. 1 a, and b. This twill family is characterized by the thinnest diagonal ribs, due to the minimum value
of the interlacing ni = 1. In the codification system proposed in here, this twill family is denoted as ng/1/1.

This family is a particular case of the more general ng/1/ni described in Section 3.2, but it is shown here
because it affords certain simplifications that make the explanation easier, more didactic, and because it is
of common use in industry.

The function to describe the undulation zf (x, y) (Fig. 5) of the fill tow is

if (j − 1)wf +
gf
2 ≤ y ≤ jwf −

gf
2

zf (x, y; j) =

−hf

2 sin
[
πx
ww

+ (j − 1)π
]

if (j − 3
2 )ww ≤ x ≤ (j + 1

2 )ww

hf

2 if
(j + 1

2 − ng)ww < x < (j − 3
2 )ww

or (j + 1
2 )ww < x < (j − 3

2 + ng)ww

(−1)ng+1×
hf

2 sin
[
πx
ww

+ (j − 1)π
]

if
(j − 3

2 − ng)ww ≤ x ≤ (j + 1
2 − ng)ww

or (j − 3
2 + ng)ww ≤ x ≤ (j + 1

2 + ng)ww

if (j − 1)wf ≤ y < (j − 1)wf +
gf
2 or jwf − gf

2 < y ≤ jwf
zf (x, y; j) = 0

(9)

and the function to describe the undulation zw(x, y) of the warp tow is

if (i− 1)ww + gw
2 ≤ x ≤ iww −

gw
2

zw(x, y; i) =

hw

2 sin
[
πy
wf

+ (i− 1)π
]

if (i− 3
2 )wf ≤ y ≤ (i+ 1

2 )wf

−hw

2 if
(i+ 1

2 − ng)wf < y < (i− 3
2 )wf

or (i+ 1
2 )wf < y < (i− 3

2 + ng)wf

(−1)ng×
hw

2 sin
[
πy
wf

+ (i− 1)π
]

if
(i− 3

2 − ng)wf ≤ y ≤ (i+ 1
2 − ng)wf

or (i− 3
2 + ng)wf ≤ y ≤ (i+ 1

2 + ng)wf

if (i− 1)ww ≤ x < (i− 1)ww + gw
2 or iww − gw

2 < x ≤ iww
zw(x, y; i) = 0

(10)

Note that two auxiliary parameters i, j = 1 · · ·ng (Fig. 3 a) refer to each individual tow in the RUC (see
Fig. 3). This means that equations (9)–(10) are able to describe the fill and warp undulated shape one tow
at a time. For example, the function zf (x, y; j) describes the waviness of the fill tow j inside the RUC, at
any (x, y) location inside the tow, while the function zw(x, y; i) describes the waviness of the warp tow i
inside the RUC. Having the waviness defined as a function of both x and y allows for analytical computation
of all the quantities required for the analysis of textile reinforced composites.
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In a similar way, making use of the i, j parameters to identify individual fill/warp tows inside the RUC,
the cross-sectional thickness functions for the fill and warp tows are described by

ef (y; j) = (11)
∣∣∣hfsin [π(−(j−1)wf+y−gf/2)

af

]∣∣∣ if (j − 1)wf +
gf
2 ≤ y ≤ jwf −

gf
2

0 if (j − 1)wf ≤ y < (j − 1)wf +
gf
2 or jwf − gf

2 < y ≤ jwf

and

ew(x; i) = (12)
∣∣∣hwsin [π(−(i−1)ww+x−gw/2)

aw

]∣∣∣ if (i− 1)ww + gw
2 ≤ x ≤ iww −

gw
2

0 if (i− 1)ww ≤ x < (i− 1)ww + gw
2 or iww − gw

2 < x ≤ iww

Note in (11)–(12) that the cross-section of the fill is assumed to be constant along its length (x) and the
cross-section of the warp is constant along its length (y).

The following procedure identifies the region of applicability (domain) of equations (9) – (12) in terms of
the tow identifiers i, j, as follows:

when (j − 1) wf ≤ y ≤ j wf
zf (x, y) = zf (x, y; j) , ef (y) = ef (y; j)

when (i− 1) ww ≤ x ≤ i ww
zw(x, y) = zw(x, y; i) , ew(x) = ew(x; i) (13)

In this way, the zf (x, y), zw(x, y) and ef (x, y), ew(x, y) functions are generated, and the geometrical
description at any (x, y) location inside the RUC is completed automatically for any member of the family
ng/1/1.

From Fig. 1 it can be observed that, for the present case of ng/1/1 twill class, the fill and warp undulation
shapes are identical, but for a minus sign, i.e.,

zw(y, x; i) = −zf (x, y; j) for i = j (14)

Therefore, there is no need to separately define the warp function (10), because it is generated by (9)
and (14) together with a change of variables from af , gf , hf to aw, gw, hw.

The same applies for the cross-sectional functions (11) – (12); there is no need to define the warp thickness
function ew(x; i) because it is generated based on

ew(x; i) = ef (y; j) for i = j (15)

along with the aforementioned change of variables.

3.2 Twill weave family with ns = 1

This class of twills is exemplified in Figs. 3 b,c and 6 a,b,c. The family is codified as ng/1/ni. This family is
characterized by its ability to generate twill weaves with wider diagonal ribs than the previously described
ng/1/1 class. The ng/1/1 geometry can be retrieved from the ng/1/ni model by imposing ni = 1, and the
plain weave results from setting ng = 2, ns = ni = 1. In this way, there is no need, other than didactical, for
the ng/1/1 model in Sect. 3.1, since that is a particular case of the ng/1/ni model presented in this section.
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The function describing the undulation zf (x, y) of the fill is given by

if (j − 1)wf +
gf
2 ≤ y ≤ jwf −

gf
2

zf (x, y; j) =

−hf

2 sin
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πx
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]
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2 )ww
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2
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)
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(−1)ni
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ww
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2 sin
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)
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(
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(
j − 1
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)
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−hf

2
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(
j − 1
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ww < x <

(
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2 − ng + ni
)
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if
[
(j − 1)wf ≤ y < (j − 1)wf +

gf
2 or jwf − gf

2 < y ≤ jwf
]

and gf 6= 0
zf (x, y; j) = 0

(16)

Unlike ng/1/1 in Section 3.1, for this more general and broad family, the warp and fill undulations are
not identical. This can be seen in Fig. 3 b and c, where it can be seen that the warp i = 1 does not have
a similar undulation to the fill j = 1, the warp i = 2 is not like the fill j = 2, and so on. This means that
equation (14) relating the undulation of warp to that of the fill cannot be applied, and the unknown zw(x, y)
can not be automatically generated based on the zf (x, y) in (16), as it was the case of the ng/1/1 model.

However, it can be observed in Fig. 3 b that the undulation of the warp i = 1 corresponds to that one
of the fill j = 5, the warp i = 2 corresponds to the fill j = 1, the warp i = 3 corresponds to the fill j = 2,
the warp i = 4 corresponds to the fill j = 3, and the warp i = 5 corresponds to the fill j = 4. Similarly, the
correspondence between the undulation of i = (1, 2, 3, 4, 5) warps and j = (4, 5, 1, 2, 3) fills can be observed
in Fig. 3 c. Of course, the word ‘corresponds’ used here assumes the change in sign in (14), and the change
of variables from af , gf , hf to aw, gw, hw as explained in Section 3.1.

The advantage of identifying a correspondence between the warp and fill undulation is exploited by
defining a correspondence vector CV , which in the case of 5/1/2 twill (Fig. 3 b) is CV = (5, 1, 2, 3, 4), and
in the case of 5/1/3 twill (Fig. 3 c) is CV = (4, 5, 1, 2, 3).

The rule for identifying the correspondence vector CV of any twill/satin weaving pattern is the following:
the value of the element CV (i) (i = 1 · · ·ng) is the value of j for the fill that overlaps in the same position i
as the i-th warp. Correspondence vectors for a number of weaves are given in Table 1.

Having the correspondence vector defined, the warp undulation zw(x, y) can be generated automatically
in terms of the fill undulation zf (x, y) (14) and the correspondence vector CV , which assures a mapping
between the fill and warp undulations. In this way, there is no need of write zw(x, y) separately, as it can be
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CV (i)
ng ns ni 1 2 3 4 5 6
2 1 1 1 2
3 1 1 1 2 3
3 1 2 3 1 2
3 2 1 1 2 3
4 1 1 1 2 3 4
4 1 2 4 1 2 3
4 1 3 3 4 1 2
4 2 1 - - - -
4 3 1 1 2 3 4
5 1 1 1 2 3 4 5
5 1 2 5 1 2 3 4
5 1 3 4 5 1 2 3
5 1 4 3 4 5 1 2
5 2 1 1 5 4 3 2
5 3 1 1 5 4 3 2
5 4 1 1 2 3 4 5
6 1 1 1 2 3 4 5 6
6 1 2 6 1 2 3 4 5
6 1 3 5 6 1 2 3 4
6 1 4 4 5 6 1 2 3
6 1 5 3 4 5 6 1 2
6 2 1 - - - - - -
6 3 1 - - - - - -
6 4 1 - - - - - -
6 5 1 1 2 3 4 5 6

Table 1: Correspondence vectors CV for weaving patterns with ng = 2 · · · 6

derived from zf (x, y), which is already available in (16), thus simplifying the formulation.
The cross-sectional thickness functions are the same as those presented in (11), (12), with the corre-

spondence relation (15) being applicable. The i, j parameters are similarly eliminated using (13), and the
geometrical model of the ng/1/ni twill family is completely defined.

3.3 Satin weave family with ni = 1

This class of satin weaves is illustrated in Fig. 3 d, e, and 6 d,e. It can be observed that this model has
the ability to describe satin weaves that feature any shift ns between interlacing regions of two adjacent
tows, while keeping the interlacing to ni = 1. Similarly to the previous case, the ng/1/1 twill geometry
becomes a particular case of the ng/ns/1 model, by setting ns = 1, and the plain weave results from setting
ng = 2, ns = ni = 1.
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The function describing the fill undulation zf (x, y) is given by
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and gf 6= 0
zf (x, y; j) = 0

(17)

Similarly to the model in Section 3.2, the warp undulation zw(x, y) is generated automatically from the
fill undulation (17) based on the correlation equation (14) and the correlation vector CV . The cross-sectional
thickness functions are the same as those presented in (11), (12), with the correspondence relation (15) being
applicable, and the i, j parameters are eliminated using (13). The geometrical model of the ng/ns/1 satin
family is completely defined by these elements.

Note the empty entries in in Table 1 for 4/2/1, 6/2/1, 6/3/1, and 6/4/1 weaves. These are empty
because any member of the family ng/ns/1 with ng and ns having at least one common divisor (different
from 1) identifies an invalid weave, featuring non-interlaced tows.

Some examples of woven fabric structures generated by the formulation proposed in Sections 3.1 – 3.3
are presented in Fig. 6. Prediction of some important geometrical quantities, such as crimp and maximum
undulation angle, are presented in Section 4.

4 Results

A parametric study is presented next with the objective of elucidating the influence of two types of param-
eters on the 3D geometrical features of the fabric:

• Parameters defining the individual tow geometry: af , gf , hf , aw, gw, hw and

• Parameters defining the weaving pattern of the fabric reinforcement: ng, ns, ni.

In this section, for simplicity, the fill and warp geometrical parameters are taken to be equal to each
other. Therefore, the subscripts f, w, are not needed, and the parameters are thus referred simply as tow
width a, tow thickness h, and gap g.
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A range of gap to tow width ratio g/a = (0.05−1) and tow thickness to tow width ratio h/a = (0.05−0.5)
is considered for the parametric study, for a fixed width a = 2mm. The influence of the parameters g/a and
h/a is illustrated for a plain weave 2/1/1. The influence of weaving pattern is illustrated for a twill family
described by ng/1/1 with ng = (1 · · · 11).

The subscript notations m and M are be used in the following for the minimum and maximum values
of the gap g and tow thickness h, respectively; at the extremes of their variation intervals.

The geometrical parameters that characterize the undulation of the woven fabric are:

• The maximum value θmax of the undulation angle (2), and

• the crimp value c (4),

both calculated from the model. The undulation θmax is expected to affect the failure initiation inside
RUC, i.e., secondary local failure modes of the fill/warp tows, such as transverse tensile or shear failure,
are expected to be induced earlier at the location of higher undulation angles θf , θw. The crimp value c is
expected to affect the overall thermo-elastic properties of the composite material, i.e., a higher crimp value
results in a higher knock-down factor of the thermo-elastic constants.

In Fig. 7, it can be observed that both, the maximum undulation θmax and crimp c follow the same trend
as a function of the gap/width ratio g/a. The same is true in Fig. 8 as a function of the thickness/width
ratio h/a. Note the wide range of the maximum undulation angle θmax and crimp value c (from 37o to 2o,
and from 12% to almost 0%, respectively).

Further, it can be noticed in Fig. 9 that the weaving style variable ng has no influence on θmax, but it has
a strong influence on the crimp value, especially for the case of tows with high cross-sectional thickness h and
small gap g, and especially in the first half of the ng range, which is more common in practical applications.

5 Conclusions

First, the geometrical model proposed in Sections 3.2–3.3 is able to cover a large variety of cases. However,
not all the possible weaving styles are represented. For example, a 7/2/3 twill pattern is not described by the
twill model in Section 3.2, which however is able to describe all the cases in the family ng/1/ni. Furthermore,
a satin pattern 7/3/2 is not described by the satin model in Section 3.3, which however is able to describe all
the members of the family ng/ns/1. However, none of the models in the literature is able to claim this level
of generality, but only very particular cases of twill and satin are presented elsewhere, without achieving the
level of generality of the present model.

Second, the present geometrical model is formulated at ply level, which means that one single reinforcing
layer is generated and consequently analyzed by the model, as being representative for the whole laminate.
This fact has to be regarded as an approximation of the model, based on the assumption that the stacking
sequence of a laminate would feature an in-phase configuration, as depicted in Fig. 10; only in this case
a single ply can be selected and regarded as a repetitive unit through the thickness of the laminate. For
the case of out-of-phase stacking sequence, a through the thickness RUC including multiple plies has to
be considered for analysis, as it is done in [11, 12] for the case of plain weave only. The assumption of
in-phase laminate stacking sequence also implies that the nesting effect in between adjacent plies due to the
compaction during consolidation of the composite material is neglected, which might have an effect on the
evaluation of the fiber volume fraction inside RUC and fiber volume fraction inside individual tows, both of
which are primary parameters for the mechanical analysis of the composite material. In order to consider
the ply nesting effect due to compaction, the in-phase assumption has to be dropped, and a RUC selection
similar to [3, 4, 6, 8–10] has to be considered, noting that [3, 4, 6, 8–10] dealt with plain weave only.

It can be noted that the out-of-phase and nesting effects are difficult to implement in the present model,
whose goal is to provide a high level of generality regarding the weaving patterns covered. However, if the
present geometrical model is used as a CAD tool in a numerical (FEA) model of mechanical properties,
then ply nesting and out-of-phase can be more or less easily implemented by shifting individual plies with
the CAD tool. Even more involved analysis could be performed in a FEA context, not only considering the
out-of-phase and nesting between different plies of the laminate, but also having the possibility to consider
laminates where individual plies are stacked on different faces (the top or bottom face of a ply), or even the
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case of designing the laminate by stacking plies of different weaving patterns. A wide possibility of design
and analysis is opened in this way.

Third, smaller representative volume elements (RVE) than the RUC can be selected in some cases at the
expense of limiting the applicability of the models to specific weaving patterns for which the selected RVE
applies [4, 17, 27, 33]. The whole RUC method is considered in the present work in order to preserve the
ability to model all the weave patterns with a single analytical formulation.

Finally, a closer analysis of the sinusoidal undulation and cross-sectional functions presented in Sec-
tion 3.1 – 3.3 reveals the fact that matrix wedges layers are simulated in between crossing fill and warp tows
(labeled I and II in Fig. 5). These matrix layers has been addressed in [8], where the criteria for a correct
geometrical model are defined as: (a) continuity of tows in both fill and warp directions (which means contin-
uous zf (x, y), zw(x, y) functions), (b) continuity of tow slopes in both fill and warp directions (which means
continuous θf (x, y), θw(x, y) functions), and (c) perfect contact between fill and warp tows at the cross-overs
of the undulated regions (region I in Fig. 5). It can be noted that the last condition is not satisfied by the
present model. However, the matrix layers labeled II in Fig. 5 (at cross-overs of non-undulated regions) are
in conformity with the photomicrographical observation, and are considered a model refinement in [24]. Still,
the matrix layers labeled I, however small they are, are artificially induced and may be regarded as a model
drawback. The thickness of the matrix wedge I is small and it is not expected to have considerable effect on
the mechanical properties, but one might still want to correct such imperfection if the present geometrical
model is used for mesh generation of FEA analysis. Such minor imperfections could be corrected in a similar
manner to [8]. However, the model in [8] applies to plain weave only, and it does not meet condition (b) in
the warp direction, as stated by the same reference [8].

In summary, the proposed formulation provides analytical expressions to completely define the internal 3D
geometry of the majority of practical cases of 2D fabrics including plain weave, twill, and satin. The complete
set of geometrical properties for the reinforcing architecture (e.g., tow length, cross-section area, volume, local
undulation angle, and crimp value) are calculated in order to further characterize the mechanical behavior
of the fabric reinforced composite material. Applications of the proposed geometrical model for stiffness and
strength prediction will be addressed in Part II of this manuscript.
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Figure 6: Generated twill and satin weaves: (a) 7/1/1 twill weave; (b) 7/1/2 twill weave; (c) 7/1/3 twill
weave; (d) 7/2/1 satin weave; (e) 7/3/1 satin weave.
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Figure 10: In-phase through the thickness configuration of the composite laminate.
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