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Abstract

A constitutive model for laminated composite shells with transverse matrix damage and its asso-
ciated shell constitutive equations in three-dimensional space are developed. A single, physically
relevant state variable is used in each lamina to track the state of transverse damage. The state
variable also defines a physically relevant, solution dependent, characteristic length for the problem.
Therefore, the constitutive model does not introduce constitutive mesh dependency on the solution.
The model predicts crack initiation and evolution in good agreement with published experimen-
tal results for several materials and many different laminate stacking sequences. Input material
parameters are limited to elastic properties and fracture toughness in mode I and II. Unlike con-
tinuum damage mechanics models, no adjustable parameters are needed to describe the initiation
and evolution of damage. That is, the material parameters needed for the analysis are limited
to invariant material properties that can be measured with standard test methods. The excellent
predictive capabilities of the model and its versatility of application to a variety of materials and
laminate configurations hinges upon computation of energy release rate for the entire laminate as
a results of cracks propagating in any one lamina. Such computation requires knowledge about
the state variables in all laminae when computing damage evolution in any one lamina, which in
turn requires implementation of the constitutive equations directly into the element formulation.
Therefore, the constitutive model is integrated into a shell element based on 1,2-order shell theory,
and further implemented as a user element into commercial finite element analysis software.
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1 Introduction

Optimum utilization of composite materials is achieved when the geometry is designed so that the
material resists the loads primarily through membrane stresses [1]. This leads naturally to curved
shell geometries that also are more aesthetically pleasing than flat panel assemblies and to savings in
part count by consolidating a number of parts and subassemblies into fewer curved shell structures.
It is therefore necessary employ analysis tools capable of predicting the structural and material
response up to failure for these situations.

Such design requires knowledge of at least two laminate response values, the first ply failure
(FPF) strength and the last ply failure (LPF) strength [1]. FPF indicates the load at which the
first ply in the laminated shell reaches a damage mode, usually matrix cracking. With proper
laminate design, FPF does not precipitate laminate failure, but the presence of matrix cracks
has several detrimental effects on the performance of the structure. Matrix cracks increase the
permeability of the laminate, which can no longer prevent the ingress or egress of fluids and gases.
Mass transport, either gas or fluid, may carry deleterious chemicals, including moisture, that may
then attack the fibers, specially Glass fibers, thus reducing the life of the structure. Matrix cracks
further reduce the fatigue life of the laminate, and may promote delaminations and fiber breaks in
adjacent laminae. Finally, the stiffness reduction due to matrix cracks causes stress redistribution
into adjacent laminae that then may precipitate fiber-dominated damage modes in those laminae
and thus failure of the laminate.

Last Ply Failure (LPF) indicates a prediction of the ultimate load carrying capacity of the
laminate. It is usually associated to fiber-dominated damage modes, although poorly designed
laminates may reach LPF on matrix-dominated damage modes as well. Constitutive models exist
for fiber-dominated damage modes [1, 2] that are able to predict accurately the strength of the
unidirectional lamina along the fiber direction provided that a good estimate of the longitudinal
stress (or strain) in the lamina is available. For this reason, it is critical to model accurately the
stiffness reduction in cracking laminae so that stress redistribution onto the longitudinal direction
of adjacent laminae is predicted accurately.

FPF is customarily predicted using stress (or strain) failure criteria [1]. The transverse strength
F2t and shear strength F6 of the unidirectional lamina are measured with standard test methods.
Then, the values are adjusted, ply by ply, to account for the constraining effect of adjacent laminae,

yielding ply-thickness dependent values of in-situ strength F
(k)
2t−is, F

(k)
6−is, where k is the ply (lamina)

number [3]. In this way, failure criteria such as maximum stress or interacting failure criteria [1] are
able to predict the first matrix crack initiation in a ply. Due to the constraining effect of adjacent
laminae, matrix crack initiation does not imply crack saturation, and thus stress redistribution to
adjacent laminae is not properly accounted.

Once FPF has been predicted, ply discount methods are sometimes used to discount, or to
degrade by an arbitrary factor df , the stiffness of affected ply. Stress redistribution is thus suddenly
felt by adjacent laminae and another linear-elastic analysis is carried out to predict the next FPF.
A sequence of such discounts eventually triggers a fiber-dominated damage mode prediction, which
is then considered to correspond to the LPF of the laminate. Due in part to the arbitrariness of
the value degradation factor used, the ply discount method has not gained acceptance in the design
community.
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Another approach is to use continuum damage mechanics (CDM) to represent stiffness degra-
dation with representative damage variables and to fit the evolution of those damage variables with
postulated evolution equations [2, Chapter 8]. The drawback of this method is the need to adjust
the values of several new parameters with experimental data [4,5]. These parameters appear in the
postulated evolution equations and the experimental data required to adjust them is seldom avail-
able. Therefore, there is strong motivation to develop predictive methods based on available material
properties, perhaps supplemented by well defined material properties that can be determined by ex-
perimental methods that are either standardized or that are amenable to standardization [6, ASTM
D 5528], [7, 8].

Using finite fracture mechanics [9–11], several models have been developed that predict the
stiffness reduction of a laminate as a function of a given crack density in one of its laminae. In [12,13]
the laminate stacking sequence (LSS) is restricted to [0/90n]S and in [14,15] to [0m/90n]S . In [16] it
is restricted to [±θ, 90n]S , but only the 90◦ ply can experience damage. In [17] the LSS is restricted
to [θn/φm]S with cracks on both directions. In [18] the LSS is restricted to [0/45]S . In [19] a
solution is presented for two sets of arbitrarily oriented cracking laminae with angles θ1, θ2 and
crack densities λ1, λ2, embedded in a laminate with arbitrary LSS, by using oblique coordinates.

A finite-strip method is used in [20] to predict laminate stiffness reduction in a general un-
symmetrical LSS due to a given crack density in a single ply. A model based on crack opening
displacement (COD) [21] is able to predict laminate stiffness reduction due to given distribution of
crack densities in all laminae of a laminate with general LSS. A damage activation function (growth
criterion) for the same model is proposed in [22]. Symmetric laminates with in-plane loads are
analyzed in [23, 24]. Damage evolution due to microcracking, after the first occurrence of failure,
can be also modeled by means of a mesomechanical approach which takes into account the effect
of microcracks in an average sense. For instance, the mechanical behavior of bimodular laminated
composites damaged by an anisotropic distribution of cracks, has been studied determining the
microstructure state of the material in terms of an opportune constitutive law taking into account
for stiffness degradation in the context of the self-consistent micromechanical approach [25].

Although stress-based and strain-based failure criteria with ply values adjusted for in-situ effects
[3] can predict damage (crack) initiation, they cannot predict damage evolution. Therefore, the crack
density needed by the aforementioned models is not readily available as function of the applied strain
(or stress). In order to overcome the aforementioned limitations of existing models, a solution for
the general problem of curved, laminated shells, is presented herein. The proposed formulation has
been developed by integrating the constitutive model into a shell element, as described next.

2 Element Formulation

A three-node flat shell element based on 1,2-order shell theory [26] is used herein. The formulation
includes all six strain and stress components, including transverse shear and transverse normal
deformations. The three-node element is based on quadratic anisoparametric displacements and
linear bending rotation variables, giving rise to three displacements and three rotations at each
vertex node. The element is readily portable to any general purpose finite element code and,
in the present work, the element software is implemented as a user element into ANSYS [27].
The kinematic assumptions of 1,2-order shell theory can be expressed in terms of the Cartesian
displacement components as
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u1 (x1, x2, x3) = u+ x3θ2

u2 (x1, x2, x3) = v + x3θ1

u3 (x1, x2, x3) = w + ξw1 +
(
ξ2 − 1

5

)
w2 (1)

where h denotes the shell thickness, ξ = 2x3/h ∈ [−1, 1] is a dimensionless thickness coordinate,
with ξ = 0 identifying the midplane position; u = u(x1, x2) and v = v(x1, x2) are respectively the
midplane displacements along the x1 and x2 axes; θ1 = θ1(x1, x2) and θ2 = θ2(x1, x2) are the rota-
tions of the normal about the negative x and positive y directions, respectively; and w = w(x1, x2),
w1 = w1(x1, x2), and w2 = w2(x1, x2) are the three components of the transverse displacement,
providing a parabolic distribution through the thickness.

Additional approximations involve parabolic transverse shear strains and cubic transverse nor-
mal stress, that are given as

γ13 = 5
4

(
1− ξ2

)
γ10

γ23 = 5
4

(
1− ξ2

)
γ20

σ33 = σ30 +
(
ξ − 1

3ξ
3
)
σ31 (2)

These quantities are average representations of the transverse shear strain and transverse normal
stress; they satisfy traction equilibrium equations on the top and bottom shell surfaces, manifested
by zero normal and shear tractions

σ33,3
(
±h

2

)
= 0

τ13
(
±h

2

)
= τ23

(
±h

2

)
= 0 (3)

By enforcing the strain-displacement relations

γ13 = u1,3 + u3,1

γ23 = u2,3 + u3,2

ε33 = u3,3 (4)

to be least-squares compatible through the shell thickness with the corresponding strains result-
ing from (2), the pair [γ10 , γ20] = [w,1 + θ2 , w,2 + θ1] define the transverse shear strain measures,
whereas σ30 and σ31 become functions of the inplane strains [u,1 , v,2 , u,2 + v,1] and curvatures
[θ2,1 , θ1,2 , θ1,1 + θ2,2].

As a result of these approximations, the two-dimensional virtual work statement does not in-
clude the higher-order transverse displacement variables (w1, w2); these variables are condensed out
analytically from the pertinent shell-equilibrium equations [26, 28]. The remaining five kinematic
variables are the same as those of first-order shear deformation theory, only needing edge continuity
for their approximation within the finite element framework.

In the finite element formulation, the three displacement variables (u, v, w) are initially inter-
polated with quadratic, six-node polynomials, whereas the two bending rotations are interpolated
with linear, three-node shape functions. In addition to achieving improved membrane response (i.e.,
linear inplane strain), using the same degree polynomial interpolations for the three displacement
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Figure 1: Notation for HOT3D shell element: (a) kinematics; (b) nodal d.o.f’s reduction.

variables ensures displacement compatibility along the element interfaces. The mid-side displace-
ment degrees-of-freedom (d.o.f.’s) are then condensed out by enforcing a set of first-order Kirchhoff
constraints along the three element edges via beam-frame one-dimensional constraint conditions,
thus reducing the number of nodes to three (refer to Fig. 1).

The edge-constraint procedure gives rise to a new set of interpolations, where the inplane dis-
placements (u, v) contain both the inplane and normal rotation (drilling) d.o.f.’s, and the deflection
w contains both the deflection and bending rotation d.o.f.’s. The resulting kinematic field involves
a compatible set of shape functions with three translations and three rotation d.o.f.’s at each vertex
node. The element is thus labeled HOT3D (Higher-Order Theory, 3 nodes, Drilling d.o.f.’s) [29].

The parabolic transverse displacement and the linear bending rotations ensure a consistent
set of interpolations for the bending behavior, providing adequate element performance without
shear-locking stiffening in thin shells. Further improvements in the thin-shell modeling are due
to the use of strain-energy derived relaxation parameters that appear as the scaling factors of
the transverse-shear strain measures. This methodology guarantees a well-conditioned element
stiffness matrix over the entire range of thickness-to-span ratios [29]. Finally, the element matrices
are integrated exactly using appropriate quadrature formulas for triangular elements in order to
maintain variational consistency and a correct rank of the element stiffness matrix. The formulation
is well suited for the computation of both in-plane and out-of-plane shear and normal stress-strain
components, making in this way possible the utilization of three dimensional failure criteria, in
order to predict multiple modes of failure, as matrix cracking (intralaminar failure) or delamination
(interlaminar failure). However, the present model is dedicated to matrix cracking (intralaminar)
failure mode. Furthermore, only modes I (the opening mode) and II (the in-plane shearing mode)
of matrix cracking are considered in here, as the ones that are more probable to take place in
structural elements based on shell laminated composites, which are not primarily designed to stand
high transverse shear loads that would produce mode III matrix cracking. These are the reasons
why the interlaminar shear and normal stress components are not used in the failure criterion
implemented in the present model, which is introduced in Section 4.
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Figure 2: Global coordinate system (X,Y,Z) and local coordinate system (r,s,t).

Figure 3: Material (1-2-3) and laminate (x,y,z) coordinate system.

3 Laminated-Shell Constitutive Model

In a finite element code for isotropic materials, only two coordinate systems are needed: the global
coordinate system (X,Y,Z) and the element coordinate system (r,s,t) shown in Figure 2. In a
shell element for laminated composites, two additional coordinate systems are needed: the material
coordinate system (1,2,3) for each lamina and the laminate coordinate system (x,y,z) (Figure 3).
The laminate stacking sequence (LSS) includes the thickness and orientation θ(k) of each lamina k
with respect the laminate coordinate system, as shown in Figure 3.

Transformation from the global (X,Y,Z) to the laminate (x,y,z) coordinate system requires
specification of the orientation of the laminate coordinate system for each element. In this work,
this is accomplished by specifying three Euler angles per element. Although these three angles
can be defined in a number of ways, herein they are defined consistently with the angles used
in ANSYSTM for the specification of LOCAL coordinate systems [27]. Note that in this work, the
element coordinate system refers to the coordinate system utilized for element formulation, whereas
the laminate coordinate system (commonly referred to as local) refers to the reference system used
to specify the angles in the laminate stacking sequence. For the triangular element used, the element
system is defined by the orientation of the first two nodes in the element connectivity, labeled i,j, in
Figure 2. Since the mesh generation is customarily done by automated means, the element system

LOCAL
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Figure 4: Rotation around the axes z’, x’, and y” to transform from the global coordinate system
(X,Y,Z) to the laminate coordinate system (x,y,z).

is not a convenient choice for specifying the material orientation. Thus, a separate laminate system
is defined. The three rotations, denoted by θxy, θyz, θxz, are performed in sequence around the
rotated axes z′, x′, and y′′ as shown in Figure 4 to arrive at the laminate coordinate system x, y, z.
This transformation is used to transform strains, stress, and the material compliance and stiffness
matrices from the global coordinate system to the laminate coordinate system, or vice versa. The
transformation matrices are shown in the Appendix.

The element and associated constitutive model are implemented as a user element in ANSYS.
The main program interacts with the user element one element at a time. It provides the nodal
coordinates and current nodal displacements, both expressed in the global coordinate system. It
requires the user element to compute the current stress, the element stiffness and the force vector.
Since the constitutive equation is non-linear, and the nonlinearity is formulated in terms of state
variables, the main program stores the state variables and provides them to the user element.
All computations related to material behavior and coordinate transformations needed to properly
take into account the orientation of both, element and material, in three-dimensional space, are
performed inside the user element.

Given a set of element nodal displacements {XG} in the global coordinate system, these are first
transformed to the element coordinate system {xE}. The required transformation matrix [aE ] from
the global (G) coordinate system to the element element (E) coordinate system contains the direction
cosines of the element (local) coordinate system (r,s,t,) w.r.t the global system (X,Y,Z.) Then, the
local displacements are used to compute the strains {εE} at each Gauss integration point, also in the
element coordinate system, as {εE} = [B]T {xE}, where [B] is the strain displacement matrix [30].
Since the constitutive model is cast in terms of the strain {εL} in the laminate coordinate system,
the strain is transformed as follows

{εL} = [T eL] [T sE ]T {εE} (5)

where [T eL] is given by (34), formulated in terms of the Euler angles used to specify the laminate
coordinate system, and [T sE ] is obtained by substituting [aE ] for [a] in (33), formulated in terms of
the element nodal coordinates.

Given a state of strain, the constitutive model updates the state variables (crack densities λ(i)

for the n laminae, with i = 1...n), the state of stress σ(i) and the reduced moduli in the laminae
E(i)(λi). Since the element is able to compute all the strain components, including the through-
the-thickness strain ε3, the full compliance matrix [SM ] and stiffness [CM ] are assembled for each
lamina k, in the material (M) coordinate system of the lamina [2, (1.54)]
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[CM ] = [SM ]−1 =



1/E1 −ν21/E2 −ν31/E3 0 0 0
1/E2 −ν32/E3 0 0 0

1/E3 0 0 0
1/G23 0 0

1/G13 0
symm 1/G12



−1

(6)

This is then transformed to the laminate coordinate system using a rotation −θ(k) around the
3-axis of the laminate coordinate system, i.e, substituting θ(k) for θxy and θyz = θxz = 0 in (28–30),
yielding the lamina stiffness matrix in laminate coordinates [CL] as [2, (1.49)]

[CL] = [T (θ)]T [CM ] [T (θ)] (7)

The element formulation needs the laminate stiffness matrix [DE ], defined in (9) below, to be
expressed in the element coordinate system in order to formulate the element stiffness matrix as
the integral of terms [B]T [DE ][B], where [B] is the strain-displacement matrix [30]. Therefore, the
stiffness matrix [CL] from (7) is transformed to element coordinates as follows

[CE ] = [T sE ] [T eL]T [CL] [T eL] [T sE ]T (8)

Then, the laminate stiffness matrix [DE ] is built in the element coordinate system by performing
an analytical integration through-the-thickness x3 of the laminate, that yields

{N} =
[
DE
]
{ε}

Nr

Ns

Nrs

Mr

Ms

Mrs

Vst
Vrt


=



A11 A12 A16 B16 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 H44 H45

0 0 0 0 0 0 H45 H55





ε0r
ε0s
γ0rs
kr
ks
krs
γst
γrt


(9)

where explicit expressions for the Aij−, Bij−, Dij−, Hij−terms are given in [29, Appendix B].

4 Damage Constitutive Model

As stated in the previous section, given a state of strain, the constitutive model’s purpose is to
update the state variables (crack densities), then update the stress and the reduced moduli in each
lamina. A constitutive model for a continuum (not discretized) solution at a single material point
of a plane stress problem with uniform uni-axial loading was presented in [31], where the crack
density as a function of strain (stress) is predicted. A finite element implementation for a plane-
stress element is presented in [32]. However, a plane stress implementation cannot be used with
shell elements in commercial finite element analysis (FEA) codes via the user material option, as
explained next.
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Figure 5: Representative volume element (RVE) in the coordinate system x1, x2, x3, of lamina k.

Commercial codes perform numerical integration through the thickness of the shell to calculate
the laminate constitutive matrix. For each lamina, they call a plane-stress constitutive model;
however they do not provide, to the user material routine, the state variables for the remaining
laminae in the laminate. In other words, the plane-stress constitutive model used in commercial
codes is local to the lamina. Such approach is well suited for failure criteria that are local to
the lamina, because their coupling to the rest of the laminae is provided by the stress-strain field
only. By contrast, the constitutive model presented in this section requires access to the state
variables for all laminae in order to compute accurately the energy release rate (ERR) from strain
energy released throughout the laminate. Therefore, analytical integration through-the-thickness
is used in this work to arrive at a constitutive model for the laminate that can be used in the
user-implemented shell finite element described herein. Furthermore, coordinate transformations
are developed to cast the constitutive model for the orthotropic laminate in the correct orientation
when the shell elements are oriented arbitrarily in three-dimensional space.

The proposed constitutive model is based on a shear lag solution in a representative volume
element (RVE) and a homogenization scheme used to analyze arbitrary laminate stacking sequences
(LSS). The model takes into account thermal expansion and associated residual stresses but only
the mechanical terms are included in the presentation that follows in order to keep the manuscript
to a reasonable length; nevertheless, the thermal expansion terms can be derived in an analogous
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way [2].
Shear lag solutions, applied to less general problems, are available in the literature [12, 13, 17,

19,31,33,34]. One advantage of constitutive models based on RVE is that the state variable (crack
density) uniquely defines the characteristic length of the finite fracture mechanics problem. For
the present constitutive model, the size of the RVE (Figure 5) is the inverse of the crack density.
Unlike continuum (smeared) fracture models, there is no need in the present model to introduce an
artificial characteristic length to avoid constitutive mesh dependency. The RVE-based constitutive
model developed herein is mesh independent. Only the the mesh dependency introduced by the
discretization has an effect on the quality of the stress and strain gradients and thus on the solution.
This advantage is not significant in simple implementations of the constitutive models, for a single
material point, such as in [31]; but is only noticed in finite element implementations such as in this
work. Therefore, numerical results are presented in this manuscript to illustrate this feature.

For a single cracking lamina k, the shear lag method [31] provides an analytical solution for the
displacement field in the RVE



û(1)

û(2)

...

û(n)

v̂(1)

v̂(2)

...

v̂(n)


=

2n∑
j=1

Aj



a1
a2
...
an
an+1

an+2
...
a2n


j

sinh(ζjx2) +



1/2γc12
1/2γc12

...
1/2γc12
εc2
εc2
...
εc2


x2 +



εc1
εc1
...
εc1

1/2γc12
1/2γc12

...
1/2γc12


x1 (10)

where û(k), v̂(k) are the average displacements in each lamina, in the coordinate system of the
cracking lamina x1, x2, x3, (Figure 5), with the averaging defined in lamina k by

φ̂ =
1

h(k)

∫ x
(k)
3

x
(k−1)
3

φdx3 (11)

and x1, x2 are coordinates aligned with the material coordinate system of lamina k; ζj and [a]j
(j = 1 · · · 2n) are the eigenvalues and the eigenvectors of the system, and Aj , ε

c
1, ε

c
2, γ

c
12, are unknown

constants.
The laminate thickness is calculated as

h =

n∑
i=1

h(i) (12)

where n is the number of laminae.
Stress, displacement, and force equilibrium boundary conditions on the boundary of the RVE

are used to calculate these constants. First, stress-free conditions at the surfaces of the cracks, in
the cracking lamina k, yield

1
2l

∫ 1/2
−1/2 σ̂

(k)
2 dx1 = 0, at x2 = ±l

1
2l

∫ 1/2
−1/2 τ̂

(k)
12 dx1 = 0, at x2 = ±l

(13)
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Second, for a symmetric laminate under membrane strain, force equilibrium between the internal
stress in the un-cracked laminae and the applied in-plane stress resultant yield

n∑
m=1

(1− δmk)h(m)
∫ 1/2
−1/2 σ̂

(m)
2 dx1 = N2, at x2 = ±l

n∑
m=1

(1− δmk)h(m)
∫ 1/2
−1/2 τ̂

(m)
12 dx1 = N12, at x2 = ±l

n∑
i=1

h(i)

2l

∫ l
−l σ̂

(i)
1 dx2 = N1, at x1 = ±1/2

(14)

Third, the kinematics of first order shear deformation theory (FSDT) dictates that, for a mem-
brane state of deformation, the displacements in the x2 direction be the same for all un-cracked
laminae m 6= k

∫ 1/2
−1/2 û

(m) =
∫ 1/2
−1/2 û

(r), at x2 = ±l ∀ m, r 6= k∫ 1/2
−1/2 v̂

(m) =
∫ 1/2
−1/2 v̂

(r), at x2 = ±l ∀ m, r 6= k
(15)

where r is one reference lamina among the un-cracked m laminae.
Once the constants ζj , Aj , ε

c
1, ε

c
2, γ

c
12, are found, the ply-average strains can be calculated by

differentiation of (10), and the overall strains of the laminate can be calculated by selecting a
reference un-cracked ply r 6= k and considering the isostrain condition between the ply r and the
whole laminate, as

ε̄1 = εc1
ε̄2 = 1

2l

∫ l
−l v̂

(r)
,2 dx2

γ̄12 = 1
2l

∫ l
−l

(
û
(r)
,2 + v̂

(r)
,1

)
dx2

(16)

The laminate compliance matrix [S] in the coordinate system of the cracking lamina k is ob-
tained, one column at a time, by calculating the strains (16) corresponding to the three unit loads
N (a) = {N1, 0, 0}T , N (b) = {0, N2, 0}T , N (c) = {0, 0, N12}T , which yield

Q−1(λ(k)) = S(λ(k)) =

 
ε̄1
ε̄2
γ̄12


(a) 

ε̄1
ε̄2
γ̄12


(b) 

ε̄1
ε̄2
γ̄12


(c)  (17)

Since the laminate stiffness Q(λ) in the LHS of (17) may be written as the sum of the contri-
butions of the cracking lamina k plus that of all the (for the moment) un-cracking laminae m 6= k,
one can find the damaged stiffness of the cracking lamina k as

Q(k)(λ(k)) =

[
Q(λ(k))−

n−1∑
m

Q(m)h
(m)

h

]
h

h(k)
(18)

where h is the laminate thickness and n is the number of laminae.
Up to this point, finite fracture mechanics has been used to calculate the reduced properties of

a laminate (17) and a single cracking lamina (18), for a given crack density λ(k).
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Once Q(k)(λ(k)) is known, the discrete crack pattern characterized by crack density λ(k) can be
homogenized, using concepts of continuum damage mechanics (CDM) [35–37], so that

Q(k)(λ(k)) =

 Q
(k)
11 (1−D(k)

12 )Q
(k)
12 0

(1−D(k)
12 )Q

(k)
12 (1−D(k)

22 )Q
(k)
22 0

0 0 (1−D(k)
66 )Q

(k)
66

 (19)

where the damage parameters for lamina k are computed in terms of the analytic solution (17) and

the undamaged (virgin) values Q
(k)
ij as follows,

D
(k)
ij (λ(k)) = 1−Q(k)

ij /Q
(k)
ij (20)

with i, j = 1, 2, 6.
The homogenization process enabled by (20) permits the use of the shear lag solution (17) one

lamina at a time, with previously cracked laminae simply converted to homogenized laminae with
reduced properties. In this way, any LSS can be analyzed with any number of damaging laminae
as required.

There still remains to find the crack density λ(k) as a function of applied strain ε̄. To accomplish
this, it is necessary to postulate a damage activation criterion [38], such as [39]

g(λ, ε̄) = (1− r)

√
GI(λ, ε̄)

GIC
+ r

GI(λ, ε̄)

GIC
+
GII(λ, ε̄)

GIIC
− 1 ≤ 0 (21)

in terms of intralaminar fracture toughness GIc, GIIc and ERR GI , GII in mode I and II.
The strain energy is separated naturally into mode I and II while working in the material

coordinate system of the cracking lamina, as follows

UI =
V

2
(σ̄1ε̄1 + σ̄2ε̄2) =

V

2
[ε̄1 (Q11ε̄1 +Q12ε̄2 +Q16γ̄12) + ε̄2 (Q21ε̄1 +Q22ε̄2 +Q26γ̄12)] (22)

UII =
V

2
(τ̄12γ̄12) =

V

2
γ̄12 (Q61ε̄1 +Q62ε̄2 +Q66γ̄12) (23)

where V is the volume of the RVE.
For most composites with brittle matrix, including most toughened epoxy matrices, cracks

develop suddenly over a finite length [10, 11]. Even for laminates where cracks do not grow to
span the width of the specimen, cracks still grow suddenly at first and occupying large areas of
the specimen and the concept of crack density, as used in this manuscript, can still be applied [22].
Therefore, Griffith’s energy principle is applied on its discrete (finite) form, in order to describe the
discrete (finite) behavior of crack propagation observed experimentally, i.e.,

GI = −∆UI

∆A
(24)

GII = −∆UII

∆A
(25)

where ∆UI ,∆UII is the change in laminate strain energy during mode I and II finite crack growth,
and ∆A is the finite change of crack area.
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The value of crack density λ(k) for which g = 0 in (21) is found with a return mapping algorithm
that calculates the change in λ(k) as

∆λ(k) = −g(k)/∂g
(k)

∂λ(k)
(26)

The damage activation function (21) is a monotonically decreasing function of λ(k) as a natural
consequence of the decreasing moduli brought about by an increase in crack density. As soon as
the crack density λ(k) increases, g decreases. The only way to reach g = 0 again is to increase
the applied strain ε̄. Thus, the damage activation function g calculated by the proposed model
displays hardening without the need to postulate any hardening law. This has the clear advantage
of obviating the need for additional experimentation that would otherwise be required to adjust
hardening parameters that are necessarily associated with hardening laws.

Once the crack density and reduced moduli are found for all laminae, the computations are
completed for a given strain ε̄ and the algorithm returns to the element formulation described in
the previous section.

HyE Fibredus Hercules
9082Af Ref. 913G-E Ref. 3501-6/AS4 Ref.

E1 (GPa) 44.7 [40] 46 [22] 130 [14]
E2 (GPa) 12.7 [40] 18 [22] 9.7 [14]
ν12 0.297 [40] 0.29 [22] 0.3 [14]
G12 (GPa) 5.8 [40] 7.9 [22] 5 [14]
G23 (GPa) 4.5 * 6.4 * 3.2 [14]
Ply thick (mm) 0.144 [40] 0.125 [22] 0.125 *
GIc (kJ/m2) 0.36 0.40 0.05
GIIc (kJ/m2) 1.50 1.50 1.50
α1 (10−6/◦C) 8.420 [1] 6.72 [22] -0.09 [14]
α2 (10−6/◦C) 0.184 [1] 0.293 [22] 0.288 [14]
∆T (◦C) 99 [1] 104 [22] 104 [14]

* Assumed value

Table 1: Material properties.

5 Numerical Results

In the first part of this section, predictions obtained with the proposed finite element formulation are
presented and compared with experimental data from the literature for several laminate stacking
sequences and three types of composites [14, 22, 40]. The material properties are summarized in
Table 1. Interlaminar fracture toughness can be measured as in [6, ASTM D 5528] and [7,8]. Since
intralaminar fracture toughness is usually larger, E-glass–Epoxy values are assumed to be twice as
large as known interlaminar values. Lacking experimental values of intralaminar fracture toughness
for Carbon–Epoxy, the interlaminar fracture toughness (required by the model) was adjusted so
that the model results provide the best fit possible to one LSS of experimental crack density vs.
stress.

The first test case for a glass-epoxy material [40, Fiberite/HyE 9082Af], cross-ply laminate
[0/908/01/2]S , where cracks open in pure mode I. The experimental data was obtained at room
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Figure 6: Crack density vs. strain for a [0/908/01/2]S laminate, ∆T = −99oC.

temperature and does not elucidate the effect of residual thermal stress; however the proposed
formulation has the capability to predict the effect of residual thermal stresses. The strain required
for crack initiation and evolution is shown in Figure 6. It is evident that the present predictions
compare very well with the experimental data.

Using the same material, the cracks in a [0/554/ − 554/01/2]S laminate are subjected to both
fracture modes I and II. Also, the analysis is carried out with and without the effect of residual
thermal stress. The strain required for crack initiation and evolution is shown in Figure 7. The
prediction is excellent when compared with the two sets of experimental data.

The next test case is for an E-glass/epoxy [22, Fibredux 913G-E], quasi-isotropic laminate
[0n/90n/ + 45n/ − 45n]S with n = 1, 2. The prediction of the Young’s Modulus versus the crack
density in the 90◦ layer is excellent for n = 2 shown in Figure 8, but not as good for n = 1 in
Figure 9. The reason for this is that additional damage in the form of delaminations is present
for n = 1 [22], which the present formulation does not take into account. For n = 2, the laminae
are thicker, delamination is less prominent, and the present predictions compare very well the
experimental data.

The next test case is a graphite-epoxy [14, Hercules AS4/3501-6], cross-ply laminate. Crack
density as a function of applied stress is compared in Figure 10, showing that the model predicts
very well the stress required for crack initiation in the 90◦ layer.

To demonstrate the versatility of the proposed shell formulation, damage initiation and evolution
is investigated on a complex shell structure. The case of an spherical shell with an 18◦ hole cutout
at the top, subjected to internal pressure, is studied. In this example, the state of membrane
deformation is predominant compared to bending. Due to symmetry, only one-eight of the shell
is discretized (Figure 11). The laminate stacking sequence is [0/908/01/2]S , and the material is
a glass-epoxy [40, HyE 9082Af, Fiberite], which is the same laminate used to construct Figure 6.
Euler angles were specified for each element via the ANSYS APDL LOCAL command to align the
laminate x-axis along the meridians of the sphere. In this way, the 0◦ laminae are oriented along the
meridian and the 90◦ lamina along the parallel. Symmetric boundary condition are applied along
the sides and on the bottom of the model.

LOCAL
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Figure 7: Crack density vs. strain for a [0/554/− 554/01/2]S laminate, ∆T = −99oC.

Figure 8: Normalized modulus Ex/Ēx vs. crack density for a [0n/90n/45n/− 45n]S laminate with
n = 2.
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Figure 9: Normalized modulus Ex/Ēx vs. crack density for a [0n/90n/45n/− 45n]S laminate with
n = 1.

Figure 10: Crack density vs. stress for Hercules AS4/3501-6 cross-ply laminate.
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Figure 11: Cut sphere under internal pressure discretized with three-node shell elements (DDM-
shell).

Figure 12: Strain-stress response σ22 − ε22 and damage evolution D22, D66 in the 90◦ lamina.
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Figure 13: Crack density in the 90◦ lamina corresponding to point A (crack initiation) in Fig. 12.

Figure 14: Crack density in the 90◦ lamina corresponding to point B (crack saturation) in Fig. 12.
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Figure 15: Convergence study.

The strain-stress response in the 90◦ lamina is shown in Figure 12 for the element where damage
initiates. Due to symmetry, damage initiates in two elements simultaneously, as shown in Figure 13.
In Figure 12, the response is compared to the linear response obtained with ANSYS SHELL 181.
Also, the damage values Dij(λ) are shown in the figure. The reduction of stiffness is proportional
to the damage parameters as per (20), i.e, the damage stiffness can be calculated as

Q
(k)
ij =

[
1−D(k)

ij (λ(k))
]
Q

(k)
ij (27)

where Q
(k)
ij is the undamaged stiffness of lamina k.

The first element that damages is shown in Figure 13, corresponding to point A in Figure 12.
Crack saturation is shown in Figure 14, corresponding to point B in Figure 12.

A plot of displacement versus the number of elements is normally used to illustrate convergence
of the solution as the mesh if refined. In finite element analysis, it is expected that the displacement
and stress gradients be mesh dependent until convergence is reached for a very fine mesh. A plot of
the applied load required to attain a certain response (e.g., damage initiation or damage saturation)
versus the number of elements is normally used to show mesh dependency that might be caused by
the constitutive equation, in addition to the mesh dependency seen in the displacement.

Radial displacements of the shell and applied pressure at damage initiation (uc, pc) and at
damage saturation (um, pm) are shown in Figure 15 as a function of the number of elements used
in the discretization. As it is show in the figure, the constitutive model does not suffer from mesh
dependency. It can be seen that the load (pressure in this example) at which damage initiation
(pc) and damage saturation (pm) take place, are virtually independent of the mesh refinement, even
when a very coarse mesh is used. This is true even when the displacement field displays mesh
dependency, as expected from a finite element discretization. The radial displacement at damage
initiation (uc) and damage saturation (um) reduce by about 20% from a very coarse mesh to the
asymptotic value for a fine discretization. For the coarse discretization (32 elements), the mesh is
barely able to model the curved geometry of the shell, thus affecting the quality of the predicted
displacement field, but still not degrading at all the prediction of constitutive response. The radial
displacements and stresses calculated with this element, before damage takes place, are virtually
identical to those computed with ANSYS SHELL 181 (see Fig. 12).
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6 Conclusions

The three-node shell element and associated constitutive model predict damage in response to mem-
brane stress (strain) and the damage affects both the membrane and the bending stiffness of the
laminate. The formulation is able to predict matrix cracking initiation, evolution and stiffness re-
duction for symmetric laminates with general lamina stacking sequence and it is not affected by
constitutive mesh dependency. Excellent predictions were achieved using material properties avail-
able in the literature (including values of fracture toughness GIc and GIIc). Damage is represented
by the crack density in each lamina, which is a physically meaningful measure of damage. Further-
more, it is shown that the proposed formulation and its implementation are able to predict damage
initiation and evolution for complex shell structures, and thus useful for practical engineering anal-
ysis.
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A Appendix

The transformation from the global (G) coordinate system to the laminate (L) coordinate system
can be obtained using the following three matrices [2, (1.21)]

[aLxy] =

 cos θxy sin θxy 0
− sin θxy cos θxy 0

0 0 1

 (28)

[aLyz] =

 1 0 0
0 cos θyz sin θyz
0 − sin θyz cos θyz

 (29)

[aLxz] =

 cos θxz 0 − sin θxz
0 1 0

sin θxz 0 cos θxz

 (30)

where the first matrix is associated to a rotation around the z′-axis, the second matrix is associated
to a rotation around the rotated x′-axis, and the third matrix is associated to a rotation around the
rotated y′′-axis (Figure 4). The combined rotation matrix [a] can be expressed as follows

[a] = aLxza
L
yza

L
xy =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (31)

where
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a11 = cos θxz cos θxy − sin θxz sin θyz sin θxy; a12 = − cos θxz sin θxy + sin θxz sin θyz sin θxy
a13 = − sin θxz cos θyz; a21 = − cos θyz sin θxy;a22 = cos θyz cos θxy; a23 = sin θyz
a31 = sin θxz cos θxy + cos θxz sin θyz sin θxy; a32 = − sin θxz sin θxy − cos θxz sin θyz cos θxy
a33 = cos θxz cos θyz

(32)

The stress transformation matrix to transform the stress from global coordinate system to lam-
inate coordinate system, has the form [2, (1.33)]

[T sL] =



a211 a212 a213 2 a12 a13 2 a11 a13 2 a11 a12
a221 a222 a223 2 a22 a23 2 a21 a23 2 a21 a22
a231 a232 a233 2 a32 a33 2 a31 a33 2 a31 a32

a21 a31 a22 a32 a23 a33 a22 a33 + a23 a32 a21 a33 + a23 a31 a21 a32 + a22 a31
a11 a31 a12 a32 a13 a33 a12 a33 + a13 a32 a11 a33 + a13 a31 a11 a32 + a21 a31
a11 a21 a12 a22 a13 a23 a12 a23 + a13 a22 a11 a23 + a13 a21 a11 a22 + a12 a21


(33)

whereas the strain transformation matrix, from global coordinate system to laminate coordinate
system, is obtained as [2, (1.39)]

[T eL] = [R][T sL][R]−1 (34)

where the Reuter matrix is given in [2, (1.37)].
The transformation of the stiffness [C] and compliance [S] matrices from the global coordinate

system to the laminate coordinate system [CL], [SL], is performed according to the relationships [2,
(1.50),(1.53)]

[CL] = [T sL][C][T sL]T

[SL] = [T eL][S][T eL]T (35)

and from laminate to global coordinate system as follows [2, (1.49),(1.52)]

[C] = [T eL]T [CL][T eL]

[S] = [T sL]T [SL][T sL] (36)

The transformation matrix [aE ] from the global (G) coordinate system to the element (E)
coordinate system contains the direction cosines of the element (local) coordinate system (r,s,t,)
w.r.t the global system (X,Y,Z.) Then, the transformation matrix [T sE ] is obtained by substituting
[aE ] for [a] in (33). Then, to transform the strain tensor from global to element coordinate system
we use

[T eE ] = [R][T sE ][R]−1 (37)

and to transform constitutive equations from global to element coordinate system we use



Composites Part B, 42:41–50, 2011. 22

[CE ] = [T sE ][C][T sE ]T (38)

and from the element to global coordinate system we use

[C] = [T eE ]T [CE ][T eE ] (39)

Note also that [T s]−1 = [T e]T and that [T e]−1 = [T s]T .
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