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ABSTRACT: Environmental effects on the creep response of composites are of great
interest because these materials are very sensitive to temperature and other
environmental conditions. Short and long-term creep effects have been studied for
composites under various environmental conditions, but most studies rely on
experimental testing of particular laminates. Here, a novel micro-mechanical/laminate
model is developed to predict the creep response of laminated polymer matrix
composites from matrix creep data. Furthermore, a novel two-parameter super-
position method is used to predict the long-term response of the polymer matrix as a
function of two environmental parameters: moisture and temperature. The procedure
used to compute the two shift factors is described. The resulting master curve can be
used to predict the long-term properties of the matrix and for any temperature and
humidity conditions. Once the matrix behavior is known, the micro-mechanical/
laminate model allows for accurate prediction of long-term properties of arbitrary
laminates for the same conditions.

KEY WORDS: PMC, creep, Analytical Modeling, Thermo Mechanical Testing,
VARTM.

INTRODUCTION

P
OLYMER MATRIX COMPOSITES (PMC) display important viscoelastic behavior, which
is sensitive to environmental effects (temperature, humidity [1], radiation [2], etc.).

Short and long term creep effects have been studied experimentally, but very few models
have been developed to predict long-term creep of laminated composite materials from
short-term data. This study presents an approximate methodology to predict long-term
creep of composite laminates from short-term constituent data. Two contributions are
described. First, a doubly-shifted superposition method is developed to account for
temperature and moisture conditions. Second, a combined micro-mechanics/laminate
model allows us to predict laminate creep from constituent data. The predictions are
validated with experimental data for relatively short times for which aging effects can
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be neglected. Aging effects [3,4] and deviations from a thermorheologically complex
material (TCM) behavior [5,6] are not considered in this study although they may effect
the accuracy of the predictions for very long times. Because our intention is to develop a
simple methodology that can be used for preliminary design, every effort was made to
arrive at the simplest model. Experimental data is presented for neat resin (matrix) and
laminated composites including continuous strand mat, unidirectional, and bidirectional
stitched fabric layers. Neat resin samples were tested to obtain the matrix creep properties
directly, without relying on back calculation using any micro-mechanics equations. Besides
being economical, this method has the advantage that various matrices can be
experimentally qualified for creep response under various environmental conditions
(temperature, moisture, radiation) before fabricating any composite samples.

The correspondence principle [7] offers a powerful tool for modeling linearly viscoelastic
materials; that is, when the viscoelastic behavior can be assumed to be independent of the
stress level. Most structures are likely to operate in a known and relatively narrow range of
stress values. The stress range is known because the sizing of members, and thus the level
of stress is determined to satisfy requirements such as maximum deflections, fatigue limits,
notched strength, and compression after impact, etc. Therefore, in preliminary design, it is
convenient to use linear viscoelasticity at the known stress range rather than using complex
nonlinear models [1,8–10]. Using the correspondence principle, most analytical tools
developed for elastic materials can be used by taking a Laplace transform. This excludes
iterative techniques (e.g., the self consistent method) and formulas containing empirical
factors (e.g., Halpin–Tsai equations [11]) because the dependence of empirical factors as a
function of time is unknown. In contrast, we use asymptotically exact micromechanics [12]
without empirical correction factors, yielding analytical expressions, which facilitate the
evaluation of the Laplace transform.

The creep behavior of any linearly viscoelastic material can be represented by empirical
models such as the power law, Maxwell, Ideal solid, etc. [13,14]. These empirical models
simply curve fit the experimental creep data. Once the creep behavior (shear, longitudinal,
and transverse) of the composite is known from experiments [15], either at the layer or
laminate level, several numerical methods exist to integrate the viscoelastic equations
[16–20]. A problem encountered with these proposed models is that they rely on
experimental data for a particular laminate. This means that an expensive experimental
program needs to be completed before attempting the design of the structure. The
experimental program is very expensive for composites because the need to consider
various fibers and resin types, several values of fiber volume fraction, and a number of
temperature and moisture conditions, etc. Furthermore, several types of tests are necessary
to evaluate the creep behavior in shear as well as longitudinal and transverse directions
[21]. The proposed procedure allows us to predict all the components of the creep
compliance tensor from the elastic properties of the fibers and the matrix creep data only.

EXPERIMENTAL PROGRAM

Thirty-six different tests were performed, each with four replicates, for a total of 144
samples. In addition to neat resin samples, three laminates described in Tables 1 and 2
were tested. The four materials were tested in nine conditions, three temperatures (�12.2,
21.1, 65.68C) and three relative humidity (0, 12, 80% RH). Temperature and moisture-
concentration equilibrium were reached before testing on all samples. The laminates were
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fabricated using vacuum assisted resin transfer molding (VARTM), also known as
SCRIMP. The matrix was Derakane 411-350 with cumene hydroperoxide (CHP) used as
catalyst and cobalt naphthenate (CoNap) used as a promoter. The fabrics were supplied by
Brunswick Technology Inc. The composites were fabricated by Hard Core DuPont using
Derakane resin supplied by Dow Chemical.

The creep response at constant load is found by using a fixture that applies a dead load
to a specimen placed inside a Cincinnati Sub Zero ZH-32 environmental chamber. The
chamber has a temperature range of �40–190.68C and a humidity range of 0–99% RH.
The specimens are loaded through pins which allows for thermal expansion of the system
and for the specimen to be aligned properly. The specimen is dog boned to ensure that the
maximum creep region will be in the center of the specimen. The dimensions were selected
to prevent creep or failure at the grip region for the neat matrix samples [22]. The
composite specimens were fabricated with the same dimensions, which provided more than
sufficient strength in the grip region.

A Micro Measurements CEA-13-250UN-120 strain gauge was mounted on the sample.
Micro Measurements M-bond 200 adhesive was used to fasten the gauge to the specimens.
An RTV coating (Dow Corning 3140 RTV) was applied over to protect the gauge from
moisture. The system had a temperature range of �73.3 to 204.48C up to 100% RH for
continuous use in static measurements and has a strain limit of 5%. The strain gauge was
wired for temperature and apparent thermal strain compensation [23]. Finally, the load was
applied to the specimen by a crank mechanism, which allows for instantaneous loading.

The strength and elastic modulus were determined a priori by a quasi-static test in
a universal testing system. During creep testing, the stress level was kept within the linearly
elastic range of the stress–strain response. The tests were run until a well-defined secondary
creep region developed. A time period of 4 h proved to be sufficient for all temperature and
humidity conditions included in the experimental program.

The matrix was tested at a constant stress level approximately one quarter of the ultimate
strength (11MPa). Two sets of four specimens were tested at each environmental condition.

The creep response of the three laminates (Tables 1 and 2) experience less initial strain
than the matrix, and the secondary creep rates of the laminates are lower in value compared
to the matrix. The matrix was tested for 4 h and the laminates for 22 h at approximately one
quarter of the ultimate strength of each laminate (9 and 29.6MPa, respectively).

Table 1. Laminate constituents.

Laminate Resin Fiber
Fiber volume

fraction
Nominal

thickness (mm)

[90/CSM)4]S 411–350 UM1810 68% 4.115
[90/45/�45/CSM)3]S 411–350 TVM3408 44% 7.087
[45/�45/CSM)2]S 411–350 CM5005 46% 6.058

Table 2. Fiber reinforcement architecture.

Fiber mat 90 (oz/yd2) 45 (oz/yd2) R45 (oz/yd2) CSM (oz/ft2)

UM1810 18 1.0
TVM3408 16 9 9 0.75
CM5005 25 25 0.50
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EMPIRICAL FIT OF CREEP DATA

The simplest method for representing creep compliance data is by using a power law,
which for linear viscoelastic materials is:

JðtÞ � J0 ¼ J0tn ð1Þ

where J0 represents the initial compliance at t ¼ 0, J0 and n are fitted to the data by
logarithmic linear regression. However, the most common representation used in
engineering design is the Maxwell model, which has two parameters, the initial modified
compliance 1=K and the creep rate 1=C. The Maxwell model can be illustrated as a single
series spring-dashpot system. The mathematical representation is given by:

JðtÞ ¼
1

K
þ

t

C
ð2Þ

under constant applied stress �0. The Maxwell model does not fit well the primary
creep region, but represents well the secondary creep region. Accurate modeling of the
primary creep region is often not necessary in structural design because these effects occur
over a short period of time compared to the service life of the structure. The parameter
1=C is the creep rate of the material and 1=K is the modified initial compliance. This model
has been primarily used to describe metallic materials which display straight line secondary
creep regions over very long periods of time. The use of this model to represent the
response of polymer materials has been controversial, because a power law better
represents the creep of polymers for relatively short times. For structural design, however,
the main interest is on the response for long periods of time. Experimental data for both
neat matrix and composites suggest that the Maxwell model provides a good
representation for long times. Because of its simplicity compared to the power law, the
Maxwell model is routinely used in design. The Maxwell–Voigt four-parameter model can
be used if the primary creep region needs to be modeled accurately. For long values of
time, the four-parameter model reduces to the two-parameter model. The ideal-solid
model [14] can be used if long-term data is available to ascertain the asymptotic zero
strain-rate at long times inherent to the model.

DOUBLY-SHIFTED SUPERPOSITION

The polymer is modeled as a thermorheologically complex material (TCM), with two
time-dependent shift factors: horizontal and vertical ðaH and aV). A modified power law is
proposed to represent the viscoelastic response of polymer matrices at various temperature
and humidity conditions:

JðtÞ � J0ðT,�Þ ¼ J0
1

aV

t

aH

� �n
ð3Þ

where J0ðT,�Þ is the initial compliance as a function of temperature and relative humidity,
J0 and n are constants over the full range of temperature T and relative humidity �.
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The vertical and horizontal shift factors are assumed separable into temperature and
humidity components as follows:

aH ¼ aTðT Þa�ð�Þ

aV ¼ bTðT Þb�ð�Þ:
ð4Þ

Values for the temperature and humidity components of the shift factors were found
for the nine environmental conditions tested, using two empirical models (Maxwell
and Power Law), and four materials (neat resin and three laminates described in
Tables 1 and 2).

All values of initial compliance J0ðT,�Þ are known from the static tests at t ¼ 0: The
initial compliance J0 was found from a static test at each temperature (reported in
Figure 1) or as the ordinate at the origin (1/K in Equation (2)) as a function of temperature
and relative humidity, as reported in Figure 2.

To solve for the remaining variables, the first step is to choose a reference temperature
and relative humidity (21.18C and 12% in this article). At the reference state, all shift
factors are equal to one. Then, the experimental data is fitted by Equation (3) with
aT ¼ a� ¼ bT ¼ b� ¼ 1 to obtain the parameters J0 and n. A linear regression is performed
using on the log of Eqaution (1) to obtain the parameters J0 and n for the matrix at the
three environmental conditions. The quality of the approximation achieved with the
Maxwell fit is illustrated in Figure 3.

In the second step the parameters J0 and n are kept fixed while the experimental creep
compliance data at various temperatures and reference relative humidity �ref is used to find
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Figure 1. Temperature dependency of the power-law initial compliance J0(T) of the matrix at 12% RH.
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the temperature component of the horizontal and vertical shift factors aT and bT at each
temperature for which data is available. Therefore, the values of aTðT Þ and bTðT Þ are
found by minimizing the square of the error while a� ¼ b� ¼ 1; that is while the relative
humidity is kept at its reference value. In this study, the temperature dependency was
determined by using the data for various temperatures but at reference RH of 12%
(Figures 4 and 5) and reported in Table 3.

Finally, the remaining data (for � 6¼ �ref) is used to find the values of a� and b� by
minimizing the error while keeping aTðT Þ and bTðT Þ unchanged. Then, the moisture
dependency was found using the data at other values of RH. The combined shift factors
are shown in Figures 6 and 7 and reported in Table 4.

The experimental data confirms that the matrix and composite shift factors
are identical. Since the carbon fibers are elastic, they effect only the magnitude of the
creep compliance, not the temperature and moisture dependency. That is, the
combined horizontal and vertical shift factors aH and aV are equal for the matrix and
for all the laminates analyzed (Tables 3 and 4). Furthermore, the experimental
data confirms that the shift factors are independent of the empirical model used to
fit the compliance data (Maxwell or Power Law). Therefore, if the master curve and
the shift factor plot for the matrix is know, any laminate can be analyzed at any
temperature and relative humidity condition. Still, the values of J0, J

0, and n need to be
predicted for the composite in terms of fiber and matrix properties, as explained in the
next section.
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Laminate Model

Using the correspondence principle for linearly viscoelastic materials, the micro-
mechanics formulas developed for elastic materials can be used directly in the Laplace
domain, provided the formulas do not contain empirical parameters nor require iteration
[24]. The equations are easier to manipulate using the Carson transform (indicated by bL)
instead, which is related to the Laplace transform (indicated by ~L) by:

bL �½fðtÞ� ¼ s ~L
�
½fðtÞ� ð5Þ

where fðtÞ is any function of time.
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Figure 5. Temperature dependency of the vertical shift factor bT ðTÞ at 12% RH.

Table 3. Temperature dependency of shift factors
at each environmental condition.

Environment aT bT

12.28C and 12% RH* 2.6835 1.4842
21.18C and 12% RH 1 1
21.18C and 80% RH 1 1
65.68C and 12% RH 0.4415 0.7835
65.68C and 80% RH 0.5462 0.4868

*At this temperature there is no practical distinction between 12% RH and 0% RH.
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The components of the relaxation tensor in the Carson domain for a unidirectional
composite with periodically arranged fibers given in Ref. [12] as:

bL11ðsÞ ¼ b�mþ2b�m�Vf

S2
3=b�2

m � 2S6S3=b�2
m g� aS3=b�m cþ

ðS2
6 � S2

7Þ=b�2
m g2 þ ðaS6 þ bS7Þ=b�m gcþ ða2 � b2Þ=4c2

24 35
D

bL12ðsÞ ¼ b�mþVfb
S3=2cb�m � ðS6 � S7Þ=2cb�m g� ðaþ bÞ=4c2
� �

D

bL23ðsÞ ¼ b�mþVf
½aS7=2b�m gc� ðbaþ b2Þ=4c2�

D

bL22ðsÞ ¼ b�mþ2b�m�Vf

�aS3=2b�m cþ aS6=2b�m gcþ ða2 � b2Þ=4c2
� �

D

bL44ðsÞ ¼ b�m�Vf �
2S3b�m

þ b�m��f

� ��1
þ

4S7b�mð2� 2�mÞ

� ��1
bL66ðsÞ ¼ b�m�Vf �

S3b�m

þ b�m��f

� ��1� ��1

ð6Þ

where:

D ¼
aS2

3

2b�2
m c
�
aS6S3b�2

m gc
þ
aðS2

6 � S2
7Þ

2b�2
m g2c

þ
S3ðb

2 � a2Þ

2b�m c2

þ
S6ða

2 � b2Þ þ S7ðabþ b2Þ

2b�m gc2
þ
ða3 � 2b3 � 3ab2Þ

8c3
ð7Þ

and

a ¼ �f � b�m�2�f�m þ 2b�m �f

b ¼ ��̂m�m þ �f�f þ 2�̂m�m�f � 2�f�m�f

c ¼ ð�̂m � �fÞð��̂m þ �f � �̂m�m � 2�f�m þ 2�̂m�f þ �f�f þ 2�̂m�m�f � 2�f�m�fÞ

g ¼ ð2� 2�mÞ:

ð8Þ

Table 4. Combined shift factors at each environmental condition.

Environment aTa/ bTb/

12.28C and 12% RH* 2.6835 1.4842
21.18C and 12% RH 1 1
21.18C and 80% RH 0.7460 1.0108
65.68C and 12% RH 0.4415 0.7835
65.68C and 80% RH 0.4615 0.4112

*At this temperature there is no practical distinction between 12% RH and 0% RH.
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The series S3, S6, S7 represent the geometry and spatial distribution of the inclusions.
For circular cylindrical fibers, they are given in Ref. [12], as follows:

S3 ¼ 0:49247� 0:47603Vf � 0:02748V2
f

S6 ¼ 0:36844� 0:14944Vf � 0:27152V2
f

S7 ¼ 0:12346� 0:32035Vf þ 0:23517V2
f

ð9Þ

were Vf is the fiber volume fraction and the Lamé constants are given by:

b�m ¼ bEm �m
ð1þ �mÞð1� 2�mÞ

b�m ¼
bEm

2ð1þ �mÞ
:

ð10Þ

where bEm, �m, and �m are the relaxation modulus, Poisson’s ratio, and shear modulus
of the matrix, Ef, �f, and �f are the elastic modulus, Poisson’s ratio, and shear modulus
of the fiber.

The Poisson’s ratio of the matrix is constant over time, as confirmed experimentally for
a broad frequency or temperature range except near the � and � polymer transitions [25].
The matrix data can be represented by any empirical model. To model a material with
transverse isotropy, the following averaging procedure is used:

bC ¼ 1

	

Z 	

m

½�
ð4Þ
�½bL�½�ð4Þ�Td
 ð11Þ

where ½�
ð4Þ
� is the fourth-order orthogonal rotational tensor (see Ref. [24,(1.40)])

representing a rotation 
 about the x1 axis (fiber direction). After completing the
integration, the tensor bC is given by:

bC11 ¼ bL11bC12 ¼ bL12

bC22 ¼
3

4
bL22þ

1

4
bL23þ

1

2
bL44

bC23 ¼
1

4
bL22þ

3

4
bL23�

1

2
bL44

bC66ðtÞ ¼ bL66

bC44 ¼
1

4
ðbL22� bL23þ2 bL44Þ

ð12Þ

where the new tensor is the averaged relaxation tensor for a transversely isotropic material.
The relation between the relaxation tensor ½bC� and the reduced relaxation matrix ½bQ� for a
unidirectional layer can be found by applying plain stress conditions �3 ¼ �4 ¼ �5 ¼ 0 to
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the compliance version of the constitutive equation [26]. As in classical lamination theory
(CLT, [26]), the reduced relaxation coefficients are given by:

bQ11 ¼
bC11�

bC 2

12bC22

bQ12 ¼
bC12 1�

bC23bC22

 !

bQ22 ¼
bC22�

bC2

23bC22bQ66 ¼
bC66

ð13Þ

where the reduced relaxation matrix ½bQ� is symmetric. The plane-stress constitutive
relationship for a unidirectional layer [26, (5.35)] can be rotated from the material
coordinate system (1,2,6) to any other coordinate orientation using the classical
transformation equations of CLT [26]. For a layer reinforced with randomly oriented
fibers (such as continuous strand mat, chopped strand mat, etc.), we propose the following
reduced relaxation matrix

bQCSM
¼

1

	

Z 	

m

½��½bQ�½��Td
 ð14Þ

where the rotation matrix ½�� is given in Ref. [26]. In Equation (10), the stiffness matrix of
a unidirectional layer bQ is rotated to every angle between 0 and 	, added, and then divided
by the interval 	. This is an averaging procedure that yields the stiffness matrix of a layer
with randomly oriented fibersbQCMS. After completing the integral, the coefficients of the
matrix are given by:

bQCSM

11 ¼ bQCSM

22 ¼
3

8
bQ11þ

1

4
bQ12þ

3

8
bQ22þ

1

2
bQ66

bQCSM

12 ¼ bQCSM

21 ¼
1

8
bQ11þ

3

4
bQ12þ

1

8
bQ22�

1

2
bQ66

bQCSM

66 ¼
1

8
bQ11�

1

4
bQ12þ

1

8
bQ22þ

1

2
bQ66

bQCSM

16 ¼ bQCSM

26 ¼ 0:

ð15Þ

Next, a laminated composite material can be represented by applying classical lamination
theory, but in the Carson domain. If the laminate is symmetric about the midplane surface,
the relation between the stress resultants and strains is:

bNxbNybNxy

8<:
9=; ¼

bA11
bA12 0bA22 0

sym: bA66

24 35 b"xb"yb�xy
8<:

9=; ð16Þ
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with:

bAij ¼
XNL

k¼1

bQ ðkÞij tðkÞ ð17Þ

where the superscript ðkÞ indicates the layer number, tðkÞ is the layer thickness and NL is the
number of layers. Working in the Carson domain, the relaxation matrix ½bA� is inverted
analytically to obtain the creep compliance matrix:

½b� � ¼ ½bA��1: ð18Þ

Both the relaxation and compliance matrices (Equation 17 and 18) are back-transformed
to the time domain by a collocation method, which is explained in detail in Ref. [24, App. D].
The method provides N points for each coefficient of the creep compliance matrix ½�ðtÞ�
(N ¼ 5 was used in the examples). Two additional points can be obtained by using the limit
value theorems [24, (7.44)]:

fð0Þ ¼ lim
s!1
½sFðsÞ�

fð1Þ ¼ lim
s!0
½sFðsÞ�:

ð19Þ

Alternatively one might simply compute the elastic compliance of the laminate ½�ðt ¼ 0Þ�.
The resulting Nþ 2 points can be fitted with the same empirical model used to fit the
matrix creep data.

MODELING PREDICTIONS

With the combined shift factors given in Table 4 and the initial compliances given in
Figures 1 and 2, it is possible to estimate the creep compliance of the matrix at any time,
temperature, and RH using Equations (1) or (2). On the power law, ðJ0Þ�1 ¼ 57:6GPa and
n ¼ 0:2246 for all conditions, while on the Maxwell model, C ¼ 854:4GPa h.

The viscoelastic response of the composite was predicted following the procedure
outlined earlier, in terms of the fiber elastic properties and the estimated matrix creep
properties. The predicted composite compliance is compared in Figure 8 to actual
composite experimental data, where it is noted that the model provides good predictive
capability. Note that the comparison is good up to 22 h even though it is based on matrix
data obtained over a 4 h period only. Furthermore, this model is unique in that it predicts
all the components of the compliance and relaxation including shear and transverse
properties.

CONCLUSIONS

A procedure to reduce experimental creep data using doubly-shifted superposition was
presented. It is notable that identical shift-factors were found when the procedure was
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applied to creep data for matrix and three different laminates. Therefore, it is proven that
only matrix data is required to model long-term compliance of arbitrary laminates. In this
context, a novel micro-mechanical/laminate model was presented to predict compliance of
arbitrarily laminated composites, which may include random and fabric reinforcement.
Experimental matrix creep data is presented and used to predict laminate response. Then,
laminate creep data is used to validate the prediction methodology, demonstrating a good
predictive capability. Within the scope of this investigation, good agreement was achieved
between the experimental data of three different laminates and the proposed model at
short and long time response, even when the matrix creep behavior was experimentally
characterized only for a short time.

NOMENCLATURE

b� ¼ in-plane compliance matrixb" ¼ in-plane strain resultant array
�m, �f ¼Lame constant of the matrix and fiber, respectively
�m,�f ¼ shear modulus of the matrix and fiber, respectively
�m, �f ¼Poisson’s ratio of the matrix and fiber, respectively
�,�0 ¼ relative and reference relative humidity

� ¼ 2D rotation tensor [26, (5.35)]
�
ð4Þ
¼ 3D rotation tensor [24, (1.40)]

a� ¼humidity horizontal shift factor
aH ¼horizontal shift factor
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Figure 8. Comparison at 21.1oC, 12% RH for [(90/45/�45/CSM)3]S.
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aT ¼ temperature horizontal shift factor
aV ¼ vertical shift factor
b� ¼ humidity vertical shift factor
bT ¼ temperature vertical shift factor
k ¼ layer number
t ¼ time

tðkÞ ¼ layer thicknessbA ¼ in-plane stiffness matrixbC ¼ transversely isotropic relaxation tensor in the Carson domain
Em,Ef ¼ relaxation modulus of the matrix and fiber, respectively

JðtÞ ¼ creep compliance
J0 ¼ initial creep compliance

J0, n ¼ parameters in the power law model
K,C ¼ parameters in the Maxwell model

~L ¼ relaxation tensor in the Laplace domainbL ¼ relaxation tensor in the Carson domainbN ¼ in-plane stress resultant array
NL ¼ number of layers in the laminatebQ ¼ 2D stiffness of a unidirectional layerbQCSM ¼ 2D stiffness of a continuous strand mat layer
T ¼ temperature

Vf ¼ fiber volume fraction
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