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with the uniaxial stress-strain curve. The Tabor empirical for­
mulas of indentation stress and strain are

2. MATERIAL MODELS
It is assumed that uniaxial true stress-strain curve follows

piecewise linear elastic-power-law plastic model
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where d is the indentation impression diameter, D is the ball
indenter diameter, Tabor showed that the indentation stress­
strain relation (Eq. (1)) is equal to the uniaxial compression
stress-strain curve in the fully plastic region, as shown in Fig­
ure 1. Such ~onclusionwas based on experiments on two alloys:
mild steel and anneal copper. It was also pointed out that this
relationship is independent of the indenter size [10].

It should be noted that the indentation stress and strain ob­
tained based on Eq. (1) are averaged values beneath the indenter.
The determination of the coefficients 0.2 and 2.8 in Eq. (1) is
empirical and arbitrary. For instance, Jeong-Hoon Ahn et al.
[11] proposed four kinds of strain definitions and determined
cri == Pm/3.

In this research, FE simulations are performed to verify
Tabor's empirical relation. Twenty-one linear elastic, power-law
plastic material models are selected. The indentation data (con­
tact radius and load) are extracted from the FE simulation results.
Computed stress/strain data based on Eq. (1) are compared with
the input stress-strain data. The fully plastic condition to apply
Tabor's equation is also evaluated quantitatively.

The same concept is applied to materials with thin film coat­
ing. Two configurations of thin film substrate system, soft film
on hard substrate and hard film on soft substrate, are analyzed
and the effect of substrate on both cases is studied.
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In this research, finite element (FE) simulations were performed
to verify Tabor's empirical relations that enable the use of the in­
dentati.on test for determination of post-yielding uniaxial stress­
strain curves of a variety of ductile metallic alloys. Both piling-up
and sinking-in materials are included in this study. From the FE
spherical indentation simulations, the indentation loads and pro­
jected contact radii are obtained for various elastic power-law plas­
tic solids in both bulk and thin film substrate systems. It is found
that for bulk materials, the indentation stresses and strains ob­
tained from Tabor's empirical formula agreed well with the input
uniaxial stress-strain data. This approach is then verified exper­
imentally by spherical indentation tests on Inconel 783 alloy. In
thin film substrate system, two cases, soft film on hard substrate
and hard film on soft substrate were studied and the substrate effect
on Tabor's relation was analyzed.

1. INTRODUCTION
In recent years, instrumented spherical indentation [1-4, 11]

has been studied and developed as an effective, non-destructive
method to evaluate surface mechanical properties of metallic
materials. This technique is applicable in cases where a tradi­
tional material tension test cannot be conducted. The goal is to
correlate the experimental indentation data, i.e., load and inden­
tation depth, to material mechanical properties such as elastic
modulus and post-yielding strain hardening. Based on Sned­
don's analytical solution [5] for linear elastic materials and the
assumption that the unloading of indentation is pure elastic re­
bound of the material, the elastic modulus can be extracted from
the initial unloading part of load-depth curve [6, 7]. The ac­
curacy of this technique has been proved by both experiments
[8] and numerical methods [9]. However, it is difficult to corre­
late the post yielding behavior with indentation data analytically
since the governing constitutive relationship is nonlinear and a
complex 3-D state of stress is induced under the indenter.

In Tabor's empirical work [10], it was pointed out that for
spherical indentation, Meyer's hardness, which was defined as
the mean contact pressure Pm == A P ., has a close agreement
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FIG. 1. Tabor's experimental results: comparison of hardness measurements with the stress-strain curve. A, mild steel. B, annealed copper [10].

in which three parameters, Young's modulus, E, Yield Stress,cry, and power hardening exponent, n, are used to determine thematerial stress-strain curve. This equation accurately describesthe elastic regime ofmetallic materials and their subsequentplas­tic strain hardening behavior through a power-law relation. Thelatter provides a good approximation to the stress-strain curveof metals at least to intermediate values of plastic deformation.Also, it is formulated in such a way that the elastic behaviormatches the plastic response at (J == cry. The existence of suchwell-defined yield strength allows one to model the response ofmetallic materials when subjected to different amounts of strainhardening [12]. For general elastic plastic materials, the n valuelies between 0 and" 1. This material model has been applied tomany numerical indentation simulation studies [12, 13].

For this research, three sets of bulk engineering alloys areselected: aluminum alloys, steel alloys and lead free solder ma­terials, as shown in Table 1.
Twenty-one materials are simulated, which span from softmaterial" (lead free solder material) to relatively strong mate­rial (steel alloy). For a designated set of material, the Young'smodulus varies in a limited range (e.g., for aluminum alloysE ::= 69 GPa, for steel alloys E == 200 GPa), while the ()yand n values are in a wide range due to different compositionand heat treatment of the alloys. For thin film substrate sys­tems, two basic materials, aluminum and silicon, are selectedwith ,two arrangements; soft film (AI) on hard substrate (Si)and hard film (Si) on soft substrate (AI). The material proper­ties are listed in Table 2. The film thickness is kept at 30 MID.

TABLE 1
Simulation matrix: Material library selection

Aluminum alloys (E == 69 GPa, 'V == 0.33)
cry == 275 MPa (6061-T6) cry == 500 MPa (7075-T651)

n == 0.09 n==0.18 n == 0.27 n == 0.36 n == 0.09 n == 0.18
Steel (E == 200 GPa, 'V == 0.3)

n == 0.27 n == 0.36

ITy == 242 MPa (mild steel) cry == 500 MPa cry == 750 Mpa
n == 0.1 n == 0.2 n == 0.3 n == 0.1 N == 0.2 n == 0.3 n == 0.1

Lead free solder materials (E == 26.2 GPa, 'V == 0.3)
cry == 22.5 MPa (Sn-3.5Ag)

n == 0.2 n == 0.3

n == 0.026 n == 0.1 n == 0.2 n == 0.3
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TABLE 2
Material properties used for finite element simulations in thin

film cases

Young's Yield Strain
modulus Poisson's stress hardening
{GPa) ratio (MPa) exponent

Silicon 127 0.278 4410 0
Aluminum 69 0.33 275 0.09

Relatively small indenter (0 == 100 f..tm) is used in these
cases.

3. FINITE ELEMENT MODELING
FE indentation simulations were performed for the problem

of a rigid spherical indenter pushed into contact against the
half space using ABAQUS™ [14]. The constitutive model of
the half space is take~ to follow J2 -associated flow theory with
rate-independent deformation and isotropic hardening. The von
Mises yield criterion is applied in the FE computations. The
process of indentation is assumed to be quasi-static and no rate
effects are represented. To spare CPU time, a two-dimensional
axisymmetric model is employed. At first, the indenter is as­
sumed to be perfectly rigid and is modeled as a rigid axisym­
metric surface. For the mesh representing half space solid, a total
of 21,573 four-node axisymmetric linear quadrilateral elements
are litilized. Reduced integration is employed to minimize calcu­
lation time, while hourglass control is provided for this element
type by ABAQUS™. The region surrounding the indenter has
fine mesh of 10,000 elements to model the high stress gradient
and to obtain an accurate determination of the contact radius
for the application of Eq. (1). To validate the convergence and
adequate mesh design for the FE indentation simulations, a FE
simulation with much finer mesh is performed and no significant
deviation of the FE results is observed. Thus the adequacy of the
mesh density shown in Figure 2 is validated.

To minimize the boundary effect, the total length of the FE
mesh is twenty times larger than the sphere indenter radius. 'Two
FE simulations with different boundary conditions were per­
formed, as shown in Figures 3(a) and 3(b), and no significant
difference was found. Thus it is concluded that the ratio of spec­
imen size to the indenter size is large enough to simulate a small
indenter being indented into halfspace solid. And the boundary
condition has negligible effect on the simulation results.

Either the force applied to the indenter or the vertical dis­
placement of the indenter tip could be used as input load. Al­
most identical results were obt~ihed from either input mode. In
this work, the displacement of the indenter tip is controlled. The
force exerted on rigid indenter is then calculated by summa-
.tion of y-direction reaction force of the bottom line nodes. The
maximum depth of loading is 1/5 of the spherical indenter diam­
eter for all simulations, which is 320 ~m for bulk materials and
20 /-Lm for thin film. In the FE modeling, the interface between
the bilayer materials is assumed to be perfectly bonded and no
interfacial fracture can occur during the process of indentation.

4. VERIFICATION OF THE FINITE ELEMENT MODEL
To'verify the suitability ·of the FE mesh and modeling, elas­

tic indentation simulations are first performed and solutions for
load-depth curve are compared with the Hertz analytical solu­
tion. Since the analytical elastic solution is based on the as­
sumption of small deformation, a relatively shallow indentation
is simulated. The maximum indentation depth is hs == 10 j..Lffi,

using indenter diameter D == 1.6 mm.
The analytical solution for load-depth relation of Hertz for

perfectly rigid indenter indented on half space pure elastic spec­
imen is given by

(3)

Excellent agreement between FE and Hertz analytical results
are shown in Figure 4. It is also noticed that the load-~epth
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FIG. 2. (a) Mesh design (b) Magnified mesh design under indenter.
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(a)- (b)

FIG. 3. (a) Fixed bottom, fixed side (b) Roller bottom, roller side.

The influence of the material properties on the surface de­
formation mode was discussed in detail in [15, 16]. Using a
very fine mesh beneath the indenter, the contact radius can be
obtained accurately. The progress of indentation is divided into
three stages according to the response of the ind~ntedmaterial:
elastic, elastic-plastic, and fully plastic [10, 11]. This conclusion
is verified from the FE simulations, as shown in Figure 7.

As pointed out by Tabor [1], Eq. (1) is only applicable under
'fully plastic' condition, which indicates relatively deep inden­
tation. In Tabor's work, it is claimed that full plasticity will be
reached for mild steel when diD is greater than 0.1 and for copper
at a smaller value.

The boundary between the elastic-plastic regime and the fully
plastic regime is determined by a nondimensional variable

curve fits better at the initial loading stage, as shown in Figure 5.
This may be attributed to the gradual increase of numerical error
caused by numerical integration to obtain the large deformation
underneath the indenter.

In view ofthe favorable comparisons with the Hertz analytical
solution, it may be concluded that the FE mesh and modeling
assumptions are appropriate for simulating the indentation of a
half-space by a rigid sphere.

5. BULK MATERIALS
To apply Tabor's relation, two values are extracted from the

simulation for every loading step: load, P, and contact radius, a.
The projected contact area is: Aproj == Jra

2 . Due to the piling­
up or sinking-in effect of the surface deformation, the contact
radius cannot be directly derived from the indentation depth hs ,

as shown in Figure 6. ~ == E/Gy . tan 'Y (4)
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FIG. 4. Load depth curve comparison between FEM and analytical solution.
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and its vale is about 30 [17], where y is the contact angle and it
is calculated by

From the above analysis, the minimum strain value, which could
be obtained from Tabor's rela~ion, is

sin y == aiR == diD (5)

It is difficult to measure the contact radius at maximum load
experimentally. However, based on the assumption [15] that the
contact radius does not change much during unloading process,
the residual impression area, which could be measured directly
using a microscope, is usually used to substitute for the contact
area at maximum load. Direct observation from our FE simula­
tions also verifies this assumption.

where £e == cry IE is the elastic strain at yielding.
As shown in Figures 8 to 13, good agreement between the

Tabor's indentation stress-strain and input stress-strain curve for
all the 21 material models is noted, with the the maximum error
less than 8%.

It is observed that for large n value (n > 0.2), Tabor's re­
lation usually gives a higher value of stress especially at large
plastic strains. The average of Pm I () vs. n values is shown in
Figure 14. As shown, the values of Pml () fluctuate between 2.82
to 2.98 for all 21 values of n, and thus support the validity of
Tabor's relation in predicting post-yielding stress-strain behav­
ior for metallic alloys. Based on Figure 9, however, it is proposed
that the indentation stress should be modified as

cri == Pm 12.9

while keeping the indentation strain unchanged.

(6)

(7)

6. EXPERIMENTAL VERIFICATION
Spherical indentation test .is implemented to verify the

modified Tabor's relation. The material is Inconel 783 al­
loy with the mechanical property of E == 177.3 GPa, 'V ==
0.31, cry == 779 MPa and crult == 1194 MPa at 20% elongation.
The stress-strain curve from uniaxial tensile test is shown in
Figure 15.

A tungsten carbide ball indenter with D == 1.6 mm is used
to conduct the indentation test on the Inconel 783 specimen.
The load and corresponding residual impression diameter are
recorded and the indentation stress-strain data are plotted to
compare with the input stress-strain curve. The results are shown
in Figure 15.

As shown, good agreement between the measured indentation
stress-strain data and input stress-strain curve is noted. Thus,
based on the modifi~d Tabor formula, a simple indentation test
procedure to obtain post-yielding stress-strain relationship of
bulk materials is established.

(a) (b)

FIG. 6. (a) piling-up mode (b) sinking-in mode.
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FIG. 7. (a) Elastic (b) Elastic-plastic (c) fully plastic.
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7. THIN FILM SUBSTRATE SYSTEM
Computed stress-strain data of bulk aluminum as well as

thin film Al on Si substrate, using Tabor's relation, is shown
in Figure 16.

For the soft film on hard substrate case, Tabor's relation yields
higher stress data. The effect of substrate cannot be ignored
especially when the indentation depth is comparable with the
coating thickness. The hard substrate effect will give a higher
hardness (mean pressure Pm) value, which explains the thin film
stress given by Tabor's relation being higher than the bulk stress.

As shown in Figure 17, even for bulk Si, the indentation stress­
strain from Tabor's relation is not in good agreement with input
stress-strain d~ta. This can be attributed to the requirement of
fully plastic condition for Tabor's relation. Inserting values for
E and 0-y of Si into Eq. (3) gives [min == 0.2 sin[tan-1 (30 [e)] ==
0.144 which is larger than most of the data shown in Figure 17.
This is to show again that the Tabor indentation stress-strain
data will only be in agreement with the input stress-strain curve
for deeper indentation (large strain) and is not valid for shallow

indentation (small strain). For the thin film silicon on aluminum
substrate, Tabor's prediction gets worse with increasing inden­
tation depth. The predicted stress using Tabor's relation is much
smaller than the actual stress. Due to the influence of the soft
Al substrate, the deeper the indentation, the more discrepancies
between Tabor's relation and true stress-strain curve are found.
This result is expected, i.e., the soft Al substrate corresponds
to a Meyer's hardness, which decreases with the increase of
indentation depth.

It is concluded that the Tabor's relation cannot be directly
employed to obtain true stress-strain curve for thin film materi­
als. The effect of substrate cannot be neglected especially when
the indentation depth is comparable with the film thickness [18].

8. CONCLUSIONS
Based on the modified Tabor formula, a simple indenta­

tion test procedure to obtain post-yielding stress-strain relation­
ship of bulk ductile materials is established. FE simulations are
performed to verify Tabor's empirical formulas. Stress-strain

---------------------------------------------------

0.250.2; O. 15O. 1

• Si film on AI substrate
.. bulk Si

--True stress strain curve of Si

0.05

- - - - - - - - - - - - ~ - - - - - - - 1.- -..-~ -.A _4 - - - - - - - :- - - - - - - - - - - ­

•~-------------~-----------------------------------

---- -------.--------------------------------------

•--- --------------+--------------------------------•••-----------------------+------------------------

5000

4500

4000

3500

:i 3000

';; 2500
(f.)
a.>
$ 2000

1500

1000

500

o
o

Strain

FIG. 17. Bulk Si and thin film Si on Al substrate.
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curves calculated from the FE indentation simulations show
good agreement with the input stress-strain curve. While adopt­
ing the definition of indentation strain as £i == 0.2 diD, the in­
dentation stress is modified to be (Ji == Pmlb, where b is·a value
which fluctuates between 2.82 to 2.98. For thin film/substrate
system, the indentation stress-strain data based on Tabor's re­
lation are influenced by substrate and cannot be considered as
intrinsic film mechanical properties, especially when the inden­
tation depth'is comparable with film thickness.
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