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Abstract

The aim of this work is to develop accurate finite element models of plain weave fabrics to determine their mechanical properties.
This work also aims at developing a method for describing the internal geometry from actual measurements of tow geometry made
on photomicrographs of sectioned laminates. The geometric models needed for finite element discretization of the plain weave fab­
rics are developed for a variety of plain·weave reinforced laminates for which experimental data is available in the literature. These
include single lamina composites from three sources, as well as laminates in iso-phase and out-of-phase configurations. The proce­
dures to determine all the elastic moduli using iso-strain, iso-stress, and classical1amination theory are presented. Comparisons with
experimental data and with predictions using the periodic microstructure model are provided in order to support the validity of the
proposed models.
© 2005 Elsevier Ltd. All rights reserved.
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l. Introduction

Unidirectional laminated composites exhibit excellent
inplane properties but poor inter-laminar properties be­
cause there are no reinforcements in the thickness direc­
tion. This leads to poor damage tolerance and poor
impact resistance when inter-laminar stresses are pres­
ent. To overcome these problems, plain weave fabrics
are used as reinforcements in composites in order to ob­
tain balanced ply properties and improved inter-laminar
properties. These advantages are realized at the cost of
reduced stiffness and strength in the inplane directions.
Therefore, it is important to study the mechanical
behavior of such composites in order to fully realize
their potentlal.
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A fabric is a collection of fiber tows arranged in a gi­
ven pattern. Both fibers and matrix are responsible for
bearing the mechanical loads while the matrix protects
the fibers from environmental attack [1]. Fabrics are
classified as woven, non-woven, knitted, or braided [2].
Further, they can also be classified into 2..D (two-dimen­
sional reinforcement) and 3-D fabrics (three-dimen­
sional reinforcement). Some examples of fabrics are
plain weave. satin weave, weft knitted, warp 1\nitted,
and orthogonal fabrics.

The stiffness and strength of fabric-reinforced compos·
ites are controlled by the fabric architecture and material
properties of fiber and matrix. The fabric architecture de­
pends upon the undulation, crimp, and density of the fi­
ber tows. A tow is an untwisted strand of fibers. The
undulation or waviness of the tows causes crimps (bend­
ing) in the tows, which significantly reduces the mechan­
ical properties of the composite. The geometry of the
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Fig. 1. Schematic representation of the Fabric geometry.

woven composite is complex and the choice of possible
architectures is unlimited. The present work concentrates
on modeling the elastic behavior of plain weave fabrics,
using optical microscopy and the finite element method.

Plain weave fabrics are formed by interlacing or
weaving two sets of orthogonal tows. The tows in the
longitudinal direction are known as warp tows. The
tows in the transverse direction are known as the fill
tows or weft. The interlacing causes bending in the tows,
called tow crimp.

Plain weave fabrics can be arranged in different lam..
inate stacking configurations. A single lamina consists of
warp and fill tows surrounded by matrix in a single layer
as shown in Figs. 1 and 2. The iso-phase configuration
consists of plain weave laminae arranged one above
the other so that the undulations are in phase. The
out-of-phase configuration consists of plain weave lam­
inates arranged in a symmetric manner, so that the
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Warp face (front)
Warp 4 ~ Zt
y~x

Fill face (front)

undulations are out of phase by G, which is the pitch
of the undulation (Fig. 1). In order to model the single
lamina, iso-phase, and out-of-phase laminates using fi­
nite element methods, only the representative volume
elements (RVE) of the respective configurations are con­
sidered. The RVE is the repeating element (unit cell) that
represents the whole composite fabric structure (Fig. 1).

Numerous methods are available for modeling and
analyzing plain weave fabric composites. There are
two main categories: analytical models and numerical
models. Chou and Ito [9] developed 1-0 analytical mod­
els of the plain weave laminated composites for deter­
mining their mechanical properties. The undulation of
the fill tow was not considered for the analysis. Three
different laminate stacking configurations were consid­
ered for the analysis: iso-phase, out-of-phase and ran­
dom phase laminates. Mathematical models of the
configurations were explained very well and predIctions
of inplane modulus are compared to experiments for all
three configurations. The undulatIon of warp to\\/ \vas

assumed to be sinusoidal and two types of cross-section
were assumed for the fill tows: sinusoidal and elliptical.
The iso-strain condition was used for evaluating the
stiffness of the plain weave laminates.

Ishikawa and Chou [10,11] developed three models to
predict the elastic properties of woven fabric laminates.
The mosaic model [10] was used to predict the stiffness
of satin weave fabric composites. The model neglects
the tow crimp and idealizes the composite as an assem­
blage of asymmetric cross-ply laminates. Then, an iso­
stress or iso...strain condition was used to predict the stiff­
ness of the laminate depending on whether the laminates
are assembled in series or parallel. Since the model
neglects the tow crimp, the prediction of stiffness is not

Fig. 2. Material orientation inside a tow.
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accurate. The fiber undulation model [10] or the I-D
model considers fiber undulation in the longitudinal
direction but neglects it in the transverse direction. The
bridging model [II], a combination of mosaic and fiber
undulation model. was developed for satin weave fabrics.
The model reduces to the crimp model [J 0] for plain weave
fabrics and hence the stiffness prediction is not accurate.

Most analytical models are the based on classical lam­
ination theory (CLT). Huang [3J developed a microme­
chanics bridging-model to predict the elastic properties
of woven fabric composites. The geometric models of
the fabrics (RVE) were well described. The tow cross­
section was assumed to be elliptical and a tow undulation
was described by a sinusoidal function. A discretization
procedure was applied to the RVE of the fabric compos­
ite. The RVE was divided into a number of sub-elements~
with no divisions in the thickness direction as shown in
[3]. Each sub-element consists of the tow segments and
the pure matrix. The tow segments were considered as
unidirectional composites in their material co-ordinate
system. The elastic response (compliance) of the tow
segments and the rnatrix were assembled in order to get
the effective stiffness of the sub-element using classical
laminate theory (iso-strain condition). The overall elastic
property of the RVE was calculated by assembling the
compliance matrix of the sub-elements under iso-stress
assumption.

Naik and Ganesh [4] developed 2-D micromechanical
models of plain weave fabrics to determine the elastic
properties of the fabrics, taking the warp and weft tow
undulation into consideration. In the case of the slice ar­
ray model (SAM), the RVE was divided into number of
slices. These slices were idealized in the form of four-lay­
ered laminate (asymmetrical cross ply sandwiched be­
tween matrix layers at top and bottom). The properties
of each slice were calculated from the individual layers
(considering the undulation), which in turn were used
for calculating the elastic constants of the RYE. The lim­
itation of the model is that it approximates the stiffness
contribution from the warp strand. This is because the
undulation angle for the warp strand is approximated.
In order to overcome these limitations, Naik et al. devel­
oped the element array model (EAM), including the ser­
ies-parallel (SP) and the parallel series (PS) models. In
the SP model, the slicing was made in the warp direction.
Each slice was further divided into elements of infinites­
imal thickness. Then.. the elastic constants of the warp
and fill tows were calculated within each element (consid­
ering the undulation angle), and then the stiffness of the
element was calculated using the classical laminate the­
ory. The compliance of the slices was calculated from
the element stiffness matrix using iso-stress conditions.
Finally, the overall stiffness of the RYE was calculated
from stiffness of the slices using iso-strain condition. In
the PS model, the slicing was made in the fill direction.
So. the elements in the slices were assembled using the

iso-strain condition to get the slice stiffness and then
the slices were assembled assuming iso-stress condition
in order to obtain the overall stiffness of the RVE.
Although these models showed good correlation with
the experimental data~ they are very complicated.

Vandeurzen et al. [5,6] developed analytical, elastic
models for 2-D "hybrid'~ woven fabrics. Three groups
of geometric parameters were identified for describing
the 2-D weave geometry. The first group is the '~kno\v"

group, which contains the data supplied by the weaving
company- number and diameter of fibers, and tow spac­
ing. The second group is called the "measure group".
which contains quantities that can be obtained from
microscopic observations and calculations- aspect ratio
of the tows, thickness of the fabric laminate, tow-packing
factor, and so on. The third group is called the ~40calculate

group", which contains the parameters that can be calcu­
lated from the know- and measure-group~i.e.~ fiber vol­
ume fraction, orientation of the tows, and so on. The
geometric analysis was implemented in a custom applica­
tion software for Microsoft Excel called TEXCOMP.
which was not available for the present investigation.
The models works well for prediction of elastic modulus
but the prediction of inplane shear modulus is not good.

Hahn and Pandey [7] developed an analytical model
to predict the elastic properties of plain weave fabrics.
The mathematical functions describing the tow profiles
and geometry were provided in detail. The cross-sec­
tional and the undulation were assumed to be sinusoi­
dal. Further, the undulation shape of a tow determines
the cross-section shape of a perpendicular tow. The
volume fraction of voids was taken into consideration
while calculating the volume fraction of fibers. which
was neglected by previous investigators. The iso-strain
condition was used for calculating the stiffness matrix
of the woven fabric. First, the tow stiffness components
in material coordinate system were calculated using
micromechanics equations. Then the overall stiffness
was obtained by averaging the stiffness matrix of tow
and matrix over their thickness.

Scida et al. [8] developed an analytical model called
MESOTEX (MEchanical Simulation Of TEXtiles)
based on classical lamination theory (CLT) to predict
the 3-D elastic properties, continuum damage evolution.
and strength of woven fabric composites. The properties
were calculated by discretization process of the tows and
matrix in the unit cell as done by the previous investiga­
tors. The calculated stiffness was compared with experi­
mental data and other models. The software was not
available for the present investigation.

While the closed form solutions described so far pro­
vide simplified stress..strain distributions, numerical
models provide detailed stress-strain distributions. The
geometrical description of the unit cell architecture with
the tows and matrix is the most important aspect in fi­
nite element analysis of fabric.. reinforced conlposites.
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Mathematical models have been developed to describe
the geometry of a unit cell. Averill et al. [12] developed
a simplified analytical/numerical model for predicting
the elastic properties of plain weave fabrics. The unit cell
of the fabric was discretized with brick elements. \vith
one element through the thickness of the cell. The tow
volume fraction and tow inclination were calculated
based on the assumed unit cell geometry. The stiffness
properties of each element were calculated from the fiber
volume fraction, orientation of fibers, and fiber and ma­
trix properties using effective moduli theory. These
properties were given as input to the finite element mod­
el and the overall properties of the unit cell were ob­
tained by applying necessary boundary conditions. The
model is simple in the sense that 3-D modeling of tows
is not required. Therefore. a fewer number of elements
are required for the model and hence the computational
time is small. The model yields good results for the stiff­
ness values except for inter-laminar shear modulus G13 •

Blackletter et al. [13) developed a 3..0 finite element
model of a plain weave fabric. The tows and matrix were
modeled using PATRAN. Hexahedral elements were
used for generating the mesh. The tows were modeled
as unidirectional composite materials. The tow proper­
ties were calculated using two-dimensional generalized
plane strain micromechanics analysis. The model is
based on our assumed. idealized geometry that Inight
not describe the actual geometry accurately.

Collegal and Sridharan [14~ 15] developed two types
of finite element models for plain weave fabrics. The first
type is similar to the previous finite element models
where the quarter model of the RVE, containing the
tows and matrix. is meshed using 3-0 solid elements.
The second type is different from the usual models. Here
the model consists of plate elements representing the
tows and 3-D solid elements representing the matrix
sandwiched between the tows. Thus, the unit cell con­
sists of four plate elements representing fill and warp
tows. The thickness variations in the tows were incorpo..
rated in the plate elements. Elastic responses of the two
models match well with experimental data.

Although a number of models are available for pre­
dicting mechanical properties of plain weave fabric rein-

forced composites, each model has its limitations. For
example, all CLT-based models under-predict the shear
moduli because of the rule of mixtures assumption intrin­
sic to CLT. Therefore, the aim of this work is to develop
accurate finite element models of plain weave fabrics to
determine their mechanical properties without these linl­
itations. An accurate model must represent the geometry
of the tow with fidelity to the actual composite. There­
fore. this work also aims at developing a method for
describing the geometry from actual measurements of
tow geometry. Comparisons are presented of predicted
properties of the fabric-reinforced lamina and laminate
vs. experimental data, as well as vs. analytical and
approximate results.

2. Two-dimensional geometric models

The geometrical model for the representative volume
element (RVE, fig. 1) of plain weave fabrics was devel­
oped using the geometrical parameters measu~ed by
CERL [16]. The RVE consists of four intertwined tows
surrounded by the matrix (isotropic). There are four vol­
umes depicting the tows in Fig. I. Two of them represent
two half tows in the x..direction (warp tows) and the
remaining two represent two half tows in the y-direction
(fill tows). Each volume (tow) is modeled as a unidirec­
tional composite with orthotropic properties in the
material coordinate system that follows the tow undula­
tion (Fig. 2).

The 2·0 geometric model describing the internal
geometry of the RVE of a single lamina is developed
from measurements taken on photomicrographs of the
faces of the RYE. Photomicrograps of the fill and warp
faces are shown in Figs. 3 and 4, respectively [16,17].
The parameters describing the geometry are shown in
Fig. 5. From photomicrographs of the RYE faces (Figs.
3 and 4), the bounds of the tows in the fill cross-section
(Fig. 3) and warp cross·section (Fig. 4) were digitized
using GRABIT, a macro in Excel that allows us to re..
cord coordinates of selected points from a digital pic..
ture. A series of coordinate data points were recorded
along the boundaries of the three tows seen in each

Fig. 3. Photomicrograph of the (rear) fill face of the fabric of CERL.
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Fig. 4. Photomicrograph of the (rear) face of the fabric of CERL.
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Table 2
Geometric parameters for iso-phase and out-of-phase laminates [9]
(Fig. 5)

sured in the warp and fill directions since the shape
and size of the tows are different in these two directions.

Four sinusoidal curves of the form of Eq. (1) are gen­
erated from each photomicrograph. The equations are
plotted to verify that the curv~s from the warp and fill
directions match (do not overlap nor gap exists). Using
data from actual photomicrographs. the curves in the
warp direction did not match with the curves in the fill
direction due to slight discrepancies among the photo­
micrograph measurements on the faces of the RVE.
Hence, the amplitude of the curve PI was adjusted in
the fill direction so that the curves in the two directions
match [17]. The measured parameters for developing the
2D geometrical model of the RVE are shown in Table I.

Similarly, 2-D geometric models of the RYE for single
lamina. iso-phase, and out-of-phase laminates are devel­
oped from the tow parameters measured in [9] (Table 2),
which are different from those measured by CERL [16].
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Fig. 5. Schematic representation of o~face of the representative
volume element from measured tow parameters.

image (Figs. 3 and 4). The data points were then fitted to
a sinusoidal function as follows:

Y = PI sin(P:!x + P3) + P4 (I)

where PI is the amplitude of the tow path curve in mil­
limeters, P2 =l£/a. a is the pitch of the tow path curve in
millimeters. P3 is the phase adjustment factor, P4 = b/2
is the offset depicted in Fig. 5 in mm, b is the tow thick­
ness in mm. and

h = 2(P;' + P~) (2)

is the thickness of the RVE in mm (equal to a3 in Fig. 1),
where the superscripts 'f, 'w', indicate fill and warp,
respectively. The phase adjustment factor P3 is used to
adjust Eq. (I) to the tow boundary when the peak of
the tow shown in the photomicrograph does not coin­
cide with the origin of the RVE. These values are mea-

Geometrical parameter

Pitch, warp direction:;s~f!0) .t,~;
Gap width, warp direcHo'n (a:')
Pitch, fill direction (el)
Gap width. fill direction «(l~)

Tow thickness (b)
Lamina thickness (h')

Single-lamina
and iso-phase
laminate [mm]

3.216
0.392
3.055
0.275
0.318
0.636

Out-of·phase
laminate [mm]

3.204
0.391
3.095
0.366
0.315
0.630

Table 1
Parameters describing a single lamina as measured by CERL {16] from photomicrographs

Direction of measurement Type of curve Domain where valid PI (mm)

Warp direction X Y plane. )' = jex) Warp path 0 < x < 1,836 0.07442
Fill 1 cross-section 0 < .\' < 0.770 0.26361
Fill 2 cross-section ).11 < x < 1.836 0.26361

Fill direction YZ plane. : = '/(.1') Fill path
Warp 1 cross·section
Warp 2 cross-section

O<.r < 1.836
0< y < 0.630
1.19 < y < 1.836

0.11657
0.24177
0.24177

P2 (mm- I ) P3 (rad) p~ (mm)

1.710 1.5707 0.10130
1.296 1.5707 0.05807
1.296 -0.8138 -0,05807

1.726 1.5707 0.08967
1.680 1.5707 0.06604
1.680 -1.5535 -0.06604
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3. Three-dimensional geometric modeling

Fig. 6. Description of tow-path and cross-section curves used to
generate the tow surfaces with I-Deas™ software.

The 3-D geometric models are created using I..
DEASTM. Version.8. which is simple to use, has an inter...
active graphic user interface (GUI) with menus that are
easy to. work with. and offers features like creating vol­
ume from set of curves. partitioning of solids. material
orientation features. and so on.

The procedure for developing 3... D geometric models
of a single lamina is based on the 2-D geometric model.
First. the path curves and the cross-section curves (Fig.
5) describing the tows in the warp and fill direction are
drafted from the measured parameters (Tables 1 and
2) and Eq. (1) of the 2... D geometric model using the
function spline option in I...DEASTM. Sweeping opera­
tions of cross-section curves along path curves could
not be performed because, starting at the front faces
and sweeping towards the back faces following the warp
and fill path curves, the fill (and warp) cross-section·
curves did not match the fill (and warp) cross..section
curves in the back faces of the RVE. This is due to the
fact that the fill (and warp) cross-section curves on the
back face are not identical to those on the front surface
because they have to conform to the shape of the warp
(and fill) tows. Therefore. the cross-section curves from

the front face are mirrored (rotated by 180°) and copied
onto the back faces of the RYE (Fig. 6). Then. the sur­
faces are created in IDEASH1 by blending the cross-sec­
tion and path curves that define the tow surfaces in the
warp and fill directions. Three path curves and four
cross-section curves are required in order to define the
surfaces of each tow. as shown in Fig. 6. Surfaces related
to the warp (and fill) are stitched together to get a solid
model of the tows. In total, four intertwined volumes are
obtained with two of them in the warp direction and two
in the fill direction. The solids generated in IDEAsni to
represent the tows may intersect when the surfaces are
stitched together. This is due to the interpolation of ana­
lytical functions CEq. (1» using splines. which is per­
formed by I-DEASTM when the surfaces are formed.
To avoid tow intersections, which do not occur in the
real composite, a slight rotation of the fill tows about
the warp axis is introduced. This procedure may create
a very small gap between tows, which is modeled as ma­
trix (0.00524 mm gap when modeling the fabric of [8]).
The volumes are then partitioned from a rectangular
prism having the dimensions the RVE. which indicates
to the software that there are four volumes inside the
prism. This is visualized as four half tows surrounded
by matrix, as shown in Fig. 7.

The iso-phase and out-of-phase laminate configura­
tions [9] are modeled by making eight copies of the
single lamina, then stacking and joining them into an
eight-layer laminate. using the move and join operations
in I-DEASTM. For the out...of-phase laminate [9J, the
geometric model consists of eight plies, with the laminae
arranged in a symmetric manner.

The 3D geometric models are meshed using 10 node
solid parabolic tetrahedral elements under the free mesh
option in I-DEASTM, Each node has 3 degrees of
freedom .. ux ' uy and U:!' The elements exhibit a quadratic

4. Finite element modeling

Tow.path
____~....... curves

fc~.
section
curves

Cross·section
curves mirrored

Warp Yams

Fill Yams

Matrix
RVE

=

Fig. 7. 3-D views of a plain weave fabric.
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(3)

(5)

(6)

Although the tow volume fraction is very difficult to mea­
sure directly, it can be calculated from the overall volume
fraction Vo and the calculated mesoscale volume fraction
Vg• The overall volume fraction Vo was obtained from
experimental data (9] for the three laminate configura­
tions and it is reported in Table 3. Experimental values
of Vo can be obtained from ignition loss method (ASTM
D2854), acid digestion (ASTM 3171), or solvent extrac­
tion (ASTM C613). Vo is the product of the mesoscale
volume fraction Vg and tow volume fraction Vr. The
mesoscale volume fraction can be obtained Croln the solid
model as the ratio of tow volume to RVE volunle

Vi =2
g I

Vrve

Therefore, the microscale (tow) volume fraction can be
obtained as

Vo
Vr =- (4)

Vg

both of which can be calculated by I-DEASTM or
ANSYSTM from the respective solid models. Here~ Vg is
the mesoscale volume fraction obtained from the geo­
metric model, Vr is the micro scale fiber volume fraction
used for calculating the material properties of the com­
posite tows, vy is the total volume of the tows calculated
from the geometric model, and Vrve is the volume of the
RVE obtained from the geometric model. The tow fiber
volume fraction Vrcalculated from above equations did
not match the Vr reported in [9]. The mesoscale volume
fraction Vg from our solid model was too low because
the rotation of the tows resulted in a slight increase in
thickness of the RVE. This is accounted for by calculat­
ing the correct mesoscale volume fraction V~ using the
original dimensions of RVE, as follows -

and recalculating the tow fiber volume fraction

V I '- Vo
r - V'

g

where V~ is the corrected mesoscale volume fraction. v~ve

is the correct volume of RVE from measured data [9],
and V~. is the correct fiber volume fraction of the tow.
as shown in Table 3.

displacement behavior. which is well suited for modeling
the complex and irregular structure of the plain weave
fabric. The mesh is checked for distortion. A mesh sen­
sitivity analysis is performed in order to get accurate
results.

The material properties of the tows vary along the
orientation of the path curve. Therefore, the material
orientations of tow elements are made to follow the path
curve using the nlaterial orientation option. The local x­
direction of the coordinate system for each element fol­
lows the path curves of the warp or fill tows (depending
on the tows for which material orientation is being de­
fined) using the material orientation option in I-DEAST~

(Fig. 2). The x-direction of the tow elements indicates
the fiber direction, the y-direction indicates the trans­
verse inplane direction of the RVE, and the z-direction
indicates the thickness direction as shown in Fig. 2.

The FE models of the plain weave fabric are exported
to ANSYSTM through a text file. While exporting, the ele­
ment type is changed to Solid 92, which is a quadratic
element in ANSYSTM. There were several errors enCOUll­
tered while opening the file in ANSYSTM. The ANSYSTM
software supports two types of Poisson's ratio~ major
Poisson's ratio and minor Poisson's ratio, for orthotro­
pic material model. The major Poisson's ratio (PRXY,
PRYZ, PRXZ) corresponds to vxy, vyz , Vxz as input.
The minor Poisson's ratio (NUXY, NUYZ, NUXZ)
corresponds to vyx, vzy, Vzx as input. When the file is ex­
ported from I-DEASTM, ANSYSTM interpreted vxy, vyz ,

Vx: as minor Poisson's ratio instead of major Poisson's
ratio. This resulted in error when the software verified
for the restrictions on elastic constants. Substituting
PR for NU corrects this in the ANSYSTM command
lines. Once the errors are corrected~ the model is solved.

Transversely isotropic material properties are as­
signed to the tow elements and isotropic properties are
assigned to the matrix elements. The material properties
of the tows are calculated using micromechanics [18,19]
depending on whether the fibers are isotropic or trans­
versely isotropic. The volume fraction and elastic prop­
erties of fiber and matrix for all the materials are given
in Table 3. In addition. a volume correction had to be
done for the modeling the fabric in [9], as explained
next.

The fiber volume fraction in the tow Vr is necessary to
calculate the tow properties using micromechanics.

Table 3
Overall. Mesoscale, and Microscale fiber volume fraction and laminate thickness for all configurations

CERL Scida [8} sinusoidal Scida [8] elliptical Single lamina [9] Iso-phase laminate [9] Out-or-phase laminate [9]

Vo (experimental) 0.3552 0.5500 0.5500 0.4400 0.4400 0.4400
Vg (FEM) 0.4909 0.6200 0.6510 0.5716 0.5716 0.5716
V;. (Eq. (6») 6.11~ 0.8000 0.8000 0.6800 0.6800 0.6800
h' [rom] (experilnental) 0.4251 ~\ ,O£>D ~1.DoO 0.6360 4.9900 4.8500
h[mm}<FEM) O.4800~\.O~O ~\.01S' 0.7300 5.8000 5.7600
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When a tiber volume fraction correction is necessary

to account for discrepancies between the FEM and the

photomicrographs measurements. the elastic moduli

are adjusted as follows:

Vi
£' == --!E. (7)

.\ Vg.·\

where h'. h, are the experimental and FEM model thick­

ness. respectively (Table 3). The material properties of

the tows are calculated using micromechanics [18,19]

with V~. as fiber volume fraction. The elastic properties

of constituent materials (fiber and matrix) for the CERL

fabric are obtained from [1] and for the remaining mate­

rials from [9]. The tows are transversely isotropic and

thus require only five properties (E}, £2, GI2, V12, V23).

Then, the properties are assigned to the tow and matrix

elements in ANSYSTM. The next step is to apply the

boundary conditions and analyze the results.

Since AS4 carbon fiber is transversely isotropic, the

elastic properties are calculated using periodic micro­

structure micromechanics for transversely isotropic fi­

bers [19]. As an alternative to [19] while taking into

account transversely isotropic fibers with a simple model

[) 7]. the following procedure is proposed. First calcu­

late £1 using the warp fiber modulus En and VI2f of

the fiber, and the elastic properties of matrix. Next, cal-

Table 4
Comparison of micromechanics model predictions [18.19]

culate £2 using the radial fiber tllodulus £"f1 and Vnf of

the fiber, and elastic properties of matrix. Then. calcu­

late G12 using the value of G12f. VI2f of the fiber and elas­

tic properties of matrix. Finally, calculate G2J using £r1,

"23f of the fiber and elastic properties of matrix. where

V23f is calculated from the transversely isotropic condi­

tions. These properties are checked for the restrictions

on elastic constants [I]. The results are compared \vith

[19] that assumes fibers to be transversely isotropic

and with [18], that uses only longitudinal fiber properties

En and V12f. The results obtained from the approximate

procedure show good correlation with the microme­

chanics model for transversely isotropic fibers (Table

4). The elastic properties of the constituent materials

and the overall properties of the tow (conlposite) are

reported in Table 5.

5. Boundary, periodicity, and compatibility conditions

A representative· volume element (RVE) encompass­

ing one full wavelength in the warp and fill directions

(two pitches, or 2a. which is twice the length shown in

Figs. I and 5), exhibits geometric and nlaterial periodic­

ity. Therefore.. it can be used to analyze the composite

by imposing periodicity conditions on its boundary

Model type £1 (GPa)

Isotropic fiber [18J 151.36

Approximate transversely isotropic fiber 151.36

Exact transversely isotropic fiber [19] 151.36

£2 (GPa)

15.89
8.731
9.041

0.268
0.271
0.272

GI2 (GPa)

6.50
3.906
3.89

G23 (GPa)

5.90
3.339
3.365

Table 5
Elastic properties of the fiber, matrix and tow and geometry of the RVE

Scida [8] CERL Chou and Ito [9)

Fiber E-glass Carbon AS4..D Carbon AS4-D

Er longit. [GPaJ 73 221 221

Er transv. [OPal 73 16.6 16.6

Vr 0.20 0.26 0.26

Matrix Vinyl ester Vinyl ester Vinyl ester

Ern (GPaJ 3.4 3.4 3.4

\'m
0.35 0.35 0.3

Tow data/model [17] [16-18) (9.17.18]

Vr(tow) 0.8 0.77 0.68

£1 [GPa] 59.095 171.80 151.36

£2 [GPa] 21.087 24.23 9.04

\'12
0.224 0.324 0.27

GI2 (OPa] 8.599 9.076 3.89

G21 [GPa] 7.630 8.051 3.36

RYE geometry
~~.o ~J.f~~ ~).2/6

a [mm]
h[mm] ~ '3.0 " ~

Q.!Wd-1- f ~6 1.5275 ~.0,S--
h[mml AJ4Q.D.n ~O.730~ J.d\.fO$lM

J.015 (ell; r~e)
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(8)

[20]. For example, computation of inplane shear moduli
G.n . requires the following boundary conditions on a
periodic RVE

Ul (al ,y, z) - 111 (-al :y~z) = 0

u:!(al ,yo z) - U2( -at ~y. z) - 2al = 0

uJ(al.J'. z) - U3 (-01 ~y, z) = 0

ltJ (x. CI:!. z) - UJ (x. -a2~ z) - 2a2 = 0

UZ(x.a2~Z) - U2(X. -a~,z) = 0

U3(X. a2, z) - U3(X, -02. z) = 0

Ui(X,y~ a3/2) - Uj(X.y, -a3/2) = 0

where 2al, 2a2, a3, are the dimensions of the periodic
RYE and Ui are the displacement components, both de­
scribed using a coordinate system with origin at the cen­
ter of the RVE. The constraints described by Eq. (8) can
be applied using constraint equations in ANSYSTM.
These constraints effectively impose both periodicity
boundary conditions and an average strain i'.e~. equal to
one to the RVE. However, periodicity conditions such
as described by Eq. (8) are not easy to apply to FEM
discretizations because nodes on opposite faces of the
RVE cannot be found in pairs with two identical coor­
dinates (y-: on warp faces and x-z on fill faces), but
rather they are arbitrarily located as dictated by the
free-mesh generation process.

A smaller RYE encompassing only one pitch (Figs. 1
and 5) in both the fill and warp directions can be care­
fully chosen to display symmetry conditions that can
be easily imposed using standard FEA codes, as pro-

NOI>AL SOLUTION

STI)-!
SOB -1
T19-1
sxz (AVG)
RSTS-O
PI!)( •. 04Z4Z6
SIQJ -·23'.773
SIS)( --12. J.43

posed herein. This smaller RYE, of dimensions (/1, a'2.
G3' encompasses only one-fourth the volume of the peri­
odic one. thus yielding significant savings on computer
time during the solution process.

For computation of the axial moduli and Poisson's
ratios, symmetry conditions are imposed on one warp
face (perpendicular to the warp tows) and on one fill
face (perpendicular to the fill tows). Coupling conditions
(CP) are used to keep the remaining warp and fill faces
plane as they deform under load. This is necessary to
avoid violating the symmetry conditions on those faces.

For computations of shear moduli, the displacements
parallel to one warp face and one fill face are fixed while
allowing unrestricted out-of-plane displacements on
those faces. The displacements parallel to the surface
on the remaining faces are coupled in order to· apply
an average shear strain r2\. on those faces while the
out-or-plane displacements' are unrestricted. Although
the RVE encompasses only one-half period of the tow
undulation, the resulting deformations are periodic as
shown in Fig. 8. Although the shear stress and strain
are not uniform inside the RYE, average values can be
computed directly from the applied boundary condi~

tions. Taking the computation of inplane shear modulus
as an example, when displacements til. U2 are applied on
hvo faces (Fig. 9), the average shear strain is

I'.~y = U I (x, (J2. z) / (a2) + U2 (a 1. y. z) / (ad (9)

and the resultants /1,/2 of the reaction forces on the
other two faces yield the average shear stress

aO =fl(y=O)=f2(X=O) (10)
xy ala) a2a3

AN
SIP ZZ Z004

13:16:"8

-Z39.773 -18'.18' -138.604 -88.0Z -37.435
-Z14.481 -.163. e,' -113.312 -GZ. 7ze -12.143

Fig. 8. Shear deformation and stress in the plane of the lamina under shear stress applied on the boundary.
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Fig. 9. Schematic of inpJane shear deformation used to compute the
inplane shear modulus from the numerical results of strain or stress on
the boundary.

Elastic moduli can be computed by imposing either a
uniform average stress (iso-stress) or uniform average
strain (iso-strain). For computation of the axial moduli
and Poisson's ratios, iso-stress conditions are applied by
imposing a concentrated force to one face at a time,
while displacements in the direction of the force are cou­
pled so that the applied force effectively translates into
an average stress. All remaining faces are let free but
coupled so that their deformation remains plane. This
results in a set of displacements that, by virtue of the
coupling conditions, results in a set of average strains.
For computation of shear moduli, pairs of congruent
faces are loaded, one pair at a time, while the displace­
ments parallel to each loaded face remain coupled.
The computed values of average strain along with the
values of imposed average stress are used in the compli­
ance constitutive equations

For computation of the axial moduli and Poisson's
ratios using iso-strain conditions~ a uniform out·of­
plane displacement is imposed to one face of the RVE
at a time while restricting the displacement at all other
faces. For computation of shear moduli using iso-strain
conditions, a uniform displacement is applied parallel to
the plane of each pair of congruent faces. This results in
a set of reaction forces on the restrained faces that are
easily converted into average stress. The resulting values
of average stress along with the values of imposed aver­
age strain are then used in the stiffness constitutive equa..
tion to obtain the components of the stiffness tensor. as
follows:

(Jx = Cxx 8.r fTy = CXvey (Jxy == CX.l'/'xy = G.\y;'xy

ay = ~lXeX 0"; = C~yey O'xz = ex:i'.\"; = GX:?t: (13)

(1; = Czxe.," 0';: = C;:;:e; O'y; = Cy:'1'.\= = Gy:~\=

Then, the compliance tensor is computed as the inverse
of the stiffness tensor [SJ = [q-l. Finally. Eq. (12) is
used to compute the elastic moduli and Poisson's ratios.

Both iso-strain and iso-stress conditions yield virtu­
ally identical results when applied to the FE model be­
cause the geometry of the meso-structure (tows) is
represented in great detail and fully utilized by the FE
model in the solution. Model predictions are compared
to experimental values and other results from the litera­
ture in Table 6.

6. Approximate method

to compute the components of the stiffness tensor [S]
and from it all the moduli, as follows:

Vv.r = -Sz.vE2

Vxz == -SxzEl

vxy = -S.'CyEl

e.\. = S.uG.l:

Cy = SyxUx

e;; = Szx(Jx

Ex = l/S.u
Er == l/Syy
E; = l/S;:

ey = SyyUy

Gz = Szy(Jy

e;.: = Sz:(J;

"I - G-1a
Ix.\' - xy xy

rx;; = G.~I ax;>;

"I - G-1n-
IJ: - )Z VJ=

Gyz = l/Sy:
Ex;: = l/S.tz

Ex.v = l/Sxv

(11 )

(12)

Classical lamination theory (CLT) can be used to ob­
tain a quick estimate of the inplane moduli. Modeling
the plain weave fabric as a laminate and computing
the equivalent laminate moduli results in approximate
values for the inplane stiffness properties of the fabric.
The following method is proposed. The fill is repre­
sented by a center layer of unidirectional composite ori­
ented at 90° and the warp by two outer layers oriented at
0°, The properties of the equivalent unidirectional com­
posite laminae are found using micromechanics [18.19]

Table 6
Comparison of predicted and experimental elastic moduli of fabric reinforced laminates

Properties Ref. [8] FE model

£1 (OPa) 24.8 ± 1.1 a 24.439
E~ (OPa) 24.8 ± 1.1 a 24.534
£3 (GPa) 8.5 ± 2.6 10.253
GJ2 (OPa) 6.5 ± 0.8<1 5.515
Gn (GPa) 4.2 ± 0.7 3.151
G:?) (GPa) 4.2 ± 0.7 3.159
\'2:\ 0.28 :t 0.07 0.382
\'11 0.28 ± 0.07 0.380
"I:! O.l±.Ol a 0.126

H Experimental value. all other values in the same column as predicted in [8].

PMM [17]

25.1
25.1
10.5
4.37
2.91
2.91
0.34
0.34
0.123

CLT

27.4
27.4

3.846

0.120
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Table 7
Comparison of laminate inplane modulus Ex [OPal

Geometry type Type of laminate Experimental FEM prediction PMM ClT

CERL Single lamina N/A 40.9 39.12 46.66
Scida slIlusoidal tow [9] Single lamina 24.8 ± 1.1 27.1 24.9 27.40
Scida elliptIcal tow [9] Single lamina 24.8 ± 1.1 26.5 24.9 27.40
Ito and Chou [10] Single lamina ~u.l ~.... ~-- 55.58

Iso-phase laminate 42.8 41.5 ~Lt~.l 55.58
___________O_u_t-_o_f.p~ha_se_l_am_i_na_·t_e S:""""1_.8_-:-- 4_9_.5 N_I_A 5_5_.5..:..8__

{2.A-V\ dQm q4.'S

(14)

and the known overall fiber volume fraction of the com­
posite Vo' Then, a [O/902r10t]r laminate is constructed
and analyzed to find the equivalent laminate moduli,
as explained in Section 6.4 of [1]. The thicknesses of
the laminae are controlled by the arbitrary parameter
t. The computations are performed using the software
CADEC [1] and reported in column kof Table 6.

The overall fiber volume fraction is seldom available
in design, when candidate materials have not been fabri­
cated in order to measure Va. In this case~ Vo can be esti­
mated by using [1]

w
Vo =-

Prh

where lV, Pr, h, are the weight of the dry fabric in g/m2
,

the fiber density in glm3
, and the anticipated thickness of

the conlposite lamina in meters. The latter can be esti­
mated as the thickness of the dry fabric as long as the
fabrication process provides for good consolidation, ex­
cess resin bleeding, and entrapped air bleeding.

Rather than estimating the final laminate thickness,
one can use the fabric pitch to calculate a good approx..
imation to it. The tow pitch a is easy to measure as the
inverse of the number of tows N in 1 m length of fabric.
For example, the pitch of the fill tow is 02 = lIN.., (Fig.
1). A cross section of lamina spanning one pitch aJ, with
area equal to (a1 a3) contains the cross-section of one fill
tow (two half tows in Fig. I). The total weight of the
fabric per unit (inplane) area is denoted by lV (g/m2

).

In a balanced plain weave fabric, fill tows account for
half of the total weight of the fabric. Therefore, the area
of one fill tow is

Finally, the thickness of the warp and fill tows are
identical for a balanced plain weave fabric. Therefore,
the laminate thickness is simply

4vv
h = a3 ~ 2b = - " (18)rePr

The CLT predictions and reported in column of Ta­
ble 6. As seen in Table 6, the FEM lllodel and the peri­
odic microstructure model (PMM .. [21]) predict the
inplane moduli very well. CLT over predicts the inplane
moduli because it does not account for the undulation.
In CLT~ all the fiber material is assumed to be flat. thus
yielding an artificially high value. The remarkable accu­
racy of the PMM and FEM models is due to their accu­
rate representation of the geometry of the tows and the
directionality of the fiber properties along the undula­
tion of the tows. CLT underestimates the illplane shear
modulus by 41 ''l(> when compared to experimental data.
This is because CLT is a rule of mixtures model where
the geometry of the mesoscale (tows) is poorly repre­
sented and it is well known that the rule of mixtures
underestimates matrix-dominated properties such as
shear moduli. The present FE model provides the best
estimate of inplane shear moduli when compared to
experimental data. The transverse properties reported
by Scida [8] are not experimental values but predictions
made by using a refined CLT model. While comparisons
with lamina data are presented in Table 6, laminate data
is shown in Table 7 to provide further evidence that the
FE and PMM models outperform CLT in the prediction
of inplane moduli.

I

7. Conclusions

A novel procedure is developed for representing the
geometry of the tows and matrix in variety of laminate
configurations including single.. iso-phase, and out-of­
phase laminates. The geometric model is based on
microphotograph measurements that are translated into
a solid model and an FEM model using commercial
software. The elastic moduli of the plain weave fabric­
reinforced laminates are obtained using finite element
analysis. The values predicted by the FEM models
compare favorably with the experimental values. The
model is simple; as it is based on microphotograph

(15)

(16)

(17)

Art = (w/2)/N". == lva2

PI' 2Pr

The area of an ellipse is

nab
At =-

4

where a. b.. are the major and minor axes of the ellipse.
Assuming an elliptical cross-section for the tow (Aft =
Ae), and assuming no spacing between tows (ag = 0 in
Fig. 5), the tow thickness is

b= 2w
1T.Pr
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measurements and the stiffness values of a unidirectional
composite that can be obtained from standard tests.
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