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Abstract

Geometrical models needed for finite element discretization of plain-weave fabric..:reinforoed composites ,are developed from
measurements taken onpbotomicrugrnphs of singI,e lamina and laminated composites.. Then, a meso-level damage model is implemented
into ANSYS as a nser-defined material model for predicting the non-linear behavior of plain-weave reinforced laminates under tensile
loading. The dam~gemodel is validated for the tensile .response ofT300/5208 laminate fOT four configurations, [10/-10]2'$" [0/45/-45190]8'
[30/- 30]28 and [45/'-45]2s~Then, the damage behavior of 'plain-weave fabric-reinforced laminates is analyzed using the.proposed damage
model in the context of the finite element method. 'The modes of continuum damage $e identified from the (analysis" Comparisons with
experimental data are provided :m order to :support validity of lhe propo:sedmodels..
© 2005 Elsevier Ltd" All rights reseiVed~

1. Introduction

Unidirectional laminated {composites exhibit e~ceLlent

in-plane properties, but relatively low inter-laminar proper­
ties, as they have no reinforcements in the thickness
direction. This leads to relatively low damage tolerance
and impact resistance. Plain weave fabrics are used as
reinforcements in order to overcome these problems and to
obtain balanced ply properties and improved tqter-laminar
properties. But these advantages are at the cost "of reduced
stiffness and strength in the in-plane directions. Therefore, it
is important to study the mechanical behavior of such
composites in order to fully realize their potential.

A fabric is a collection of fiber yarns arranged in a given
pattern. Both fibers and matrix are responsible for bearing
the mechanical loads while the matrix protects the fibers
froni environmental attacks [1]. Fabrics are classified as
woven, non-woven, knitted, or braided fabrics [2]. Further,

* Corresponding author. Fax: +1 304293 6689.
E-mail address: ebarbero@wvu.edu (E.!. Barbero).

1359-8368/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compositesb.2005.06.001

they can also be classified into 2D (two-dimensional
reinfoJicement) and 3D fabrics (three-dimensional reinforce­
ment).. Some :examples ooe plain weave, satin weave, weft
knitted, watp knitted, and orthogonal fabrics ..

The stiffness and strength depend upon the fabric
architecture and material properties of fiber and matrix.
The fabric architecture depends upon the undulation of the
yarns, yam crimps, density of the yarns, etc. The undulation
or waviness of the yarns causes crimps (bending) in the
yarns, which reduces the mechanical properties of the
composite. The geometry of the woven composites is
complex and the choice of possible architectures is
unlimited. The present work concentrates on modeling the
in-elastic behavior of the simplest of the woven fabrics­
plain weave fabrics, using the finite element method and a
recent damage mechanics fonnulation.

Plain weave fabrics are formed by interlacing (weaving)
of yarns. The yams in the longitudinal direction are known
as warp yarns. The yarns in the transverse direction are
known as fill yarns or weft. The interlacing causes bending
in the yams, called yarn crimp. In order to model the fabric:­
reinforced laminates using finite element methods, only the
representative volume elements (RVE) of the respective
configurations are considered. The RVE is the repeating
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Fig. 1. Model of a single lamina without matrix.

element (unit cell) that represents the whole composite
fabric structure (Fig. 1).

Although theories to model the elastic behavior of plain
weave fabric composites are well understood, few theories
exist to predict the non-linear behavior of such fabrics
due to damage. Therefore, the objectives of this research are
(a) to develop 3D finite element discretizations of plain
weave laminated composites, and (b) to predict the
in-elastic behavior \of plain weave laminated composites
under tensile loading with a damage constitutive equation
programmed into a commercial program.

Numerous methods are available for modeling and
analyzing plain weave fabric composites. A number of
models are limited to predicting the elastic properties of the
fabric reinforced composite [3-7]. The following review
emphasizes models aimed at predicting strength and/or
damage evolution. There are two main categories: analytical
models and numerical models.

Most analytical models are based on the micromechani­
cal study of the fabrics. Huang [8] developed a micro­
mechanical bridging-model to predict the elastic properties
and strength of woven fabric composites. The yam cross­
section is taken as elliptical and yam undulation is described
by a sinusoidal function. A discretiz~~ion procedure is
applied to the RYE of the fabric composite. The RYE is
divided into a number of sub-elements, with no divisions in
the thickness direction (Fig. 7 in [8]). Each sub-element
consists of the yam segments and the pure matrix. The yam
segments are considered as unidirectional composites in
their material coordinate system. The elastic response
(compliance) of the yam segments and the matrix are
assembled in order to get the effective stiffness of the sub­
element using classical laminate theory (iso-strain con­
dition). The overall elastic property of the RVE is calculated
by assembling the compliance matrix of the sub-elements
under iso-stress assumption. In order to calculate the
strength, the fiber is assumed to be elastic until failure and
the matrix is considered as elasto-plastic. The overall
stress applied to the sub-element is used to obtain the
global stress sustained by each yam segment and the matrix.

These stresses are then transformed to the material
coordinate system for the yam segments. Huang [8]
established a relation between the stresses in the matrix
and fiber in the yam using a bridging matrix, which
indicates the load share capacity of fiber with respect to
matrix. Using such relation, average stresses in the fibers
and matrix are calculated and compared with the individual
strengths. Only the stiffness of the matrix material is non­
linear as it is considered to be elasto-plastic. The tensile
strength of the fabric is predicted when the average fiber
stress in the yam reaches a preset value of fiber strength.

Scida et al. [9] developed an analytical model called
MESOTEX (MEchanical Simulation Of TEXtiles) based of
classical lamination theory to predict the 3D elastic
properties, continuum damage evolution, and strength of
woven fabric composites. The properties are calculated by
discretization process of the yams and matrix in the unit cell
as done by the previous investigators. The calculated
stiffness is compared with experimental data and other
models. Failure analysis is carried out using the Tsai-Wu
criteria. The local stress in each dicretized yam element of
the unit cell is compared with the permissible values using
the criteria. The Von-Mises criterion is used for predicting
yield in the matrix. Once the first ply failure occurs, the ply­
discount method is used to reduce the stiffness, i.e. the
stiffness of the element that is subjected failure is reduced to
zero. The limitation of this model is that only the in-plane
stresses of the fabrics are used in the calculation of the
failure in a yam whereas inter-laminar effects are important
in fabrics. Also, the ply-discount method used for stiffness
reduction scheme is very approximate.

Chou et al. [10] developed ID analytical models of the
plain weave laminated composites for determining their
stiffness and strength. The undulation of the fill yam is not
considered for the analysis. The undulation of the warp yam
is assumed to be sinusoidal and· two types of cross-section
are assumed for the fill yams: sinusoidal and elliptical. The
iso-strain condition is used for evaluating the stiffness of
the plain weave laminates. In case of the strength analysis,
the maximum stress criterion is used for prediction offailure
strength of the laminates. The predictions correlate well
with experimental results for the in-plane Young's modulus
and strength values when elliptical cross-section is assumed
for fill yams.

Also, Chou et al. [11,12] developed three models to
predict the damage continuum and strength of woven fabric
laminates. The mosaic model [11] is used to predict the
stiffness of satin weave fabric composites. The model
neglects the yam crimp and idealizes the composite as an
assemblage of asymmetric cross-ply laminates. Then, iso­
stress or iso-strain condition is used to predict the stiffness
of the laminate depending on whether the laminates are
assembled in series or parallel. Since the model neglects the
yam crimp, the prediction of stiffness is not accurate.
The fiber undulation model [11] considers fiber undulation
in the longitudinal direction but neglects the undulation
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(1)

the transverse direction. The bridging model [12], a

combination of mosaic and fiber undulation model, is

developed for satin weave fabrics. The model reduces to the

crimp model [11] for the plain weave fabrics and hence the

stiffness prediction is not accurate.

While the mathematical models described so far provide

simplified stress-strain distributions, numerical models

provide detailed stress-strain distributions. The geometrical

description of the unit cell architecture with the yarns and

matrix is the most important aspect in finite element

analysis. Mathematical models have been developed to

describe the geometry of a unit cell.

Blackletter et al. [13] developed a 3D finite element

model of a plain weave fabric and studied the damage

continuum propagation in the fabric under tensile and

shear loading. The yarns and matrix are modeled using

PATRAN. Hexahedral elements are used for ,generating'

the mesh. The yams are modeled as unidirectional

composite materials.. The yarn properties are calculated

using two-dimensional generalized plane strain micro­

mechanics analysis. The properties of individual fibers and

matrix are used for predicting the damage behavior of the

yarns used in the failure analysis," In the in-elastic analysis,

the damage is tracked at each Gaussian integration point

The maximum normal ~tress criterion is used for the

matrix elements, i.e.. when the principal stresses exceed

the strength values; the tensile modulus and shear modulus

are degraded by a fudge factor in the range 0,"01-0,"1.

Maximum stress criterion is used for the yam elements:,

i.e. when the stress in the material coordinate exceeds

the ultimate strengths; the stiffness is reduced in the

appropriate direction at each integration point. 'The

damage model is then used in finite element analysis to

predict the in-elastic behavior of plain weave fabrics",

Transverse failure is observed prior to catastrophic failure

of the fabric in the tensile test. The model o¥er-predicts

the failure strength of the fabric.. In the case of the shear

test, transverse tensile failure of the yarns is observed

which, according to the model, results in reduction of

transverse tensile modulus and in-plane shear modulus to

essentially zero. But, the analysis greatly unper predicts

the failure strength. Therefore, the degradation factor of

in-plane shear modulus is assumed as 0.2 instead of 0.01

so as to match the experimental shear response. Therefore,

the damage model employed is similar to the degradation

factor method [1] and it is therefore approximate and

dependent on the laminate stacking sequence (LSS) and

other factors [14].
Sridharan et al. [15,16] developed two types of finite

element model for plain weave fabrics. The first type is

similar to the previous finite element models where the

quarter model of the RYE, containing the yarns and

matrix, is meshed using 3D solid elements. The second

type is different from the usual models. Here, the model

consists of plate elements representing the yarns and 3D

solid elements representing the matrix sandwiched

between the yams. Thus, the unit cell consists of four

plate elements representing fill and warp yarns. The

thickness variations in the yarns are incorporated in the

plate elements. Continuum damage responses of the two

models match well with the experimental data. The

continuum damage analysis of the models is carried out

by assuming material non-linearity in the yarns and

matrix. A micromechanical model is used in order to

describe the stress state of fiber and matrix within the

yarns. The fibers are assumed to be elastic until failure.

The micromechanicalmodel is re-calculated at each

integration point for all iterations and thus it is

computationally expensive. The non-linearity of the matrix

is modeled using Ramberg-osgood r.elations,. Also" non­

lin~ear geometry is !considlered for the analysis.. 'The

inelastic behavior of plain weav,e fabrics .is ;analyzed

when subjected to in-plane tensile, ,compressive:, and .shear

loads ,applied in the fill direction. The model identifiles the

failure modes for ':each loading. The model gives a good

strength prediction for plain weave laminates su~jected to

tension (and shear,"
Although a number of plain 'weave. fabric models are

available for predicting stiffness and :strength~ (each model

has their limitations.. 'Therefore~ the aim of tbis work is to

develop a novel finite element representation ofplain weave

fabrics based on ,geometrical measurements from photo,­

micrographs and to determine the damage evolution usin,g a

meso-mechanical continuum (dam,age formulation.

2. 20 geometrical models

The ,geometrical model for the representative volume

,element (RYE) and the yams for plain weave fabrics were

developed using the geometrical parameters measmed by

Ito and Chou [10] .. !TheRVEconsists of four intertwined

yams surrounded by the isotropic matrix. There are two

warp yarns in the longitudinal direction and two fill yarns in

the transverse direction. Each yarn is a unidirectional

composite in the material coordinate system with ortho­

tropic properties. 2Dand 3D views of the fabric are shown

in Figs. 2 and 3.
The 2D geometrical model describing the internal

geometry of the RYE of a single lamina is developed

from the values measured on the photomicrographs of the

faces of the RYE, one of which is shown in Fig. 2 [17,18].

The parameters describing the geometry are shown in Fig. 4.

The equations proposed by Ito and Chou [10] for the yarn

geometry on the faces of the RYE are used as a starting

point for developing the geometrical model for each kind of

laminate. The warp yarn path curve on the fill face of the

RYE is described by

y =~SinC:X), where -i<x<i



Fig. 3. 3D views of a plain weave fabric.

RVE

the curves because the warp (and fill) yam cross-section
curves do not necessarily match the fill (and warp) yam
path curves in the faces of the RVE. This is due to the fact
that the fill and warp cross-section and path curves may
have different shape (e.g. aW =l=af

; a~ =1= a~ in Table 1).
Therefore, a separate description for the warp and fill
geometry is necessary [18]. So, the cross-section curves
need to be blended with the path curve. For this purpose,
the cross-section curves are flipped (rotated by 180°) in the
faces of the RYE where the cross-section curves do not
match the path curves. Then, the surfaces are formed from
the cross-section and path curves that define the yam
surfaces in the warp and fill directions. In order to define
the surfaces of warp or fill yarns, three path curves and
four cross-section curves are required. Surfaces related to
the warp (and fill) are stitched together to get a solid
model of the yarns. In total, the four intertwined yams are
formed with two of them in the warp direction and two in
the fill direction. But there is a problem of yarns
intersection when the surfaces are stitched together. This
is due to interpolation of I-DEAS software when the
surfaces are formed from the (analytical) spline curves.
So, the fill yams are slightly rotated about the warp axis to
make the four yams non-intersecting, which resulted in a
small gap between them. This small gap is modeled as
matrix. The yams are then partitioned from a rectangular
prism having the dimensions the RVE, which indicates to

Matrix
Warp Yarns

Fig. 2. 2D photomicrograph of the plain weave fabric.
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and the fill yarn cross-section curve on the same face by

y = ( 2h; ) X V(2x-ag)(a-ag-2x) + b-he,
a- ~ ,

(2)
ag a

where T<x<4"

where he = b/2(sin(7tag/a) + 1), b is the yam thickness, a is
the dimension of the RVE in either the fill or warp directions
(warp or fill faces, respectively), and ag is the gap between
two adjacent yarns. The values of the parameters are shown
in Table 1.

Fill Yams

3. 3D geometric modeling

The 3D geometric models are created using I-DEAS,
Version.8, which is chosen because it is simple, has
interactive Gill menus that are easy to work with, and
offers features like creating volumes from set of curves,
partitioning of solids, material orientation features, etc.

The procedure for developing 3D geometric models of
a single lamina based on the 2D geometrical model is the
following. First, the yarn path curves and the yarn cross­
section curves in the warp and fill directions are drafted
from the measured parameters (Table 1), and equations
(Eqs. (1)-(2)) using the function spline option in I-DEAS.
Sweeping operation could not be" 'performed with
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a/2

Length ·of the RVE

Fig. 4. Yam parameters m,easulied by Ito :and 'Chou [lOJ.

(3)

(4)

(5)

(6)

follows the path curves of the warp or fill yams (depending
on the yarns for which material orientation is being defined).
The X-direction of the yarn elements indicates the fiber
direction, the Y-direction indicates the transverse direction
of the RVE and the Z-direction indicates the thickness
direction (Fig. 5).

Transversely isotropic material properties are assigned to
the yarn elements and isotropic properties are assigned to
the matrix elements. The material properties of the yarns are
calculated using micromechanics [19,20] depending on
whether the fibers are isotropic or transversely isotropic.

The 'overall volume fraction (Vo) is obtained from
experimental data [10] for the three laminate configurations
and it is reported in Table 2. Experimental values of Vo can
be obtained from ignition loss method (ASTM D2854), .acid
dig,estion (AS'TM D3171) or solvent.extraction (ASTM
'C613).Vo is the product of the meso-s\c:ale volume fraction
Vmeso and yam volume fraction Vf' The 'meso-scale volume
fraction ,can be obtainred fromthle solid model as the ratio of
yam volume toRVE volume

v: - L1 yam
meso-LJ--

1IV(e

'Therefore, the microscale (yam) volumre fraction (can be
obtained as

Vi(])
Vf =·_-

, Vmes'()

, _ .LIyarn
Vmeso~

rye

and recalculating the yarn fiber volume fraction

T7' _ Vo
Yf---

V~eso

where Vmesc> is the meso-scale volume aaction obtained
from the geometric model, Vf is the microscalefiber volume
fraction used for calculating the material properties of the
composite yams~, L1yam is the total volume of the yams
calculated from the geometric model,and ~rvle is the volume
of the RVE obtained from the geometric model. The yam
fiber volume fraction Vfcalculated from Eq.. (4) did not
match the Vr reported in )[10] because Vmeso from our model
is too high due to the rotation of the yams that results in a
slight artificial increase in thickness of the RVE.This is
accounted for by calculating the correct meso-scale volume
fraction VImeso using the original dimensions of RYE, as
follows

where V'meso is the corrected meso-scale volume fraction
from measured data [10], .LI'rve is the corrected volume of
RVE from measured data [10], and vi is the corrected fiber
volume fraction offiber. Using V/, the material properties of
the yarns are calculated using micromechanics. Since AS4
carbon fiber is transversely isotropic, the elastic properties
are calculated using periodic microstructure micromecha­
nics for transversely isotropic fibers (PMM) [20].

Single lamina
and laminate

6.432
0.392
6.11
0.275
0.318

ag

4. Finite element discr,etization

the software that there are four yams inside the prism.
This is visualized as four yams surrounded by matrix as
shown in Fig.. .3"

In addition to measuring the 'yamp~ametersof a single
lamina, Ito and Chou also measured the parameters for
fabric-reinforced laminates [10]<0 In this wor~ the number of
plies modeled is eight, the same used in the experiment [10] ..
So, copies of the single lamina are made and moved by an
amount equal to the thickness ofthe lamina (Table ll. 'Then.,
the join operation is used to join the eight laminates.
The finite element discretizations are developed. from th(e
geometric models by automatic rneemeshing a($ explained
in Section 4"

w
~......-_­
CD
5
'0....
i,~---

••%

The 3D geometric models :are meshed usin,g 10 node
solid parabolic tetrahedral ,.elements under the free mesh
option in I-DEAS. Each node has three degrees of&eedom"
ux , uy and Uz• The elements exhibit a quadratic displacement
behavior, which is well suited for modeling the :complex and
irregular structure of the plain weave fabric. iThe mesh is
checked for distortion.

A mesh sensitivity analysis is performed in order to get
accurate results. The material property of the yafns varies
along the orientation of the yarn curve. Therefore, the
material orientations of yarn elements are made to follow
the yarn curve using the material orientation option. The
local X-direction of the coordinate system for each element

Table 1
Geometrical parameters measured by Ito and Chou [10]

Weave length in warp direction, aW (mm)
Gap width in warp direction, a; (mm)
Weave length in fill direction, af (mm)
Gap width in fill direction, a~ (mm)
Yam thickness, b (mm)

Geometrical Parameters



5. Boundary, periodicity, and compatibility conditions

Table 2
Overall, meso-scale, microscale fiber volume fraction

(7)

The predications are compared with the experimental
stiffness [10] in Table 3.

Since the damage constitutive equation can be pro­
grammed as a user material subroutine in ANSYS but not in
I-DEAS,. the FE models of the plain weave fabric are

remaining plane and having a uniform displacement on
those faces [21]. Then, a uniform displacement is assigned
to the nodes in the X-direction at the front surfaces in the
warp direction to simulate a uniform strain.

A linear static analysis is performed on the FE models
with the necessary boundary conditions in I-DEAS. The
following procedure is used for calculating the stiffness of
both the single-lamina and laminated· composites. During
the post processing stage, the results of the reaction forces in
the X-direction are obtained. For calculating the value of
stiffness (Ex), the sum of the reaction forces (Fx) in the X~

direction, in the loading surface of the RVE is obtained.
Taking Fx and dividing it by the cross-section area of the
RVE, the average stress acting on the surface is calculated
(ux). Finally, Ex was obtained by dividing Ux with the strain
(e). But the value has to be adjusted due to the volume
fraction correction described in Eqs. (5)-(6). The actual
stiffness is calculated as follows

Fig. 5. Material orientation inside the yarns.

E.l. Barbero et al. / Composites: Part B 37 (2006) 137-147

Volume fraction value

0.44
0.65
0.68

z

142

The elastic properties of constituent materials are obtained
from [10]. The yarns are transversely isotropic and thus
require only five properties (Eb E2, G12, V12, V23). Then, the
properties are assigned to the yarn and matrix elements in
I-DEAS. The next step is to apply the boundary conditions
and analyze the results.

Volume fraction type

Overall
Meso-scale
Microscale

Only one-quarter of the RVE is mQ~eled because the
laminated plain weave fabrics are symmeiac and periodic in
all three directions. So, symmetric boundary conditions are
assigned to the nodes at the back surfaces in the warp
direction (YZ plane) and to the nodes at the left surfaces in
the fill direction of the RVE (XZ plane, Fig. 1). Compa­
tibility of displacements at the other two faces of the RVE
(YZ and XZ) with the adjacent (not modeled) cells are
enforced by constraint equations resulting in a plane
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(8)

(9)

(10)

alP 1 iJ .-
y = -- = --q-(k11(E)-1N11

)U
iJD 2 iJD

r(O) = Cl [exp(0/c2) -1]

where Y is the thermodynamic force tensor, J and H are the
tensors of the internal material constants, "(0) is the damage
,evolution variable, and 'Yo is the damage threshold
representing the initial size of the damage surface.

No damage occurs until the thermodynamic forcesY
reach the damage surface. For undamaged material, "'( = 0,
and gd has the shape of the Tsai-Wu surface. At failure,
"'(* +'Yo=1 and the shape and size of gd matches the Tsai­
Wu surface where 'Y* represents the value of 'Y at failure.
Comparing the two surfaces, we arrive at a set of a linear
system of equations that allow us to determine the internal
material constants univocally in terms of known material
properties [24-27]. Hardening of the damage surface takes
place according to [24]

where ep is the strain energy potential,E is the undamaged
stiffness tensor, and M is the fourth-order damage effect
tensor [27]. The damage surface, which is analogous to the
yield surface in plasticity theory, is given by

Damage in composite materials are in the form of matrix
cracks, voids, fiber-matrix debond, fiber breakages, and
transverse cracks, which takes place either in parallel or
normal to fiber direction. In CDM, all these modes offailure
are represented by a smaller, equivalent set of (continuum)
damage modes. In this work, the continuum damage modes
are the equivalent density of microcracks (d1,d2,d3) in three
orthogonal planes. Therefore, a second-order symmetric
damage tensor D is used to describe the anisotropic
evolution of damage along matrix and fiber directions.
Since the damage principal directions are assumed to be
coincident with the material directions [27], a diagonal,
second-order damage tensor D is used, with diagonal terms
dh d2, d3 representing the net area reduction along the three
material directions.

Since the damage model is set in the thermodynamic
framework, the second-order symmetric tensor Y, dual to
the damage tensor D is given by

The damage evolution parameters (Cl' C2) and the
damage threshold (r 0) are calculated by adjusting
the shear stress-strain obtained from finite element analysis
of a unidirectional ply subjected to pure shear conditions to
match the experimental shear response.

The internal material constants are related to
the experimental properties. They are calculated based on
the set of equations as discussed below, using a program
written in MAPLE, Version 5 [18].

The input variables required for calculating the
material constants are the following. The stiffness values
(EI, E2 = E3, G12 = G13, G23, V12) of the composite material,

Model type Type of lami- Ito and Chou FE results
nate (Experimental)

Ito and Chou Single lamina N/A 32.8 GPa

[10] Laminate 42.8 GPa 41.5 GPa

Table 3
Comparison of predicted and experimental stiffness Ex

Several models are available for predicting the damage
behavior of composites prior to failure. Ply discount
methods are very approximate methods and the predicted
damage behavior is not accurate [14]. Micromechanical
models are used to predict the damage behavior of a single
ply by assembling the damage response of the constituent
materials [22]. They are computationally intensive and
require large number of material parameters. Continuous
damage mechanics (CDM) models require only a few
parameters to describe the damage behavior of a composite
material. In most of the CDM models available in the
literature, the parameters have to be obtained 'from non­
standard and special tests, which make them expensive [23].
In this work we use a model based on available data
(stiffness and strength values) using the concept of
continuous damage mechanics coupled with thermodyn­
amics [24-27]. The damage model accounts for damage
initiation, evolution, and failure at critical values of damage
in a composite material. The model uses a set of internal
variables to describe the damage behavior. The simplicity of
the model lies in the fact that only a few parameters are
required for describing the non-linear behavior and they can
be obtained from standard tests of a unidirectional ply.

The damage domain lies between the virgin undamaged
states of the material and the macroscopic crack initiation
[28]. Beyond this lies the domain of fracture mechanics.

exported to ANSYS, Version 6.1 as a data file. While
exporting, the element type is changed to Solid 92, which is
an equivalent for parabolic element in ANSYS. There were
several errors encountered while opening the file in ANSYS.
The ANSYS software supports two types of Poisson's ratio,
major Poisson's ratio and minor Poisson's ratio, for
orthotropic material model. The major Poisson's ratio
(PRXY, PRYZ, PRXZ) corresponds to vxy, vyz' Vxz as
input. The minor Poisson's ratio (NUXY, NUYZ, NUXZ)
corresponds to Vyx, vzy, Vzx as input. When the file is exported
from I-DEAS, ANSYS interpreted vxy, v yZ' Vxz as minor
Poisson's ratio· instead of major Poisson's ratio. This
resulted in error when the software verified for the
restrictions on elastic constants. This is corrected by
substituting PR for NU in ANSYS command lines. Once
the errors are corrected, the model is solved using linear
elastic behavior and the predicted laminate stiffness, Ex, is in
good agreement to that using I-DEAS~

6. Damage model
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the strength values of the composite in tension (FIt, F2t) ,

compression (FIe) and shear (F4 , Fs, F6 ), the critical
damage values in tension (D lt ), compression (DIe),
transverse tension (D2t) , and the damaged shear modulus
at failure (Gt2' Gt3' G~3).

The input variables are calculated as follows. For
transversely isotropic materials, only five properties are
required (Eb £2, GI2, VI2, V23). The properties are computed
using periodic microstructure model (PMM [20]). The
strength values are obtained from uniaxial experimental
tests of unidirectional composites. If the strength data is not
available, empirical relations are used for calculating the
strength values [1]. The critical damage values are obtained
for a unidirectional laminate. D It is critical damage value
for longitudinal tensile loading and it indicates the area
fraction of broken fibers at the onset of longitudinal tensile
failure. DIe is the critical damage value for longitudinal
compressive loading and it indicates the area fraction of
fibers buckled at the onset of longitudinal compressive
failure. D2t is the critical damage value for transverse tensile
loading and it indicates the area fraction of broken matrix
links at the onset of transverse tensile failure. The critical
damage values for D It, DIe, DD2t are obtained from [25].
The damaged shear modulus can be approximated as the
ratio of shear strength to the ultimate strain at failure
assuming elastic unloading to the origin. If unrecoverable
(plastic) strains occur, damaged moduli must be obtained
from the unloading portion of the stress-strain plot.

The internal constants are defined by fourth and second
order tensors J and H, respectively. They appear in the
formulation of the damage surface gd (Eq. (9)) in
thermodynamic force space, which represents the Tsai-Wu
surface in stress space at failure. Since the principal
directions of the damage tensor coincides with the material
directions, the J and H tensors are diagonal. The six
coefficients in the J and H tensors are calculated from
experimentally known properties as described in [18,25].

The hardening parameters Cb C2, control the damage
evolution. The damage threshold "10 represents the initial
size of the damage surface. Since the material behavior is
highly non-linear for a composite lamina~f~r in-plane shear
mode, as indicated from experimental observations, the
damage is assumed to be notable in this case [25].
Therefore, Cb C2 and "10 are adjusted to predict the
experimental shear response of the lamina subjected to
pure shear conditions using Finite Element Analysis. In case
the experimental shear plot is not available for a material,
but only GI2 and F6 are known, the curve can be determined
using the empirical relation [1]

(11)

The finite element model is then subjected to pure shear
condition [18]. During the post-processing stage, the sum of
the reaction forces (Fxy) in the in-plane shear direction and

the deformation in the front faces of the lamina are recorded
for each substep. The average shear stress. is calculated by
dividing Fxy by the shear area and the shear strain is
calculated from the deformation of nodes in the front face of
the RYE. The shear stress-strain from the analysis is plotted
and compared to the experimental shear response. If the
curves do not match, then the values of Cb C2 and "10 are
adjusted and the procedure is repeated until the shear stress­
strain plot matches the experimental shear response.

In order to include material non-linearity, a user
subroutine is written in FORTRAN and linked with
ANSYS [29]. The procedure is explained in [18]. A
customized ANSYS executable is obtained from this
procedure. A single lamina is modeled in I-DEAS and
meshed using 20-noded solid brick elements. The finite
element model is then exported to the user defined ANSYS.
The equivalent element in ANSYS is Solidl86, which
allows user material properties to be defined. The material
properties and parameters are input in the ANSYS user­
material model definition. A mesh sensitivity analysis is
performed in order to get accurate results .... The non-linear
analysis is run with optimum number of substeps.

7. Damage analysis of plain weave fabrics

The FE models of fabric-reinforced laminates developed
in IDEAS ™ are exported to user-defined ANSYS ™ as input
files. The equivalent element in ANSYS is Solid187 that is
used to incorporate the user material model into the
analysis. In order to perform the tensile test, symmetric
and compatibility conditions are applied to the sides surface
of the RVE and uniform strain is applied to the front side of
the RVE as explained before. The damage model is applied
only to the yarns and the matrix is assumed to be elastic.
Here, both in-plane and inter-laminar stresses are taken into
consideration. The parameters of the damage model for
AS4/vinyl ester yams are obtained as follows:

The elastic properties of AS4/vinylester computed using
periodic micro mechanics model (PMM) [20] are obtained
from Table 4. The transverse tensile strength F2t and inter­
laminar strength Fs are available from [10]. The longitudi­
nal tensile strength FIt is calculated using the strength of the
AS4 fiber (3930 MPa) available in [10] and Eq. 4.59 from
[1]. Fs is assumed to be same as F6 . F4 is assumed to be
50 MPa. F Ie is obtained using the empirical relation
(Eq. 4.75 in [1])

(12)

where Q is the standard deviation of the Gaussian
distribution of fiber misalignment, a, b are constants [1],
GI2 is the in-plane shear modulus, and F6 is the in.:.plane
shear strength. In case of the fabrics, the fiber misalignment
is more than that of a unidirectional fiber tow because
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Table 4
Elastic properties of the fiber, yarn and matrix

Fiber (Carbon: AS4)
Matrix (vinyl ester)
Yarn (carbon/vinyl ester), Vf =0.69

Efl =221 GPa, Ef2= 16.6 GPa, VI2f=0.26, GI2f=8.27 GPa, G23f=5.89 GPa
Em =3.4 GPa, vm =O.3
E 1=151.36 GPa, E2 =9.04 GPa, v12=0.27, G12=3.89 GPa, G23 =3.36 GPa

the yarns are twisted. Therefore, a high value of standard
deviation Q=2.8° is assumed [30]. The critical damage
values Dlt, and D2t are obtained from [24]. The longitudinal
compressive critical damage DIe for a plain weave is higher
than that for a unidirectional laminate because of the fiber
misalignment, and it is calculated as follows

where erf is the error function, acr is the critical
misalignment angle at failure (Eq. (23) in [30]) and A is'
the standard deviation of the Gaussian distribution of fiber
misalignment. The unloading damaged shear moduli (G;2,
G;3' G~3) are calculated assuming the ultimate shear strain
to be 3%. The internal constants Jih 122, 133, H h H2, H3 are
calculated from [24]. The hardening parameters (Ch C2) and
damage threshold ('Yo) are adjusted by matching the in-plane
shear response of AS4/vinyl ester composite obtained using
the damage model vs. the experimental shear plot.

The material properties and the damage parameters of
AS4/vinyl ester are reported in Tables 5 and 6. The non­
linear analysis is performed with optimum number of
substeps. The damage growth is tracked at each integration
point. As the damage in the elements increase, the stiffness
,of the element decreases in accord to the respective
continuum damage mode.

The results obtained for the damage analysis of the
laminate are shown in Fig. 6. The linear curve indicates
the case for which there is no damage considered for the
analysis. This condition is achieved by specifying a large
value for the damage threshold ('10= 1E20), which means
that the initial damage surface is very large and hence no
damage occurs.

Table 6
Damage parameters of AS4/vinyl-ester material

0.0028070
0.0454383
0.05646
0.103231

-0.0323228
0.05052
0.132
0.65
031
0.31309
0.44575
1.4237
0.1161
0.207
0.5
0.5
0.2

-0.65
0.1

AS4/vinyI esther ,

The damage model predicts the in-elastic experimental
curve until 8400 microstrains. The model predicts that the
transverse damage d2 reaches its critical value d2 = D2cr at
7480 microstrains, which corresponds to a stress level of
275 MPa. This event is close to the initiation of
macrocracks, observed experimentally to take place at
281 MPa [10].

The sequence offailures in the laminate forthe loading in
longitudinal direction (Figs. 6 and 7) is as follows. First,
transverse tensile failure in the fill yams occurs. 'Then, inter­
laminar failures betw!een the fill and warp yarns occurs.
Finally" fiber damage in the warp yarns occurs"

Property

(13)( acr )D1 =l-erf --
c AJ2

Fig. 6. Stress-strain plot for the fabric-reinforced laminate.
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3360
0.272
2690
630
60
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2857
2652
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Table 5
Elastic properties of AS4/vinyl ester material

E1 (MPa)
E2 (MPa)
G12 (MPa)
G23 (MPa)
v12
FIt (MPa)
FIe (MPa)
F2t (MPa)
F4 (MPa)
Fs (MPa)
F6 (MPa)
G12 damaged (MPa)
G13 damaged (MPa)
G23 damaged (MPa)
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Fig. 7. Damage evolution in the model at location indicated in the
parenthesis.

debonding between the yarns at a stress level of 281 MPa. It
can be seen that inter-laminar damage has a significant
effect on the strength of the laminate and the model predicts
the appearance of a macrocrack at the same location and
similar load as observed experimentally [10]. The maximum
value of d3 for an integration point in the warp yam is only
d3 =0.374, so no macrocrack appears in the warp yarns,
which also agrees with experimental observations in [10].

8. Conclusions
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discretization of the yarn and matrix geometry in single­
lamina and laminated fabric reinforced composites. The
elastic modulus (Ex) of the plain weave laminate under
tension is obtained using finite element analysis. The values
predicted by the FE model compare very well with the
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T300/5208 composite with different material orientations.
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the in-elastic curve for each lay-up due to damage. The
damage of fabric-reinforced laminate is also accurately
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with experimental observations. The proposed methodology
relies on identifying the damage parameters at the lamina
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damage parameters.
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In order to illustrate the evolution of damage, the damage
state variables (dh d2,d3) that represent the continuum damage
modes are plotted against the axial strain for each sub-step of
the analysis as shown in Fig. 7. The plot is indicative of the
damage evolution and growth in the model. The damage
variables are chosen at integration points where they are
maxima. The numbers in the parenthesis indicate the location
of the point in the RVB where the damage value is maximum.
The coordinates ofthe location are with respect to the origin of
the RVE. In Fig. 7, the plot for d1 shows that the maximum
value ofdamage is d1 = 0.078 at a gauss point in the warp yarn
(see Fig. 1 where 'warp' and 'fill' yarn are labeled). Since the
warp yarn takes up most ofthe applied load, which is applied in
the warp direction, the fibers undergo significant damage, but
the damage value is less than the critical value in the
longitudinal direction (D1cr=0.116). The plot for d2 shows
that the maximum value of damage reaches the critical value
D2cr = 0.5 at gauss point in the fill (transverse) yarn at 7480
microstrains. The reason it occurs in the fill yarns is because
the load is applied transversely to the fill yarn (along the warp
direction). Therefore, the transverse tensile stress in the fill
yarn exceeds the transverse tensile strength in the local
coordinate system. The stress is redistributed once the stiffness
is reduced. ' l~;;

The inter-laminar damage variable d3 is plotted for both
fill and warp yams. When the laminate is subjected to a
uniform tensile strain along the warp direction, the
sinusoidal warp yams try to become straight. During the
process of straightening, the yarns tend to twist, as they are
not free to just straighten due to the interference of the fill
yarns. Also, the fill yarns are twisted to some extent when
warp yams straighten. Because of twisting, the inter-laminar
effect becomes important. In case of an integration point in
the fill yam element right next to the fill/warp interface, the
interlaminar damage d3 reaches its critical value D 3cr=0.5
at a stress level of 294 MPa. When the critical damage value
is reached in inter-laminar direction, the model predicts the
appearance of a macrocrack at a stress level of 294 MPa,
while Ito and Chou [10] observed initiation of interfacial
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