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ABSTRACT: The general behavior of self-healing materials is modeled including
both irreversible and healing processes. A constitutive model, based on a continuum
thermodynamic framework, is proposed to predict the general response of self-
healing materials. The self-healing materials’ response produces a reduction in size
of microcracks and voids, opposite to damage. The constitutive model, developed in
the mesoscale, is based on the proposed Continuum Damage-Healing Mechanics
(CDHM) cast in a consistent thermodynamic framework that automatically satisfies
the thermodynamic restrictions. The degradation and healing evolution variables
are obtained introducing proper dissipation potentials, which are motivated by
physically based assumptions. An efficient three-step operator slip algorithm,
including healing variables, is discussed in order to accurately integrate the coupled
elastoplastic-damage-healing constitutive equations. Material parameters are identi-
fied by means of simple and effective analytical procedures. Results are shown in
order to demonstrate the numerical modeling of healing behavior for damaged
polymer-matrix composites. Healed and not healed cases are discussed in order to

show the model capability and to describe the main governing characteristics
concerning the evolution of healed systems. '
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INTRODUCTION

TRUCTURAL MATERIAL BEHAVIOR is dominated by irreversible process
7 development, such as damage and residual strain release, whlch reduces
the structural integrity and service life.

Damage and irreversible deformation phenomena affect the integrity of
the material, by the creation and coalescence of microcracks, fiber breaks,
fiber matrix debond, etc. The evolution of internal defects produces struc-
tural degradation, with consequent stiffness and strength reduction (Dvorak,
2000). Once microcrack development reaches the critical state, no further
stress redistribution occurs, and the material rapidly reaches the failure con-
dition (Aboudi, 1991; Pindera, 1992; Herakovich, 1998; Piggott et al., 2000).

During the last decade, modeling of dissipative phenomena have received
much attention and several numerical models have been developed, which
describe in various ways the inelastic response of materials. Continuum
theories in a thermodynamic framework describe material degradation as
stiffness and strength reduction by means of microscopic or macroscopic
variables (Chow and Wang, 1987, Murakami, 1988; Chaboche, 1988;
Ladeveze and Le Dantec, 1992; Voyiadjis and Deliktas, 2000). In particular,
elastoplastic theories describe the slips of the material at the microscale,
whereas the Continuum Damage Mechanics (CDM) provides a macroscopic
representation of the microcrack and void distribution in terms of stiffness
reduction. Contrary to dissipative phenomena, recent experimental obser-
vations and procedures have shown the possibility of healing several classes
of materials (Miao et al., 1995; Kessler and White, 2001; Ando et al.,
2002a,b; Brown et al., 2002). The healing effects can be caused by chemical,
physical or biological phenomena leading to a progressive reduction of
internal material defects. Experimental evidence reveals that materials can
be repaired or healed in various ways and consequently the structure can be
rehabilitated.

A brief literature review reveals that different healing processes have

‘been analyzed, mainly from a phenomenological point of view, such as
geological rock densification (Miao and Wang, 1994), autogenous healing
of concrete or ceramic materials (Jacobsen and Sellevold, 1996; Jacobsen
et al.,, 1996; Ramm and Biscoping, 1998; Ando, 2002a,b), microcrack
regeneration in the skeleton of a biological system and so on. Numerical
modeling of these processes has not been sufficiently investigated. Different
models related to biological healing behavior for bone remodeling or wound
skin regeneration have been developed for relatively simple cases (Adam,
1999; Simpson, 2000), but to the authors’ knowledge, only a constitutive
model for compaction of crushed rock salt has been proposed in a rigorous
thermodynamic framework (Miao et al., 1995).
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Recently, a novel materia] processing technique was reported by Kessler
and White (2001), White et al. (2001), and Brown et al. (2002), which
describes the ability of composite materials with a polymeric-matrix to hea]
autonomically. Such materials are able to reduce material degradation with
the aid of a healing agent by means of chemical interactions. Healing pro-
cesses can be considered opposite to damage. Consequently, the system can be
rehabilitated and the integrity of the material is recovered to a certain extent.

In polymer-matrix composites, the autonomic healing procedure occurs
as follows. Healing agents stored in microcapsules are uniformly dispersed
in the matrix material, Once a microcrack breaks a microcapsule, the
healing agent is released and distributed by capillary action. The healing
agent then contacts the catalyst, which is uniformly distributed in the
matrix, and adhesive bonding takes place. The efficiency of the repair
depends on the density of the catalyst and the microcapsules. Therefore, the
microcracks evolution and the degradation processes can be controlled, and

The main purpose of the present paper is to generalize CDM includ-
ing healing processes and consequently Continuum Damage-Healing
Mechanics (CDHM) is proposed. The model is developed in a consistent
thermodynamic framework and is based on the method of internal
variables. The proposed constitutive model is quite general and capable
of simulating different healing processes. The constitutive equations are

proposed and a numerical model is developed to predict damage and
irreversible deformation processes for a self-healing fiber-reinforced lamina.
Damage and inelastic mechanisms have been discussed previously and

experimentally validated (Barbero and DeVivo, 2001; Barbero and Lonetti,
2001, 2002; Lonetti et al., 2003), whereas the coupled healing-damage and
irreversible deformations constitutive model is the main contribution of
this paper. The proposed model predicts the distributed damage and the

microcrack healing along different directions. An effective damaged-healed
configuration is introduced, in which the body is considered without
discontinuities. In order to describe the internal variable evolution, different
dissipation potentials for damage, healing, and irreversible deformations
(plasticity, residual strain recovery, etc.), are introduced. Coupling among
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various dissipation phenomena could be further refined as shown by Abu
Al-Rub and Voyiadjis (2003). In the context of convex analysis, and
supported by experimental observations, different limit thresholds related to
damage, plasticity, and healing domains are derived. One basic assumption
of the modél, motivated by experimental observations, is that the healing
agént acts when a sufficiently large microcrack density affects the material.
In the model this occurs when the damage domain reaches the critical
surface and at the same time the healing thermodynamic forces reach the
healing domain. Healing is tracked by means of a thermodynamic potential
that describes the evolution of healing agent.

The constitutive relationships and evolution equations define a nonlinear
differential problem, which is solved by means of a proper numerical
algorithm. The main equations are integrated by the Euler-backward
technique, which is a stable numerical procedure to determine the actual
solution by an incremental/iterative method. In particular, an elastic-

“predictor and Damage-healing-plasticity corrector integration scheme is
used to solve the incremental nonlinear constitutive equations.

Damage and plasticity potentials are identified by means of simple but
effective procedures described in Barbero and DeVivo (2001), Barbero and
Lonetti (2001, 2002), and Lonetti et al. (2003). These are based on available
data, which can be easily obtained by standard experimental procedures. In
addition, a similar identification procedure is proposed here to identify the
‘healing potential. Due to a lack of experimental data, the effect of allowable
healing values is investigated by conducting a parametric study. A sensitivity
analysis in terms of healing variables is presented in order to show the
suitability of the model to predict mechanical behavior of self-healing
material systems. Results are also shown in order to validate the numerical
model with available experimental data for damaged polymer-matrix com-
posites. Healed and not healed cases are discussed in order to show the

capability of the model to describe the possible evolution of the self-healing
composite system. -

THERMODYNAMIC FORMULATION

The proposed formulation is based on generalized thermodynamics
(Coleman and Gurtin, 1967; Lubliner, 1972), in which internal variables are
introduced in the thermodynamic constitutive relationships to describe the
inelastic processes at the current material state. The constitutive equations .
are thermodynamically consistent with the Clausius-Duhem inequality

66~ p(Y+sT)—=-VT =0 (1)

9.
T
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where o and & are the stress and strain tensors, p, ¥, s, T, and g are mass
density, specific Helmholtz free energy (HFE), specific entropy, tempera-
ture, and heat flux, respectively. A purely mechanical theory and infini-
tesimal deformations are assumed in the proposed model. Without loss of
generality the additive strain decomposition is considered consistently with
the small deformation hypotheses, by which the tota] deformation strain is
a linear function of both elastic and plastic terms, i.e. &£ = g¢ + &”. Moreover,

a set of internal variables are introduced to describe both degradation
and healing effects

o' =0'(D, o) ey, o= PP e, o =oH, 1) et )

where (D, ¢, H) and (8, p, ) are the tensorial and scalar variables related
to damage (d), plasticity (p) and healing (h) mechanisms and 3 with
I=(d, p, h) are the corresponding domain spaces. It is worth noting that
chemical effects related to the healing processes are only introduced from
a mesoscopic point of view by means of internal variables, which describe
the stiffness variation during the evolution phenomena without considering
any diffusion process.

~ The actual thermodynamic state can be described by the HFE, v: Cx
JREI RN N R, which is a function of both observable and internal
variables

¥ =y, 0/, 07, 9" 3)

with & € C being the admissible elastic deformation set. Substituting
Equation (3) into Equation (1) and introducing the thermodynamic
associated driving forces, the following constitutive equations hold

a’(l’ i 8 3 y 3
=—pt  yd_ _ _¢, VP — _ *LL, yh — _"l’
¢ dg¢ g P dgp? p_aq:/z @

with V¥ = P4(¥YP, ), ¥7 = V"5, R) and ¥H — pH (Y7, ¢), where 5 is the
stress in the effective configuration and Y2, ¥¥ are the thermodynamic
forces related to damage and healing, respectively. The dissipation potential
E is a positive defined function

E=: 9T+ VPP — i ghs g (5)
mechanical dissipation

where the minus sign of the ¥" term is due to the undissipative nature of the
healing process.
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The Helmholtz Free Energy is assumed to be'separable as follows
v = w(& o', o, o) = 85, &, D, H) + TG, p, ) (6)

where @ : C x 3¢ x 3" x & — R is the elastic deformation function, which
depends on both damage and healing tensor components; whereas
:R — Ris a scalar function, which expresses the evolution of inelastic

variables. The functional @ depends on the actual value of the internal -
variables

cD(s",s”,D,H):-lz-(s—a”):E(D,H): (e—¢) M

where E is the fourth-order damaged-healed stiffness tensor. The irrevers-
ible nature of healing and damage processes leads to a monotonically

increasing evolution function. Without loss of generality, they are expressed
in the following uncoupled forms

1165, p, 1) = T1%(8) + T1P(p) + TT"(1) 8)
in which
19 8 |

) = -j: _gg.dS = [efs — cfcs exp(S/c‘zl)]\sl, sed, (f,d)eR

0

P19 ) 1 n ‘
I'I”(p):—f —gg-dpzc’l—z—pz\ , peIP,deR” )

Po P Do .

The damage and plasticity potentials 1 and I1? described by Barbero
and Lonetti (2001, 2002), Lonetti et al. (2003), are used in order to obtain a
good correspondence between the numerical and experimental data. Next,
in lack of experimental data, a healing potential is assumed which is similar
to the damage potential but in the corresponding thermodynamic space

i3 ‘
= [ 3 du = [ (o) -l weSh A deR

Ho

(10) -

This expression is motivated by intrinsic conditions of the phenomenon,
in accordance with the experimenial evidence, which shows that for the
self-healing composite the process is basically primed by the damage
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~evolution. Future developments are needed in order to completely validate
Equation (10). ‘
~ The material constants (ef, 4, el ) introduced in Equations (9)
and (10) are identified in terms of available datg as shown in “Identification
of Material Parameters,” The complementary laws related to the dissipa-
tion process can be €xpressed by homogeneous and convex potentials in

terms of the associated thermodynamic forces (Hansen and Schreyer, 1994)
T*(Vd, Vp’ V’l) — T*‘I(Vd) + T*p( Vp) + T*h(Vh) (1 1)

The principle of maximum dissipation in the effective reference frame
defines an equilibrium thermodynamic solution, which corresponds to
a constrained optimization problem. The Lagrangian multiplier method
(LMM ) can be used to solve the problem, where the functional

—

[[=-@+ MYL(PP) + 381 (vP) + Ay (v (12)

depends on (A?,%4, i) which are the Lagrangian multipliers related to
plasticity, damage, and healing, respectively. In order to extremize [], the
following necessary conditions must be satisfied

S =0 (13)

which correspond to the plastic strain rate, damage, and healing evolution
laws. The kinematic internal variables grow along the direction normal to
the corresponding potential surface

) :A‘P‘ﬁ., 'D=AD__~Q, .H:‘-A,HJ, }4
a7 A oD ¥ T A g (19)

DAMAGE AND HEALING REPRESENTATION

When distributed damage controls the mechanical behavior, many
materials, including polymer-matrix composites, usually exhibit a quasi-
brittle macroscopic behavior. For example, experimental observations on
polymer-matrix composite prior to failure show a continuous distribution
of microcracks in the matrix. During loading, the total energy of the system
is dissipated mainly into new surface formation, whereas 3 minor fraction
is used to nucleate existing microcracks,
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The healing behavior is generated by distributed agents, which can be
assumed to be uniformly distributed in the body. For example, in composite
materials the microencapsulated healing agent is embedded along with a
catalyst into a polymeric-matrix. The healing occurs when the microcrack
path in the matrix reaches the microcapsule, and by rupture, the healing
agent locally triggers a chemical polymerization reaction, leading to
microcrack healing. Since the healing agent is continuously distributed, it
can be analytically described by a continuous function. The same model can
be applied to different materials such as crushed rock salt or bone.

Damage and healing phenomena are described at the mesoscale by
internal state variables, which represent microcrack formation and healing,
respectively. Two sets of tensor- and scalar-valued variables are introduced
in the constitutive equations. In particular, D and H tensors describe the
area change produced by microcracks and healing evolution, respectively,
and scalar-valued variables 8§ and p control the evolution phenomena.
Lacking experimental observations to justify a more complex behavior, the
avolution of the damage and healing surfaces are assumed to be isotropic.

In composite materials, microcracks and voids have preferential growth
“directions which coincide with the material directions. Therefore the princi-
pal directions of the damage and healing tensors are assumed to coincide

with the material coordinates. In the principal reference frame, they are
expressed by the following equations

3 3
D= Zl:d,-ni@n,- H = Z;hin,@n,' (15)

where ® represents the dyadic product; whereas d;, h;, and n; are the
eigenvalues and the eigenvectors of the tensors D'and H, respectively.
Damage and healing tensors represent the net area change due to three-
dimensional void and microcrack distributions developed during the loading
history. In the context of continuum mechanics, physical interpretation of
damage and healing can be shown in Figure 1. A representative volume
element of arbitrary orientation is shown in different configurations
(Co, Cpas CF)Vinitial, actual (damaged-healed), and effective, respectively.
Moreover, Ci and Cjy represent the effective and damage-healed
configurations free of elastic deformation, respectively. In Figure 1, Fe
represents the elastic deformation gradient. The deformation gradients 1py
and y5, describe the following transformations: ¥py : Cpy — Cr and
1oyt Coy — Cr. where ypy and y%; have the eigenvectors coinciding with
a; and nu}, respectively. The deformation of an arbitrary segment dx; to dx;
between damaged-healed and effective configurations is expressed by
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Figure 1. Clockwise from top left: undamaged, damaged-healed, effective, effective without
elastic deformations, damaged-healed without elastic deformation.

introducing a transformation tensor as

dx; = ypudx;, with i=1,2,3 (16)

From Nanson’s Theorem (Ogden, 1983) specialized to the principal refere-
nce system {n;}, a generic area element is transformed by the following
equations

PO SN2
ndS = de X dy = '2’(ZDH -dx) x (gpy - dy) = det[xpy] (ZD}ilz) (ZDZZ,)”“'S
an

where (x) denotes vector product. The area reduction along the principal

directions can be expressed in terms of the eigenvalues of the H and D
tensors as |

[(1 = d)(1 + k)l midS; = 5dS; withi=1,2,3 (18)

Here d; and }; are the eigenvalues of the damage and healing tensors along

(=]
different planes and define the net area change due to degradation or
healing phenomena. From an irreversible thermodynamic point of view, the

evolution is based on a positive unilateral variation. From Equation (17)
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and (18), the transformation tensor Ypy in the principal reference frame
assumes the following expression

_ (1 = d)(1 + h)(1 = d3)(1 + h3)
wotn = (= d)(T+h)

= d)( + (A = ds)(1 + 1) (19)
XDH» = (- )1 +h)

@ = d)( + ) = d)(A £ o)
APt = = &) +h)

The effective stress G represents the stress associated with Cr by the same

loading related to the Cpy configuration and corresponds to a fictitious first
Piola-Kirchhoff tensor referred to Cr:

~ -1 -
& = [detxpn] 2 e ggn=M":q (20)

where M is the effective damage tensor and corresponds to the stress tensor

~ transformation between Cr and Cpg. In view of Equations (19) and (20), M
is a diagonal fourth-order tensor

. ORI QY

M= diag{sz?sz”; QPol; @l

3 D) ;
Joreraray mmmmsf} o
2 2
with
QP =(1—-d), @ =(1+h), i=123 (22)

where & is represented in contracted (Barbero, 1999), whereas the effective
stress is

~ 1 gl
on = WXDH”UH U=+ h)
Oy = “‘—L—XDH 01 = on

P det(pn) S (I—d)(1+h)
~ 1 0133

Oy3 = MXDHBGS3 T =dy)(1+ h3)
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5. I [x ]1/2Or [x ]1/2# 012 |
P T det(gpy) O TRV T T A T =T T+
~ b 12 - o3 |
8= det(apn) Lxom | onsxoms TG AL/l T
~ 1 12 1/2_ 023
o= det(zpy) [XDHH] 023[XDH‘“] ST =GVT =T+ ST+ s
(23)

In view of Equation (21), and according to the Principle of Equivalent

Elastic Energy (Cordebois and Sidoroff, 1977), the stiffness tensor is defined
by the following expression

ED,Hy=M:E: MT (24)

or in component form:

"B (QPQF) EnQPePeiil E;oPoboiql
Ej= En(@bel)®  ExePeboieb |, ij=1,3
' ~ 2
B | Ex (@)
[ EuQPQbQiQl i
g 0 0
F..0ODODOHQH
E; = 0 E”Q'Q; iRl 0 , Lj=4,6
0 | 0 EeQPQP Qi QH
2 _

&
I

N

0 i=1,3andj=4,60ori=4,6andj=1,3
(25)

CONSTITUTIVE EQUATIONS

The internal variables used in the thermodynamic constitutive equations

are listed in Table 1 with their associated driving forces. The Helmholtz Free
Energy potential is expressed by

1 - Y, .
Y= -5(8 — N E:(s—-&)+ [cfé — c‘fc‘z‘ exp(&/cgﬂ

L, |
+>dp* + [chch exp(u/ch) - diul, (26)
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Table 1. Observable, kinematic, and conjugate variables.

Internal state variables

Observable Kinematic Thermodynamic

Quantity ‘ variables variables forces
Strain ‘ €

Temperature T ,
Damage D Y°
Damage evolution 8 Y

Plastic strain " : &P o
Hardening p R
Healing H yH
Healing evolution u ]

whereas the thermodynamic forces are defined by Equation (4)

o= —pih=E: (=) @7
=M"':0 (28)

VP =—pll=— 6= (55) =) 29)
v = pd¥ =) (g;f,):@-e") (30)
R=—pf=—dp G31)

y = —p%;ﬁ = of [exp(s/ed) = 1] | (32)

6= o3 =i [erp(u/ch) ~ 1] (33)

The healing thermodynamic forces concept can be illustrated for a simple
tensile stress cycle by considering the balance of dissipated energy. A generic
stress-strain curve is shown in Figure 2, in which damage and healing
are assumed to increase with increasing stress. The total energy dissipated
during a cycle is the area OABCE. The recovery energy due to healing
effects and the dissipation energy due to damage and plasticity are defined

- by areas CDI: BDE and OAFE, respectively. The healing phenomena is
generated by internal energy production, which is obtained by spending
chemical energy stored in the healing agent or provided externaily by a
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Figure 2. Stress-strain curve: Elasto-plastic-damage and elasto-plastic-damage-healing.

sinterization process or biological bone repair. The healing process increases
the stiffness of the material. In view of Equation (5), for a uniaxial stress

~state, damage and healing energies are dissipated during BCD and CD
paths, respectively and they are mathematically written as

(1)

‘. 1 I
D D 2
= Y dD =C ——t——1>90
/;)‘ |h=0 1o l: 2 2(1 _ d)Z] -

/i 2
H=/ YHII__ .dH-': Cllaz[_l.— I 2]50
0 d=const (1 — d') 2 2(1 - h)

Equations (34) represent areas BCDE and DCE in which uncoupled damage
and healing growth are assumed. Damage energy production E2 describes
material degradation and it is a strictly positive definite function. The heal-
ing phenomena generate internal energy production, which is opposite to
the damage dissipation.

In view of Equations (27)-(33) under the hypothesis of decoupling
between different processes and according to the Clausius-Duhem inequal-
ity, the thermodynamic dissipation function has to be necessarily positive

(34)

1]

PG @ +R-p>0
Py B+y-6§>0
Fe Y H-9¢.1<0

(Y O]

~~
(O8]
wn
~

]
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where 2°, 2P, and EF are the dissipation functions related to plasticity,
damage, and healing processes, respectively, with & = 2P + 22 + Z# being
the total dissipation function. The total dissipatlon is always positive
because healing phenomena are activated only when the magnitude of the
microcrack distribution is significant (White et al., 2001) and the efficiency
of the healing mechanism is less than 100%. A 100% healing efficiency
would correspond to perfect healing, where all damage dissipation would be
recovered (i.e. 22 = ),

According to the method of local state, the evolution laws can be derived
from dissipation potentials, whose existence is postulated a priori. Damage
and plasticity potentials previously proposed by Barbero and DeVivo
(2001), Barbero and Lonetti (2001, 2002), Lonetti et al. (2003), have shown
good correspondence between experimental data and numerical results.

These are
1/2
f= (Y20 ) () - wo
f7(&) = g°(8) = /181 + /282 + f115} + /2255 + 2f125152
+ f2a0; + f5553 + fe605 — R(p) — Ro | (36)
where ¥ and Ry are the plasticity and damage thresholds, J? is a fourth-

order damage characteristic tensor and f; are material parameters. For
healing, an evolution potential similar to the damage one is proposed

= (Y777 ¥H) =) - g0 (37)

where ¢o is the healing threshold and J¥ is a fourth-order healing tensor.
The previous assumptions will be clarified “Identification of Material
Parameters.” From Equation (14), the evolution vectors are assumed to
develop along the normal direction of the corresponding potential surface

1 —
3 . ) D . vD
4’(1 — [;] — }\‘(!V’ Vflfd — )\d JY: Y
JY2 (I ¥P)
gl Jﬁ YID 0 0
o ~d 0 Jﬁ_ YZD 0
0 0 J Y3 |
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_ » )
| [27080 + A + 2f126 2f6606 2fs50%
=\ - N )
2f3000 + 5 + 2f1201  2fu5,
L sym ‘ 0 ]
. —1
T : H . yH
¢H=[gf = ATV pufH =\ H J7: ¥
- JYH - )
_ o - -
: JAYE 0 0
— )\.H | S | o
ar| 0 »nY; 0
i 0 0 JHYH

with ADH = \[yDH(yDHY .y D H (yDH)2 4 pDuH (D HY2
(38)

Inelastic and Healing Domain

The main expressions from previous plasticity and damage formulations
are summarized here (Barbero and DeVivo, 2001; Barbero and Lonetti,
2001, 2002; Lonetti et al., 2003). Damage and plasticity were based on
experimental observations of acoustic emissions, which indicate marked
‘damage and plasticity thresholds (Liu et al., 1997; Gong et al., 2000). The
initial threshold values are represented by y, and R, for damage and
plasticity, respectively. An anisotropic damage criterion for polymeric
composite materials is written in terms of tensorial parameters

g'= (Y202 Y2) L (|H? - Y2)) /=) — 1o (39)
where, g9 : ¥4 —» RY, Substituting Equations (29) and (27) in Equation
(39), the damage domain in the stress space has the same shape of the Tsai—
Wu surface, which is a widely accepted failure surface (Barbero, 1999).
The procedure for identification of the J? and H? tensors is based on
comparison of Equations (39) and (32) with the Tsai-Wu surface. The
plasticity domain is identical to the plasticity potential (second of Equation
(36)), but written in the effective Damage-Healing configuration in order to
recover the coupling between different modes (damage, healing, plasticity).
In Equation (36), R(p) is the isotropic evolution function and f; are material
parameters that depend on experimental values obtained from testing a



single composite lamina. Analogous to damage processes, a healing domain
is introduced that is similar in expression to the damage one, but written in
dlfferent thermodynamic force space

= (Y7 5y P ((ET Y )) P ) - g (40)

where J -and HY are tensor-valued variables that define the healing
shape surface and ¢(u) is the healing evolution function (Equation (33)).
The healing surface is motivated by experimental evidence. In particular,
healing phenomena start when significant microcrack distribution is
observed. Subsequently, the material is rehabilitated with a finite efficiency
depending on microcapsule and catalyst density. Therefore, ¢ controls the
beginning of healing, and the healing surface defines the limit space related
to possible healing production. Moreover, the analogy with the g surface is
motivated by experimental observations that show how healing phenomena
depend on microcrack and void distribution. Therefore, the proposed model
predicts healing evolution by introducing a healing surface, which is
obviously similar to the damage surface. Healing processes start at those
points at which a considerable damage value is observed. In the model this

occurs when the healing thermodynamic forces reach the corresponding
- healing surface.

Evolution Equations

The kinematic evolution laws are derived using the principle of maximum
dissipation in a consistent and generalized thermodynamic approach.
The solution is obtained by solving a nonlinear system equation using
an incremental, iterative process. For a generic thermodynamic state, the
Kuhn-Tucker Optimality (KTO) conditions must be satisfied

P (VP) = ng(VD) =0, F (V) =dgP(¥F) =0, g (V¥)= dg(vH) =
(41)

Substituting Equations (27)-(33) and (38) in (41), a system of linear
equations in the unknown quantities A, A?, and A" is obtained

[A1[A] + (8] =
ain  an 013-l X"‘|
i d 4 )\:!’

~J 2
asy  das a33_l

LN
(15N
I
3
)
sl
i

t
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where N, with j=d, p, h, represent the stiffness tensor contributions related
to damage, plasticity, and healing mechanisms. Using Equations (24), (27)
and (28), the incremental stress in the effective configuration can be
expressed in the following form

’ -1
NS V2 I vl . __@_/{. ; ij‘_’{ . -1 .
;m_d;w o+ M .'da—lidD‘dD_l—dH'dH o+ M™ : ds,
(45)
where
~ = , l{___dM‘ dM
c=FE:(E-7), clM_—ﬂ)—.a’D+dH.dH. (46)

Substituting Equations (46) and (24) in Equation (45), the incremental
stress—strain relationship in the actual configuration is written as

do = EXP" . g (47)
with

epdh __ gep ‘wdh
EY™ = E¥ 4 E4

P Rg . T ”
Ef =M:E: M- )e]asto-plasticity

daM dM
dh . . . d . h 48
E% (M E (_—dD RO+ — &) (48)
-1 -1 )
—M : (ilf‘—/l—— R D+EM—-——:&" :H))
dD dH damage-healing

where E7? and E represent the clastoplastic and healing-damage
contributions.

INTEGRATION PROCEDURE

The solution is obtained by an incremental-iterative procedure based on a
-return-mapping algorithm (Ju, 1989; Crisfield, 1991; Luccioni et al., 1996).
In particular, a predictor-corrector scheme is used. The initial deformation -
increment is considered perfectly elastic or elastic-damaged, so that the
stress variation is a function of the initial elastic-damaged stiffness tensor, as
o' = ¢'~! + E{ As. The total deformation increment is divided into an elastic
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and a plastic term. Subsequently, the stiffness matrix is transformed by
- degradation and/or healing variables. The solution at step n+ / is subjected

to the following evolution restrictions for damage, plasticity, and healing
effects

Mz0 A g (Yo van) <0 (Y2, L ym) <0
A>=0 AP gl (Gn—Hs n+l) <0 g’ (an+ls n+l) <0 (49)
A'b Z 0 k-h ) g,( n+l’¢"+‘) <0 gh(yn-’rl’ ¢"+l) <0

which correspond to Kuhn—Tucker Optlmahty conditions. The initial
Lagrangian Multipliers solution obtained by Equation (42) corresponds to
a thermodynamic state that does not necessarily satisfy Equation (49).
Therefore, an iterative procedure is needed to solve the nonlinear problem.
‘Using the constitutive equations, the surface domain at the i + I'th iteration
can be expressed to the first order by Taylor expansion and the nonlinear
system is reduced to the following linearized equations

gd I_ Axd : gd
V| g4 l-A)u’ |+]8& | =0 (50)
_ . glz AN glz il

in which AL’ are the unknown quantities (see Appendix I). Between the n

and n + 1 steps, the kinematic and thermodynamic forces are updated by the
following incremental relationships

— ok c+1
O.n~+-l - an+l + AG’{;

Agkt! = [ ( —M- Axpag)
do

~ ~ k+1
8[114“.&‘] afd 8[ ] ’ f/z
I S )\'d h —
N Mt Mg
a
de k+1
Dn+l = Z)n+l + ADﬁ_H D + AA'd
oD|,
Optl = fa/i—l(Diﬁl)Gn-i-l
agp k+1

T =+ 02 =78+ v E
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8}“/1 k+1
Hn+l = Hﬁ-i—l + AH{TH = Hn + AN =

oH

n :
k k+1 k /
'U‘n—{-l = /‘L11+l + A/'l’nil = #n-i-l + AA‘I (51)
k k k {
‘Sn+l = 8n+l + Aani{ = an-i-l + A}‘{(
i k+1 ,
pu-{-l =pn+l + Apnj-l» =pﬁ+l + AN

EDENTHFECATION OF MATERIAL PARAMETERS

The material parameters in the constitutive equations are determined in
terms of experimentally observed material behavior. The identification is
done by solving a nonlinear system of equations obtained by comparing the
~healing domain (Equation (40)) and a classical Tsai-Wu surface (Barbero,
1999) in stress space. The identification of the healing parameters is shown
here, whereas damage and plasticity parameter identification is described by
Lonetti et al. (2003), Barbero and Lonetti (2001, 2002).

As shown by experimental observations, healing starts only when a
significant microcrack distribution occurs in the matrix. Moreover, it is
well known that healing processes are generated by microcrack evolution.
Therefore, the basic idea is to assume a healing surface similar in expression
to the damaged one. The healing potentials described by Equations (40) and
(37) involve two characteristic tensors J# and HY that define the domain
shape and the evolution of kinematic variables (Equation (33)). The healing
scalar function ¢ represents isotropic growth of the healing domain, where the
scalar ¢y corresponds to the initial healing threshold. Damage and healing
surfaces in the corresponding thermodynamic force spaces are shown in
Figure 3, with healing and damage hardening given by (¢o + ¢, yo + ).

Identification of the characteristic healing tensors is provided by the
following nonlinear system of equations. Considering a uniaxial ultimate

h R Oi+o=1
// & > A
\ / / 11 5
\. 7 /
\\___//

Figure 3. Schematic healing-damage domain and thresholds,
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stress state for tension/compression loading (o) = F;..) and substituting
- Equation (30) in (40), with C = [E]™ ! the following equations hold
HE . s F

12
9 2! Flz,' +( )
(1 ""IU) (l + hl/) (1 - le) (1 +h|})

=1, j=tc (52)

~

Cy 5

in which (¢g + ¢ = 1) is assumed to match the Tsai-Wu criterion at failure,
¢ and ¢ stand for tension and compression, respectively, (d,;, ;) represent
the damage and healing pdrameters at failure. Equation (52) represents
a nonlinear system from which J# and Hf{ are determined in terms of
experimental data (Fy, dyj, hy)) with]—t C. |
Analogously, for transverse tension perpendicular to the fiber orientation,
the following equation holds at failure load (o, = F3,)

Q

~ 1/2
— 2 g} -1
(1 —da)? (A +ho) °

which provide a relationship between the transverse components JH
and H# of the characteristic healing tensor. Along the in-plane and out-
of-plane shear directions (o4 = F4, 05 = Fs, 0s = Fs), the healing surface
projected at failure into the stress space leads to the following equations

1/2 ~ 1/2
JH S+ Jﬁ; ! Co6F6 + HIH_!_H{I C66F62 / =1
(Q 0? ] Qledafiol Qf ' Qi|QPQPQHQH |

2 o~ ~ 12
133 # CuP L (|E HE| G .
Qﬁ ouy?) oPaRalal Qg of|QPaboiol | ~

12 ~ ~ 1/2
/ J,, CuF2  (|HE +H§' Cur2 \'
\ (@) QH) ogololol T \[of T of | abaRodol

(Hl/?.

22

22 o)
Fy,+ | |H
(= (L +ha) ( ’

— 1
=1

(54)

in which the components of the integrity tensor are SZJH = (14 h;) and
QP = (1 — dj) with j=1,3. Here dj,, hj,, represent the damage and healing at
shear failure. Since shear strength are independent of the shear stress,
Equations {54) have to be sign independent. Therefore, the linear terms have

A% 2 WA : 94
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to be zero
CLIW R £ BN B H o sy)
Q s Q?.x Y is Q3S i 923 Q3S

which introduce relationships between the in-plane and out-of-plane H
components. Moreover, introducing scalar parameters # with (j = 12,
13,23), Equation (55) can be written as

H> = —r‘:lz_IHl, Hy = —rj.,"}Hl, H, = —"fifH3 (56)

with

p_U4m) s (k) 5y (1+hsy)
ST TRy T TRy Oy hy D

The 1{.,1 terms represent the scalar ratio between principal healing
eigenvalues. Physically, they represent the availability of healing agent and
mathematically, the ultimate shape of the healing domain. The stress—
strain relationships at failure in the effective reference frame Cpy is

described by Equation (28). In particular, the shear components can be
written as

~ It = t ~ It
9% _ Gy g5 _ _Gf 9 _ Gy

~ — b) 3 2 9 ~ - . bl -
Yéult k‘,l.blx“l. H V5ult ks 1331\-: 13.} Vault k%% k?l%l

(58)
with

kp = (1= du)(1 = d), K2 = (1 + hyy)(1 + o)
kip = (1= di)(1 = ds), k3 = (1 + hi)(1 + hs) (59)
Ko = (=)l = ds), Ky = (1+ a1+ )

For example, ka with (j=12,13,23) represent the ratio between
damaged-healed stiffness at failure and damaged (not healed) stiffness
at failure GHealed/GR™d  These narameters are related to the density
of microcapsules and catalyst. Numerical evaluation is obtained by simple
shear tests, which yield the product of healing and damage values
at failure, simply as the ratio between ultimate to virgin shear modulus
(Equations (58)). Introducing Equations (59) in Equations (54) the
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following equations hold

/Jﬁ nh A Cos o

3 o) 3 =1
A R L
Hing  Jilra]l Co p (60)
k13 kBB kB E3ss
sH sH sH sD
JJr- LA Cu
3 23 2 3 =
ki kg kikZ

Finally, Equations (53), (60), and Equation (56) describe a nonlinear system
of equatlons in the unknown quantities #(j = 12,13,23) and (H , Hi,

JH,J1), from which healing characteristic tensors are completely identified
in terms of experimental data.

RESULTS AND DISCUSSION

The identification procedure for damage and plasticity at the mesoscale
level requires experimental data based on the single composite lamina

behavior (Barbero and Lonetti, 2001, 2002; Lonetti et al., 2003). The
~strength values for different directions (longitudinal, transverse, in-plane/
out-of-plane shear) and the critical damage values yield a nonlinear system
in which the unknown parameters are the damage characteristic tensor
components, J 5’ and HP. Basically, the same procedure is proposed here to
identify the healing domam The central assumption is that the g"-function
has the same analytical expression of the damage one. Therefore, the surface
shape is mainly controlled by healing critical values and the characteristic
tensors J and H¥.

From the experimental point of view, damage develops into microcracks.
Subsequently, these cracks reach the microcapsules and the healing agent is
released. Numerically, the process is described by a healing domain, which
controls the onset of healing. The evolution of such domain is defined by the
normality rule triggered when the driving thermodynamic healing forces
reach the g"-surface.

Healing and damage are shown schematically in Figure 4, in which g
with y + 1 = 1 and g" with ¢ = 0 represent the damage and healing suuaM
at failure and at the beginning of the process, respectively. The healing
threshold ¢ defines when the process starts and it is dependent on the

density of microcapsules and catalyst. Moreover, the healing critical
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Healing » YD Y”
production \

Figure 4. Healing and damage surfaces.

Table 2. Healing parameters.

Parameters T300-5208

Jh I, 0.3885e-15, 0.3522e-11
HY, Hg’ 0.4255e-7, —0.1046e-6
ch.ch. o 0.15, —0.1e+05, 0.4
h1c: hzc =h3c ) 0.1 , 0.5

cigenvalues hy. Ay, hy,, represent the maximum allowable values of healing,
which are to be obtained by experimental procedures. From the experimental
point of view, microcapsule and catalyst density control two different
phenomena: the beginning and the efficiency of the healing process. The
critical healing values and the healing threshold controls both phenomena.
From the numerical point of view, the latter control the beginning of the
process, whereas the former defines the maximum size of the healing surface
and the ailowable values of the healing tensor. Only numerical results in
terms of sensitivity analysis are shown in this work, but an experimental
investigation has been initiated (Barbero et al., 2004) to properly define both
values. , '

Lacking experimental data for the healing process, the model has been
used to demonstrate the effect of healing on Carbon-Epoxy T300-5208
(Herakovich, 1998) for which the damage behavior is well documented. The
material parameters determined by the identification procedure described
- in “Identification of Material Parameters” are shown in Table 2. In Figures

5-7, the solid line represents the actual behavior without healing and the
dotted iine the predicted behavior with the healing turned off by setting a
high value of healing threshold ¢y. The material properties are shown in

Table 1. The damage evolution parameters ?,2,v, and damage
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Figure 5. T300-5208 sensitivity of h
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Figure 6. T300-5208 sensitivity of healing to healing
_in-plane shear monotonic loading test with damage.

1 12
evolution parameter ¢f/c? for an

characteristic tensors J°, H” are identified in terms of available data for

a single lamina as explained in Barbero and Lonett (2001), using the
material properties reported in the same reference. Subsequently, the healing
phenomenon is evaluated assuming (cf =0.15,¢4 = —0.1E5, ¢, = 0.4) as
reference values.
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The in-plane shear stress—strain curve, as shown in Figures 5-7, highlights
the stiffness improvement due to the healing effects. The sensitivity
to healing of T300-5208 versus the healing threshold ¢ is shown in
Figure 5 for an in-plane shear test under monotonic loading. The curve
labeled “no healing” represents the prediction using actual material
property data. It predicts accurately the experimental data because the
T300-5208 material had no healing agent in it. The addition of healing
clearly increases the shear stiffness and strength of the material. The

sensitivity of T300-5208 versus evolution parameter ¢! is shown in Figure 6.

The sensitivity of T300-5208 versus evolution parameter ¢!

¢; is shown in
2
Figure 7. The parameters ¢/ and ¢4 control the evolution (hardening) of the

healing domain. Increasing ¢ makes it harder to heal the material because
the domain grows rapidly. This translates into less healing in Figure 6. The
absolute value of ¢4 controls the exponential decay in Equation (10) with
larger absolute values resulting in more healing, as shown in Figure 7.

CONCLUSIONS

Continuum Damage Mechanics has been extended for the first time to
incorporate healing process into what is called Continuum Damage Healing
Mechanics (CDHM). Furthermore, the theory has been used to develop a
specific model for fiber-reinforced polymer-matrix composites experiencing



damage, plasticity, and healing. Expressions are given for the various
domains, potentials, and evolution equations based on insight gained from
cxperimental observations. A procedure for identifying the healing param-
eters is outlined. The procedure for integration of the evolution equations
is given. Finally, the upplicability of the theory and particular composite
model is demonstrated by performing a parametric study of the effect of
healing evolution parameters on the shear response of a material for which
the nonhealing response is well known.

APPENDIX I

For a generic (i + 1) load step and k iteration, the damage, plasticity, and
healing functions at the first term of the Taylor expansion are written as

agd k ' : agd k
g(l __\5 17‘,1 + (}’Dk-{-l — YD/\ > + yk+l — yk
Si+1 ayD i+l i+1 i+1 3]/ vi+l i+1 I—H)
] Y agp g ~k+1 ~K aop k k41 k
g =gl T (@5 — i) ‘*";—R' (R — Rin) (AD)
i+1 Vi1 -
k - k ) .
dgh agh . :
ot oo ol (YHL-H _ ijf ) + ¢/§+l _ ¢I\
S Si4l ()YH il i+1 i+1 a¢ i—l—l( i+1 I-,H

Using Equations (27)~(33), the thermodynamic forces (Y?,y,5, R, Y, ¢)

can be expressed as a function of internal kinematic variables (D, §, &, p,
H,u) as

AYP = (Y&f‘ - YiD-ifl) =?'82,1‘)1')'k (DR = D)
i+1
Dk Hk

+o (- £8) + S LE-EL) @A

. . ay k : g
Ay = (v —vh) = R (&5 — o) (A3)

i+1
SGH) _ =0 ) -l (pk " wan _ pwy , daf D+ _ pk

(O'i+1 Gi+l> =M~ (D;,) 3¢ iH( i+1 “?‘zﬁ-l)-f*‘é‘D‘ i+l( m — Diyy)

vl

86 k I .
=g | ffnl-Hf’srn)} (Ad)
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i+l

Moreover, the incremental expressions of the kinematic variables using
Equations (38) are expressed as

. of
k+1 —_ Akd
(Dh- 1 DH— 1 ) a YD

~p(h+1) (X) 0g? ¢ (k+1) (k) . ,
<°;:]—l A{J-H ) A}“D_aT&:\ ' 1’ <pi+l pr-H) — AP (;\9)
i+

Lo -s) = a4y

k41

, ot ¢ .
(Hi - HE ) = A= , (uff] —ply) =—an (A10)

aYH |,

Finally, introducing Equations (A8)—(A10) and (A2)-(A7) into Equations
(A1), a system of equations is obtained, in which AL are the unknown
quantities

FIL 1k 1L
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g A =l gl A AN AN
AR YT P M| 2N P
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