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Abstract

A new model for damage evolution in polymer matrix composites is presented. The model is based on a combination of two
constituent-level models an9 an interphase model. This approach reduces the number of empirical parameters ·since the two con­
stituent-level models are formulated for isotropic materials, namely fiber and matrix. Decomposition of the state variables down to
the micro-scale is accomplished by micromechanics. Phenomenological danlage evolution models are then postulated for each
constituent. Determination ofnlaterial parameters is made from available experimental data. The required ·experimental data can be
obtained with standard tests. Comparison between model predictions and additional experimental data is presented.
© 2004 Elsevier· Ltd.. All rights reserved.
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1. Introduction

Using classical laminate theory and other similar
approaches, polymer matrix composites (PMC) are
routinely analyzed by assembling laminae response into
laminate response models [8]. The laminate-level re­
sponse to external loads is then decomposed into lami­
nae responses. That is, the point stress and strains on
each homogeneous orthotropic lamina are found. When
this approach is applied to modeling of damage, the
major shortcoming is the ·large number of material
constants required. to represent the equivalent ortho­
tropic material [4-6,22]. There are only few material
systems for which the whole set of stiffness and strength
values are available from experimental data. Each new
fiber/matrix combination requires a lengthy and expen­
sive material characterization effort. The data are scar­
cer with regards to damage evolution.

Advances in micromechanics allow us to predict
himina-scale stiffness from constituent (fiber, matrix)
properties. Some micromechanical models [15,23] make

. it possible to decompose the lamina-scale state variables
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(e.g., stress, strain, damage) into their components in
each of the constituents. Therefore, qamage evolution
models and failure criteria can be formulated at the
constituent-level. The .model proposed herein accounts
for different initiation, evolution, and failure of the two
main constituents (fiber and matrix) and, with the
addition of an interphase model, it accounts for other
effects not captured by the constituent models. Loss of
transverse isotropy at the lamina-level due to damage
can be predicted [12]. The material ·parameters are
determined by modeling standard material tests and
adjusting individual material parameters to reproduce
the observed material response. Then,. model predictions
for independent test conditions are compared with their
corresponding test data.

In laminate analysis, each lamina is considered as a
homogeneous material. The characteristic length of a
material element over which the stress and strains do not
change rapidly is the lamina thickness. The nber diam­
eter, fiber spacing, and dimensions of micro-cracks are
much smaller than the lamina thickness. Therefore, fiber
breaks, matrix crazes and micro-cracks can be analyzed
as distributed damage. Since damage of the fiber phase
contributes only to loss of stiffness and strength in the
fiber direction, the characteristic length of the fiber phase
is of the order of the fiber length, supporting the
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(3)

assumption that fiber breaks can be modeled as distrib­
uted damage. [19,29]. In tensile loading normal to the
fibers, matrix cracks grow along the fiber length and can
exceed. the lamina thickness, which ~eems to invalidate
the assumption of distributed damage. But if that hap­
pens to a unidirectional lamina, such cracks lead to
immediate failure. However, if such cracks grow in a
laminate, their growth is controlled by the adjacent
laminae and thus can be thought of distributed damage
in the context of the laminate, not the lamina where they
occur. In other words, transverse cracks can be still be
accounted for by a CDM model in a lamina provided
such lamina is part of a laminate, which is the practical
case virtually all the time. An alternative option would be
to formulate the damage model completely at the lamina
level [4,5,21]. Such approach requires a more extensive
database of lamina strength values. In this work, it was
decided to use the constituent-level approach because of
the basic nature of the strength data required, namely
fiber strength, Weibull dispersion, and ·so on.

2. Damage model

The overall damage model is based on the combina­
tion of damage models for fiber, matrix, and interphase
[2,32-35]. All three damage models are based on the
concepts of continuous damage mechanics [20]. For
each phase, damage is represented by a state variable, in
the form of a second-order damage tensor Dij , or by its
complement the integrity tensor Qij == bij - Du. To pre­
serve the symmetry of the effective stress tensor, a
fourth-order damage-effect tensor is used to compute the
effective stress from the damaged one. The damage-effect
tensor M is univocally determined in terms of the sec­
ond-order damage tens~r D. Since tension, compression,
and shear have different effects on damage, crack closure
coefficients (0 < Cn < 1 and 0 < Cs < 1), for compression
and shear, respectively, are introduced in the definition
of the damage-effect tensor, as follows

?iu == Mijk/(Jk/

(ijkl ((Jk/) 'ijkl (-(Jkl)
Mijk/ == +~---

1 - D~i 1 - cnDij (1 )

+ lijkl - (Uk/ [ 1 + 1 ]
2 1 - CsDii 1 - csDu

where (ijkl == 1 if i == j == k == I == 1, zero otherwise, and
< > is the McAuley bracket.

The analysis uses three configurations: effective (?i),
partially damaged (a) and damaged ((J). In the effective
configuration, the undamaged- portion of fiber and ma-
_trix carry the load. In the partially .damaged configura­
tion, the fiber and matrix have distributed damage but
the interphase damage is not present. In the damaged
configuration, all the damage is present. The three
configurations are illustrated in Fig. 1, starting with
damaged on the right, partially damaged at the center,

Fig. ]. Damage configurations, from left to right, effective, partially
damaged, and damaged.

and effective on the left. These configurations are similar
to those proposed in [32-35]. The model is phenome­
nological and damage -is assumed to be distributed.
Therefore, the model cannot predict microscopic fea­
tures such as crack spacing [16,25,27,28,30]. All forms of
damage are homogenized and their effect is felt on the
reduced stiffness only.

Mapping between configurations is (;lccomplished by
the appropriate damage effect tensor, M L from damaged
to partially damaged (due to interphase damage-effects),
M f and Am from partially damaged to effective for fiber
and matrix phases, respectively. The total damage-effect
tensor M that accounts for the combined effect of fiber,
matrix, and interphase damage is given by

(2)

At each configuration, mapping between phases
(fiber, matrix, and interphase) is accomplished by
micromechanics using the stress and strain concentra­
tion tensors, B and A, respectively, according to

(Jr == B r
: (J; B r == cr

: A r : C-1

f,r == A l' : 8; A r == C-f : Br
: C

where (Jl' indicates the stress in the phase r == f, m, 1, and
(J is the stress in the homogenized materia1. In this work,
these tensors represent the mapping of average stress
and strains, which are averaged over the individual
phases. The stiffness tensor C of one configuration (say
damaged) is obtained in terms of the stiffness C of the
precursor configuration (say virgin) by using the energy
equivalence principle [20], as

c == M- I : C : M- 1 (4)

Eq. (3) account for the stress redistribution between the
fiber and the matrix that must take place when both
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(5)

Using these explicit equations, the damage surface
can be 'written in stress space, and its shape is the same
as that of the Tsai-Wu quadratic failure criterion, but its
size is variable as controlled by the magnitudes of the
damage threshold Yo and hardening parameter y. In
summary, Eq. (7) reduces to

(7)

(8)

where J and H are second-order tensors of material
coefficients which are univocally related to the material
properties of each phase, y is the hardening parameter in
Y-space, and Yo is the damage threshold in Y -space. In
this work, an off-centered surface is used [5] to account
for different behavior in tension and compression of
each pha~e. Two two-dimensional views of the g-surface
are shown in Fig. 2. The second-order tensor Y contains
the thermodynamic forces, dual to the damage tensor, in
the thermodynamic sense as Y == ~t ==! a~ [C : e: e],
where the free energy. t/J is given by' the sum·of the strain
eriergy n plus the damage dissipation potential r~ as
t/J ==n(e, D) + r(b), where. b is an intermediate variable
such that db == -Ji and Ji'is the damage multiplier, ob­
tained by. satisfying the consistency conditions g ==0 and
dg == O. Based on experimental observations [26,36], it is
possible to assume that the damage principal directions
coincide with the principal material directions, iIi which
case the damage and integrity tensors become diagonal.
With this simplification, it is possible to derive explicit
equations relating the thermodynamic forces to the
stress components. For example,using contracted
notation [8] and a state of plane stress we have

1 (.~ 2 C12 C66 2)Yi == 2" -4 0"] + -2-20"]0"2 + -2-20"6
Q

1
Q} Q

1
Q

2
Q

1
Q

2

1 (C22 i C12 C66 2)Y2 == 2" -4 0"2 + --r2O"]0"2 + --r2 U6
Q2 Q 2 Q}Q2 Q]Q

2

Y3 == 0

g(Y, y) == VY: J: Y+~ - (y + Yo)phases undergo damage at different rates. Stress redis­
tribution also takes place at the macro-level (among
laminae) as a result of updating the lamina stiffness
tensor C according to Eq. (4).

The stress and strain concentration tensors are ob­
tainedusing [23] in the effective configuration. Then, the
concentration tensors in the partially damaged config­
uration are computed as

Af == [vrnM-m:Arn:A-fM-f + vfI]-l

Am = ~[I - vfA f]
, vrn

1
Iijkl == 2. (bikbjl + bilbjk)

Similar equations are used to compute the concen­
tration tensors in the damaged configuration in terms of
the same in the partially damaged one. Also for ,each
configuration, the stiffness tensor of the homogenized
material is computed by C == VfCfA f .+ vmcmAm ,where vf

andvnl are the fiber and matrix volume fractions of the
current configuration. The volume fractions in the
damaged configuration are those determined during
fabrication of the composite. The v'olume fractions in
the effective configuration are different -that those in the
damaged configuration because the effective configura­
tion deals with' the volume of undamaged fiber and
matrix, both of which are different from the original
volumes of fiber and matrix of the as-produced com­
posite. The fiber and matrix volume fractions in the
effective configuration are computed by taking into ac­
count the amount of damaged volume in the fiber and
matrix phases [2,11], as follows

vr(l - Dr )
-1' eq

V = vf(l - D~q) + vm(1 - D~) (6)

Dr == (D'.-.D
,
:.)1/2

eq IJ IJ

3. Damage evolution

A damage surface is assumed to limit the space of
thermodynamic forces Y for which no damage occurs, as
follows

(9)

Eq. (9) coincides with the Tsai-Wu criterion when
y + Yo == 1. Since the Tsai-Wu criterion predicts lamina
failure in terms of available strength data, it is possible
to determine all the coefficients of the tensors J and H in
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Fig. 2. Damage surface in thermodynamic force Y-space.
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Eq. (7), or fij and fi in Eq. (9), in terms of available
strength data for each phase (see Table 1), as described
in Section 4. The size of the damage surface in Y-space
evolves according to the following equation .

in terms of two empirical parameters Cl and C2 to be
determined from experiments. The damage multiplier /l
is found interactively so that the consistency conditions
g .== 0 and dg== 0 are met. That is, after an increment of
strain that causes damage, the Y-state must remain on
the g == 0 surface with no further change of that surface
(dg == 0). Once the damage surface is reached, damage
accumulates along the normal to the damage-flow sur­
face

(12)

4. Determination of model parameters

Nine model parameters (three' per phase) are neces~

sary to ~rack the evolution 'of damage. For each phase
(fiber, matrix, and interphase), there are two parameters
(CJ,C2) in the evolution law Eq. (10) and the damage
threshold Yo in Eq. (7). The nine parameters are deter­
mined by modeling standard material tests for which
data are available. The procedure is illustrated using
avaihible data for T300/5208 (Table 1) [14] a~d
LTM45EL-SM unidirectional tape data (Table 2) [38].
The intermediate parameters in Tables' 3 and 4 are

.computed as explained in Section 5. The' following
procedure is used to adjust the nine damage parameters
for each material.
. First, a longitudinal tensile test (ASTM D3039 [3]) is

SImulated. The fiber parameters (c;, c~, y~) are adjusted
so that at failure the fiber stress equals the fiber strength
Fn and the fib~r damage equals the known value
Dn == 1 - exp( -11m), where· m is the Weibull modulus
[19,29], which is available [18,24,31] (Tables 1 and 2).

Second, a transverse tensile test is 'simulated [3]. The
matrix parameters (c;n, c~, y:f) are adjusted so that at
failure the transverse stress equals the known transverse
st~ength of the composite Fmt and the matrix damage
equals Dmt == 1/2 as estimated by [17] (Tables 1 and 2).

.~e~t, adjust ~he interphase parameters (cr, ti, y~) to
mInImIze. any dIscrepancies between the shape of the
shear stress-strain plot and the c~rresponding experi­
mental data.of a unidirectional lamina (see Section 5.3).
This is illustrated in Figs. 4 and 5. The error is measured
by the X2 statistical measure of the difference between the
predicted values Pi and the experimental values ei

(11 )

(10)

Table]
Material properties for T300-5208

Property Fiber Matrix Lamina

Modulus, E (GPa) 230 4.6
Poisson's ratio v 0.22 0.38 0.284
Initial volume 0.6 0.4

fraction
F't, (OPa) 3.654 0.0586 ] .550 (longitudinal)
Fe, (OPa) 1.096 0.1876 1.096 (longitudinal)
Critical Dl 0.105161 0.5 0.105161
Critical Dc 0.110945 0.5 0.110945
F6 , (OPa) 0.08616
G12 , (OPa) 104.545 1.667 5.090
Weibull 0.89

dispersion m

!(Y,y) == VY: J: Y- (y + Yo)

The magnitude of additional damage is controlled by
the damage multiplier so that (see Fig 3) dD·· == II of •• IJ roY;·'
Dij == JdDij; Qij == bij - Dij. A transversely isotoptc
lamina may become orthotropic as a result of damage
[12], which is allowed in the formulation by virtue of Eq.
(4) using andorthotropic damage tensor D and damage­
effect tensor M. Also, the model separates damage in the
fiber and matrix, and redistributes the stress into the
fiber and matrix.

dD

I
~I

Fig. 3. Damage increment in thermodynamic force Y-space.

The values obtained are shown in Tables 5 and 6. The
model is then used to predict the response of other
laminates. The predictions are then compared in Section
7 against experimental data that was not used to adjust
the model parameters.

Table 2
Material properties for LTM45EL-SM

Property Fiber Matrix Lamina

Modulus, E (OPa) 235 2.9
Poisson's ratio v 0.2 0.38 0.3
Initial volume 0.5 0.5

fraction
F't, (OPa) 3.654 0.028] 1.330 (longitudinal)
Fe, (OPa) 1.]73 0.0945 1.]73 (longitudinal)
Critical D l 0.]0516] 0.5 0.105161
Critical Dc 0.110945 0.5 0.1 ]0945
F6 , (OPa) 0.0745
G12 , (OPa) 96.3] ] 0.760 4.0
Weibulldispersion m 0.89
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Table 3
Intermediate coefficients in terms, of properties in Table]

Para'meter ' Fiber Matrix Interphase

HI
H2 =H3

J11

J22 = J33

0.263003 x] 0- 13

0.263003 x ]0-]3
-0.142753 X ]0-5

-0.]42753 X ]0-5

0.2]4]58x ]0-]3
0.2]4]58x ]0-]3

-0.6]6990x ]0-6

-0.6] 6990 x 10-6

0.]47]30x ]0- 10

0.73]900x ]0- 13

-0.3] 3700 x ]0-4

0.129691 x ]0-8

Table 4
Intermediate coefficients in terms of properties in Table 2

Parameter Fiber Matrix Interphase

H]
H2 =fh
J11

J22 = J 33

-0.] 94707232ge-4
-0. 194707232ge-4
0.2332]4537ge- ]2
0.2332]4537ge- ]2

-0.772703170]e-6
-0.772703] 701e-6
0.1863544484e-] 3
0.] 863544484e-] 3

-0.] 056696052e-6
0".4920883693e-2
0.38]6379041e-]5
0.9059230378e-8
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Fig. 4. Comparison of model prediction and experimental data for shear of T300/5208 unidirectional lamina.

5. Determination of intermediate constants 5.1. Intermediate constants jor the matrix

Since the ~atrix is isotropic, J33 = J22 = J 11 and
H 33 = B 22 = B ll . The values of J ll and H ll for the ma­
trix are obtained by writing Eq. (7) for the case oftensile
and compressive failure of the matrix as

The coefficients in the second-order tensors J and H
are intermediate constants introduced in ord,er to write
the damage surface in a concise form. They are not
adjustable parameters. The values of the constants are
determined univocally in terms of available stiffness and
strength material properties. The relationship between
the coefficients in J and H and the material properties is
established in this section. Since the principal directions
of damage in each phase is assum'ed to coincide with the
material directions of the lamina, the tensors J and H
are diagonal.

IHll{~) = 1

IHJ]{~i ) = 1

(13)
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70 .,---------------------,

(14)"( a
cr

)Q fc = erf rv'2

compressive strength of the composite. The critical'
values of integrity for tensile behavior of the fibers is
limited by the number of unbroken fibers at failure
according to the weakest link model [19,29]; that is
Qn == exp( -11m) or about 0.894 for fiber Weibull dis­
persion m == 8.9 [18]. For compression, the critical
integrity corresponds to the number of unbuckled fibers
carrying load at the onset of kink-band formation, with
can be approximated as

where· erf is the error function, acr is the fiber angle at
failure, and A is the standard :deviation of fiber· mis­
alignment [8-10,37]. Using data from the literature
[7,13,14,21], Eg. (14) yields Qfc == 0.9 for all the materi­
als considered in this work.

2.42
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Fig. 5. Comparison of model prediction and experimental data for
shear of LTM45EL-SM unidirectional lamina.

.5.3. Intermediate constants for the interphase

where F; == Fmt , Fe == Fmc are the tensile and compressive
strength of the matrix, respectively, Qrnt and Qmc are the
critical values of integrity at failure. For a brittle matrix,
Qrnt == Qrnc == 0.5 [17].

Parameter Fiber Matrix

Parameter Fiber Matrix

(15)J22 = (1 -

The effects of interphase damage are accounted for at
the. lamina level. Since a lamina is initially a transversely
isotropic material, J33 == J22 and H 33 == H22 • The inter­
mediate constants J l1 and Hll can be found by consid­
ering the tensile and compressive tests of a
unidirectional lamina. Therefore, using Eg. (13} with

. F;. == FIt, F c == F]c being the tensile and compressive
strength of the lamina, respectively, Q t and Q c are the
critical values of integrity at failure. For tensile behavior
Qt == 0.1 [19,29] and for compression Qc == 0.9 [9]. The
values of J22 and H22 are found as follows.

Let the fiber-reinforced lamina be subjected to a
transverse uniaxial load, so that the only stress compo­
nent different from zero is (J2. The expression of the
damage surface can be written in terms of the tensile
failure strength of the material in the transverse direc­
tion.Then, the component J22 can be derived as a
function of H2 as

1.0
-1.5

0.0

Interphase

Interphase

]

-1.5
o

1.0
-4.2 X ]06

2.0

I
-6.2e6

1.75

1.0
-1.] X 105

-6.5

I
-5e2

-6.5

c)

Ci

1'0

Table 5
Damage parameters for T300-5208

Table 6
Damage parameters for LTM45EL-SM

5.2. Intermediate constants jor the fiber

Although anisotropic fibers are allowed by the model,
it is more practical to assume that t~e fibers are. isotro­
pic. Then J33 == J22 == J] 1 and H 33 == H 22 == H] 1•. The val­
ues of J l1 and H II for the fibers are obtained using Eg.
(13) setting F; == Frb Fe == Ffc for the case of tensile and
compressive failure of the fiber. In the case of fibers, the
tensile strength of fiber Fft, can be reached by subjecting
a composite to longitudinal tensile loading but the
compressive strength of fibers cannot be reached since
the fibers buckle first. Therefore, Ffc corresponds to the

where the parameter Q2t is the critical value of the
iht~grity component Q 2 for tensile loading in the trans­
verse direction. Since brittle fracture of the matrix
controls the transverse tension strength ofa lamina, the
limiting value of the component Q 2 of the integrity
tensor can be found using the brittle loose bundle model
[17], which yields Q2t == 0.5.

Next, let us consider the fiber-reinforced lamina
subject to a state of inplane shear, so that the only stress
component different from zero is (J6. In this case Eg. (6),
in terms of the inplane shear strength of the lamina F6,

reduces to
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can be taken as an additional adjustable parameter
-subject to the above mentioned restrictions.

(16) 6. Finite element implementation

Then, the component J22 can be written as a function
of the parameter rs using Eq.· (15). Hence, Eq. (16)
becomes

Calling Gi2 the value of the unloading (damaged) shear
modulus just prior to failure, and G12 to the virgin shear
modulus, we have

Nine components of the damage tensors; three for
each phase.
Nine components of the thermodynamic force ten­
sors, three for each phase.
Twelve components of the stress tensors, six for fiber
and -six for matrix.
Three values of the damage surface .g for fiber,
matrix, and interphase.
Three values of hardening y for fiber,' matrix, and
interphase.
Three flags to indicate if the damage surface has been
reached.

The damage model was implemented as a user
material subroutine (UMAT) into Abaqus [1]. The
model updates the stress, damage, and stiffness at each
Gauss point as a function of the .increment of strain Af.

provided by Abaqus. If Af. is too large, it is subdivided
inside the UMAT to achieve convergence .at the end of
the De·interval before returning to Abaqus.

Eight-node solid elements are used for the analysis.
The layered structure inside the element is described in
the· standard Abaqus way [1]. Only .nine empirical
parameters are used to define the damage behavior of
the material. These are c], C2, and Yo, for fiber, matrix,
and interphase (Table 5). They are entered as parame­
ters to the UMAT. The model, as implemented in the
UMAT, calculates forty-two state variables internally.
These are:

(20)

(18)

(17)

-(19)

where QIs and Q2s are the critical values of the integrity
component QI, Q 2 ·for a state of inplane sh'ear stress.
Since the shear response of a fiber-reinforced lamina
along material principal directions is independent of the
sign of the shear stress, the coefficient of the linear term
in Eq. (16) must be zero, leading to the relationship

Finally, Eq. (18) can be solved to obtain the value of the
parameter rs, which is then used to compute J22 and H 2 •

Experimental evidence reveals a highly nonlinear
behavior for a fiber-reinforced lamina subject to inplane
shear. Writing the shear stress-strain law in the damaged
and undamaged configurations we have

_ - 2GI2 S6
(J6== 2G12Q] Q 2f.6 == Q

I
Q

2

Thus, only the critical value of the product· of the
integrity parameters in shear can be determined and not
their individual values. This is a consequence of the
assumption that the principal directions of the second­
order damage tensor D remain aligned with the material
principal directions over the entire life of the material.
Under these conditions, shear' damage is interpreted as
a combination of longitudinal and transverse matrix
cracks, which is supported by experimental observations
[26,36]. However, as experimentally observed, most of
the damage is in the form of fiber-matrix debonding
along the fibers, resulting in D2s > DIs, and from Eq.
(17) we obtain a restriction on the value of rs, namely
o< r s < 1 . Since all components of the damage tensor
have values in the range zero to one, we obtain a
restriction for the 'value of ks, namely 0 < ks < 1. Such
restrictions are useful while searching for the value of rs,

which is the root of Eq. (18). If the damaged shear
modulus is know from experiments, the value of ks can
be determined univocally from Eq. (20). Otherwise, ks

The problem is discretized in the usual way. Appro­
priate boundary conditions ·are applied on the discreti­
zation to simulate the strain field of the material tests
used for validation.

7. Comparison with experimental data

The damage parameters for T300/5208 and
LTM45EL-SM were determined in Section 4 using
fiber and matrix properties, and a limited number of
lamina properties. Several laminates are analyzed next
by using the ABAQUS implementation of the damage
model.

First, consider LTM45EL-SM, where SM stands for
standard modulus fibers [38]. Comparison of predicted
and experimental results for an inplane shear test of [0/
90]s is shown in Fig. 6. Comparison of predicted and
experimental results for an axial loading test of [45/-45]s
is shown in Fig. 7.
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8. Conclusions

Next, for T300/5208, comparison of predicted and
experimental results for an inplane shear test of [0/90]2s
is shown in Fig. 8. Comparison of predicted and
experimental results for an axial loading test of [45/
-45]2s is shown in Fig. 9.

The damage model can be used to predict the stress in
the fiber and the matrix, as shown in Fig. 10 for.Fiberite
M40/949 carbon/epoxy unidirectional composite. The
material properties are available in [36].

The proposed model utilizes nine damage parameters,
which need to be adjusted with experimental data. Only
experimental data available in he literature is needed.
No especial tests are required beyond those commonly
performed to characterize polymer matrix composites.
The orthotropic nature of damage in polymer matrix
composites is accounted for. Stress, damage, and de­
graded stiffness of each constituent are predicted.
Damage induces stress redistribution. The model ac­
counts for stress redistribution among the constituents
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Fig. 8. Comparison of model prediction and experimental data for shear of [O/90]2s laminate, T300/5208.
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Fig. 10. Comparison of model prediction and experimental data for shear loading of Fiberite M40/949 unidirectional composite.

and among the laminae. Implementation of the model
into Abaqus allows for analysis of complex structures
but its current implementation is computationally
expensive. Further w~rk is envisioned to reduce the
computational expense.
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