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ABSTRACT: A new model for damage behavior of polymer matrix compositelaminates is presented. The model is developed for an individual lamina, and thenassembled to describe the nonlinear behavior of the laminate. The model predicts theinelastic effects as reduction of stiffness and increments of damage and unrecoverabledeformation. The model is defined using Continuous Damage Mechanics coupledwith Classical Thermodynamic Theory. Unrecoverable deformations and Damageare coupled by the concept of effective stress. New expressions of damage andunrecoverable deformation domains are presented so that the number of modelparameters is small. Furthermore, model parameters are obtained from existing ·testdata for unidirectional laminae, supplemented by cyclic shear stress-strain data.Comparison with lamina and laminate test data are presented to demonstrate theability of the model to predict the observed behavior.

INTRODUCTION

T HE ADVANCING USE of polymer matrix composites (PMC) in applications with longlife cycles requires better analysis techniques to predict material degradation andfailure. Experimental results show marked nonlinear effects when a single lamina is loadedby shear [1,2]. Instead, lo~er nonlinearity appears when the loading is along the fiberdirection or transverse to 'it. The most common modes of failure of PMCs are fiberbreakage, fiber-matrix debonding, matrix cracks, and fiber kinking. Fabrication of PMCsinevitably creates body defects in the form of matrix cracks, voids, crazes, delaminat'ions,
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fiber-matrix debond, and so on. The evolution of such defects influence stress~str~inresponse of the laminae and the maximum load that a laminate can support. The presentpaper deals with Continuous Damage Mechanics of homogenized media where the effectof the constituents has beeD: averaged. Therefore, the model cannot identify individual"failure modes. The effect of the likely failure modes is felt in the damage" measures du, onan average sense only. .
The proposed model is constructed coupling the damage and unrecov~rabledeformations theories using a thermodynamic formulation. A mesoscale approach is used, thus the ,constitutive equations refer to a single lamina of orthotropic material. The global behavioris detertnined assembling the contributions of each lamina using the classical laminatetheory, modified for a continuously damaging material with plastic-like unrecoverabledeformations. Damage and. unrecoyerable deformations surfaces are developed toaccomplish good correlation with experimental observations while using a few adjustableparameters that" have clear physical interpfetation and are easy to determine from existingexperimental data. The evolution law~s are defined in standard and nonstandardformulation for unrecoverable deformation.s. and damage respectively. The principle ofmaximum entropy is used in order to define the evolution of internal variables.
While several models are available to account damage and unrecoverable deformationseffects for a lamina [3,4,6], the proposed model is defined in terms of fewer adjustableparameters. Furthermore, the parameters in the proposed model are evaluated fromexisting experimental data rather than from specialized, nonstandard tests. Although themodel still contains five adjustable parameters, all of them can be determined fromavailable experimental data. Experimental results for unidirectional laminae and laminatesdemonstrate the qualities of the proposed model.
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DAMAGE DEFINITION

The damage definition due to Kachanov-Rabotnov is used [7,8]. The local density ofdefects is assumed uniformly distributed in a representative volume element. Laminaexperimental results evidence different damage modes and evolution for longitudinal,transverse, and shear loading [1,2]. In addition, shear loading leads to longitudin~l andmostly transverse damage [9-11]. Therefore, the orientation of defects is described by asecond order tensor with principal directions coinciding with the material coordinate axesof the lamina.
The damage variables are (a) a second order symmetric damage tensor D, defined toaccount for the anisotropic evolution of defects along matrix and fiber directions and (b) ascalar damage hardening parameter 8 that controls the size of the damage surface. Theevolution law is assumed to be isotropic for simplicity and due to the lack of experimentalobservations indicating anisotropic evolution of the damage surface.
The unrecoverable deformation variables are (c) a second order symmetric tensor eP toaccount for the accumulated, unrecoverable deformations and (d) a scalar unrecoverabledeformation hardening para1nete~ p that controls the size of the unrecoverable deformation surface. The evolution law is assumed to be isotropic for simplicity and due to tne lackof experimental observations ipdicating otherwise.
A diagonal second order· tensor is chosen to describe the damage effects D =

[d. h d22, d33], because it yields simplicity to the constitutive equations. A refined formulation could be obtained using a fourth order damage tensor [3,12,13] but it would result in
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greater complexity. The use of damage and integrity tensors describ~~~~j_'fi~~~~~-tv~n
the effective C and damaged C configurations by a unique transfQ~~\j~I"~'itt;4P.~xth~ , ,
square root theorem [14,15], a unique transformation connects tht%,4,~~~ge;;~#di~t~grity

tensor 0 = .JI - D. The eigenvalues of the damage tensor d; repJ,:es~!~~;~he;,n~t,;area .
reduction along the principal axis, which coincide with the priI1.cipaJ;(id!r~ctions/ofthe
integrity tensor Q. Experimental results on a single composite lamin.a sh6wthat during the '
deformation, microcracks, voids, and defects have preferential directions along.;;which
damage and unrecoverable deformation growth occurs. Since they typically.coincide with
material axes, it is assumed that the principal axes of the damage tensor D are aligned
with the material 'axes and do not necessarily match the principal directions of stress. The
effective stress is defined [16las

u = M-1(D)u = (0-1® O~I)CT == [(~rl ® (.JI -l?)-I]U (I)

where M is a fou~th order tensor' called the'-damage effect tensor. By the symmetry of the u
and (j tensors, th~; damage effect tensor_M is doubly symmetric. An explicit expression is
then found in cOlltracted notation [17] as

'. n 2 0 '0 0 0 01
Q2 0 0 0 02

Q2 0 0 03
Q3 n 2

0 0Mijk/ = QikQ/j 2 (2)
n 1n3

0sym
2

nln2

2

In terms of Equation (2), Equation (I) reduces to the following explicit relationships

UII Ul2
0

(I - dl) J(l - d1)(1 - d2)

a= U22
0sym

(1 - d2)

0 0 0 (3)

811(I- dt) ( 812J(1 - dl)(l - d2) 0
-I

822(1 - d2) 08 = sym

0 0 0

where prime indicates the elastic, recoverable part of the strain.

CONSTITUTIVE MODEL
I

General coupled elastoplastic and damag~ theory [18-20] allows us to write the total.
strain tensor 8 as sum of unrecoverable and elastic strains. The inelastic process js modeled
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introducing a set of internal variables that describes the unrecoverable and ,damage
behavior of the material. The Helmholtz free energy is a function of internal variables, t. .,

elastic strain, and temperature. The Helmholtz free energy is postulated to be sum of two
terms, the strain energy cp(e., eP, D) and the dissipation energy rr(p, 8) [5;6]

1/1 = Vi(e, eP,p, D,~) = epee, eP, D) + n(p, 8) (4)

.,

where eP, D are the unrecoverable strain and damage second order tensors and p, ~ are th~

hardening parameters. The strain energy can be assumed to be "

1
q;(e,eP,D) =: "2(e - eP)E(D)(e - eP) (5)

where the E(D} is a fourth order tensor that expresses the damaged stiffness of the
material. The ~amaged stiff1;less tensor i~ defined according to the principle of equivalent

(~--

elastic energy [21,22], which states that· the' elastic energy of the damaged material is the
same i~ form~as that of an effective materialexcept that the stress tensor is replaced by the
effective stress

'. 1 1 "I - 1 1 1 - 1 1ep(li,O) = -(1(E)- (1 = ~li(E)- li = -uM- (E)- M- u
,2 2 2

(6)

The damage stiffness tensor is written in terms of the effective stiffness tensor
E=MEM, which is a fourth order tensor, quadratic in the damage variable D. In terms of
Equation (2), we get the stiffness tensor explicitly as

- 2 E12(1 - dI)(1 - d2) 0 0 0 0Ell(l - dl)
- 2 0 0 0 0E22(1 - d2)

0 0 0 0
E(D) =

0 0 0
(7)

sym 0 0

!E66(1 - d})(1 - d2)

and the compliance tensor as C = ~1. The dissipation energy n(p, 8) can be separated into
two terms, which express the evolution of the damage and unrecoverable deformation
surfaces

Here, we postulate that

and

1T(p, 8) = R(p) + y(8)

1
R(P) = _-cfp2

2

(8)

(9)

{10)



Using Equation (7), explicit expressions for·-t~he thermodynamic forces are found as

• '~. r, ,/,

where cf, Ct, C2 are material parameters. Since the function 1C(p,8) is assumed to be.,:
convex, its second derivative must be positive. Therefore, the material constants~ must
satisfy the following conditions Cl > 0; C2 < 0; cf > 0 [23]. The conjugate thermodynami9 '.,
forces associated to the cinematic variables (8, eP,p, D, 8) are '
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a1/l
u = -- = E(D)(e - eP)ae

a1/l 1 a '
y =--= --(e - eP)-[ME(D)M](e - eP)aD 2 aD

a1/l
R =--. = -c!?p.. op 1

. Y= _ 81/1 =c.1'exp ( 8
d

)
.' a8,., c2

.Q45

(11)

and Y3 =0 for a state of plane stress. Considering the principle of maximum entropy [24]
and using the Lagrange minimization method the evolution equations can be defined as

- · agP
sP = AP_·

aCi '
(13)

w·here -AP, i d are the damage and unrecoverable deformations multipliers, gP,.r' are the
dissipation potentials. In addition, the unloading conditions follow directly from the
Kuhn-Tucker optimality conditions [24] as

'AP > o· i d ~ 0- ,
gP ::s 0; gd ::s 0 (14)

gPip = 0; gdid =0
.;

DAMAGE DOMAIN

Next, the damage surface and the dissipation potential are written in the thermo- .
dynamic variables domain Yi, which in thermodynamic sense are the conjugate variables
of the damage tensor D [23]. The damage surface limits the state for which the material
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experiences no damage. A nonstandard formulation is then used to define ,.th~ damage
function gd and potential surface I as .. ': ~"

gd = g(Y) - y(8) - Yo = Jy - J. Y + JIB· YI- (y(8)+ Yo),

fd =/(Y) - y(8) - Yo = Jy - J. Y - (y(8) + Yo)

:;"

(15)

where J and H are fourth and second order tensors respectively, Yo is the dainage energy
threshold. The tensors J and H are material dependent. It is worth noting that the linea~

term in Equation (15) allows us to take into account different behavior of the composite
lamina in tension and c,ompression. The coefficients in the tensors J and Hare univocally
determined in terms of material ..properties as explained in section Internal Material
Constants. The damage damain surface gd in Equation (15) has the shape of the Tsai-Wu
surface when the first of Equation ,(15) is written in stress space [23]

'. g(a) =fla l +12(j2 +111(jY·+12201 + 2/12(j1 C12 + 166C1~ - (y(8) + yo)
'e 1 1 . . 1 1 1

11 =---; 12 =---; III =-.- (16)
Fit Fie . F2t F2e FltFl t

". 1" 1 0.5
122 =F F ;' 166 = F2 ; 112 ~ - F2

21 21 6 It

The Tsai-Wu criterion is recovered when the last term on the right hand side is set to
one. The magnitude of the last term affects the size of the damage surface but its shape
remains similar to that of a Tsai-Wu surface. Since the Tsai-Wu criterion predicts ply
failure, the damage surface coincides with ply failure when the last term is equal to one.
Then y(8) = 0, the last terms reduces to Yo. Thus, the initial size of the surface Equation (16)
is smaller and it represents the loci of stress at which damage starts. For the sake of
simplicity, it is assumed that the shape of the damage domain remains the same while its
size grows until it reaches the Tsai-Wu criterion at ply failure.

The evolution of the damage is governed by a hardening function that involves two
variables Ch C2, which are material dependent. The proposed damage hardening function is
given by Equation (10). The consistency condition (gel =g" = 0), and the normality rule
Equation (13), used in the CDM framework [25,26] allows us to derive the following
equation in terms of the damage and unrecoverable deformation multipliers i..d, i p , using
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UNRECOVERABLE DEFORMATIONS DOMAIN

~947

Unrecoverable deformations of composite materials are more evident for shear '..
loading than longitudinal and transverse loading [2]. The unrecoverable· strain 'evolutiort
is realized by the classical plasticity formulation [20]. The loading surface' -and the
dissipation potential are identical in the effective stress space, thus follow~.ng a standard
formulation. A Tsai-Wu surface is chosen because of its ability to represent different
behavior among the different load paths in stress space. Therefore, the loading surface"'
used herein is '

gP =g(cf) - R(P) - Ro

where the unrecoverable deformation domain. is defined in effective stress space as

(18)

(19)

and Ro is the unrecoverable deformations threshold. The parameters Fj are material
dependent and represent the strength values in tension, compression and shear for a single
composite lamina. These values are tabulated in the literature [17,27], or they can be easily
obtained following standardized test methods [28]. Unrecoverable deformation hardening
is modeled by a simple function Equation (9), thus requiring the minimum number of
internal parameters to describe it. As before, by the consistency condition (gP = gP = 0),
the normality evolution rules, and the effective stress concept, it is possible to obtain the
following relations

R(p) - Kpp; 0: = M-1u; 8 = M-1e

agPa+ agP R= 0
au aR

.. au . au r.p au· Ai 1 au. M 1 au.p a [ 1 •
U = as s + asp s + aD D = - as s + - asp s + aD M- u]D

a: = M-l aue+ M-1 au M-1i.p agP +~[M-lu]id af
as asp au aD aD (20)

t' = agP M- 1oue + M- 1 au M-1ipagP +~[M-lu]id af =0
au as asp au aD aD

agP M-1aue+ agP M- 1 au M- 1i pagP + agP ~[M-lu]id af + agP aR agP = 0
au as au asp · au au aD aD aR ap aR

-Ap[agP M-1 au M- 1agP + agPaRagP] +id[agP ~[M-lu] af] + agP M-1au. = 0
au asp au aR ap aR au aD aD au a8 s
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in which the damage and unrecoverable deformation multipliers i p , i d are t:Q~: tpJ.known ,
quantities. Solving the linear system defined by Equations (17) and (20), it is possibletQ ~,

determine the values of 'AP, i d which define the damage and unrecoverable deformations
evolution laws. "..

LAMINATE MODEL

The model' presented so far predicts the behavior of a single lamina. Classical laminate
theory is used ,next to introduce the damage and unrecoverable effects in the constitutive
equations for a laminate [~7]. Damage and unrecoverable effects are introduced so that
stress redistribution among' various la,yers in a laminate is properly accounted for. The
stress-strain relations in the ~aterial,c,oordinates for the top or the bottom surface of a
single lamina .;' are '

where the subscripts d, p, refer to damage and unrecoverable effects, respectively, and
superscripts t, b refer to top and bottom, respectively. In the framework of the classical
plate theory (CPT) the kinematic varia~les are the midplane strain and curvatures. The
elastic-damaged terms of the reduced stiffness matrix are defined by a linear function of
the material property of top and bottom surface of the kth lamina as

Q'!.( ) = Q'!.(Zb) +~(ZD - ~(Z~) ( _ Zb)
lJ Z lJ k (Zl _ Z~) Z k

(22)

r

where an overbar (-) indicates quantities in the global coordinate system of the laminate.
Such quantities are obtained by standard coordinate transformation [17] of Equation (21).
The tension Uj over the lamina is a linear function of the top and bottom values of the
stress, given by

_( ) ~ _(Zb) + IT;(Zk) - IT;(ZZ) ( Zb)
(1, Z - (1, k (Zl _ Z~) Z - k (23)

To assemble the total stiffness of the material we use the definition of -force and
moment resultants (Equations (6.11) in [17]). Therefore, the laminate constitutive
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equations become

N x All A 12 AI3 BII B12 B 13 SO - eP
x x

Ny A I2 A2~ A23 B 12 B22 B23 sO - eP
y y

Nxy AI3 A23 A33 BI3 B23 B33 o ,p
Yxy - Y:Xy

=
M x BII B 12 BI3 DII D12 D13 Kx -K~

M' B12 B 22 B23 DI2 D22 D23 K -KPY Y Y

M xy ' BI3 B 23 B33 D13 D23 D33 Kxy - K~y
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~' (24)

where the coeffic~ents are 'computed in terms 'Of the damaged values of the reduced
stiffness coefficients in global coordinates Qr,j using the standard equations (Equation (6.16)
in [17]). Noting th~t the damage and un~ecoverableeffects are piecewise linear functions
through the thickness of the laminate we obtain: the following explicit equations for the
coefficients of the la.minate stiffness matrices

'.
·A.. =!(~(ZD +~(Z%»)(zt _Zb)2

l) tk 2 k k

Bij = -6
1 ! {(Zl)3[2Qi(Zi) +Qi(ZZ)] + (ZZ)3[Qi(Zl) + 2Qi(ZZ)]

tk

-3 · ZkZ~[Q~(Zk)Zk + Qi(ZZ)ZZ]}

Dij = 1
1
2 t~ {(Zl)4[3Qi(Zl) + Qi(ZZ)] + (ZZ)4[Qi(Z1) + 3Qt(Z%)]

- 4Z~Zk[Qi(Zk)(Zk)3 + Qi(ZZ)(Z~)3]}

INTERNAL MATERIAL CONSTANTS

(25)

The constitutive model'''developed in the previous sections involves a series of param
eters that are material dependent and remain constant during the analysis, as follows: J
and H are tensors that control shape of the damage and the potential surfaces, Ro and y
are the damage and unrecoverable deformations thresholds Ct, C2, Cf are the damage
and unrecoverable hardening constants. Since both J and H are diagonal tensors, only
eleven coefficients need to be found (only nine for plane stress). While several fonnuiations
exist for the J tensor [29], they involve a large number of parameters that, altho~gh

increase the accuracy, significantly increase the complexity of parameter identification,
and consequent testing. With the addition of the H tensor, the damage surface can be
written in stress space as the Tsai-Wu surface. In this way the coefficients in the J and H
tensors can be uniquely obtained in terms of the strength values Fi of the unidirectional
lamina, which for the most part are available in the literature.
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Writing the gd function for longitudinal uniaxial tension and compression·,·Equati.~~,{J5:
becomes

CII -
IB tl-6Ftt = (Y* + YO) = 1n1 .

Equation' (26) represents a linear system in which FIt and FIc are the longitudinal
compressive and tension stress of a ~ingle composite lamina, the values J}1 and HI are the
unknown quantities, while the quantities Ole and nit are the critical tension and
compression values of the integrity tehsQrs. Comparing the Tsai-Wu criterion to the linear
system Eq.uation (26) at failure, we set (y* + YO) equal to 1. Hence, there are two equations
that allow'·us to solve for the two, parameters JII and HI.

In the transverse direction the damage function Equation (15) reduces to

'.
(27)

In this way it is possible to express, J22 in function of H 2 by the following equation

J22 = (1 - (28)

Considering in-plane shear loading and Equation (15), we get the following equation

(29)

Here F6 value is the shear strength for a single composite lamina, while n1s and n2s

are critical values of the integrity tensor at failure for a state of in-plane shear stress. Since
the shear response of a fiber-reinforced lamina in material directions is independent of the
sign of the shear stress, the coefficient of the linear term in F6 of Equation (29) must be
zero, leading to a relationship between HI and H 2, namely

/'

HI H2 Q~s
-+-=0~H2=--Hl =-rHlQ2 n2' n 2 s

Is . 2s Is
(30)

where rs = (n2s/ Q ls)2 is an. intermediate constant. Then H 2 can be written as a function of
the r s , and Equation (29) becomes .



where Gi2 is the unloading damaged shear modulus prior to imminent failure (e~g-, last
unloading curve in Figure 1). Since J 11 is known from Equation (26)" and k; is a. Jcnown .
constant (see section Critical Damage Parameters), using Equations (28) and (31)" it is
possible to determine J22 and H 2• Thus, all the coefficients in the tensors J and "~H are
found in terms of known parameters Fi and Qi-
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Jll's h2 2C66 p2 - ( ) - 1-
k +k k 6-Y+Yo-,

s srs s
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(31) . ': '.'

CRITICAL DAMAGE PARAMETERS

The critical integrity parameters Q i introduced in the previous section represent the
values of the integt:ity components when the·~tna~erial is near failure. They can be evaluated
by formulas based on experimental results and analytical procedures.

In a pure in-plmJ.~ shear test, and using Equation (3), the unloading shear stress-strain
path just prior to f~.ilure (Figure 1) can be described in terms of either the damaged or the
undamaged (i.e., virgin) shear stiffness as·

- 2-Gn n I 2G* n-In-l I
C16 = 12~'ls~'2s86 = 12~'ls ~'2s 86; (32)

which defines the known coefficient ks used in Equation (31) in terms of experimental data.
In .this way, the product of Qys and Q~s represents the ratio between the damaged shear
modulus (unloading) at imminent failure and the virgin state value, both of which can be
determined by experimental in-plane shear data for a unidirectional composite lamina.

On the longitudinal direction, the probability of failure of a fiber in a composite lamina
can be expressed by the Weibull statistic distribution [30]. The probability for unbroken
fibers is

100 .....-~-------------..

3.53
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0.5 f 1
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o
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80

180
II 40

Figure 1. Cyclic shear behavior of unidirectional T300/915 Carbon/Epxoy.
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'. (33)

wh~ere 0 < Pu < 1, CI is the stress in the unbroken fibers, 8 is the shear. iag len'gth, Lois"tlte
length of the test fiber used to obtain the Weibull parameters Clo and m, which represent
the dispersion of fiber strength. The bundle stress is Clb = PuCl'~ At fracture, the bundle
stress Clb has a maximum. Solving for the fiber stress 0', the critical value of fiber stress is

(
8m)-1/m

Clc = CIa Lo (34)

(35)'.

The bundle strength can be found by substituting Equation (34) back into O'b = Pu(1.
The critical damageDlt at fracture is the ratio of broken to original fiber area, which is
found from Equations (33) and (34) as

, (-1).D lt = 1 - exp -;;

The Weib~ll dispersion parameter· ~s available from the literature for most types of
fibers [34,35,37]..

For longitudinal compression, the damage critical value can be evaluated according to
the microbuckling and misalignment of the fiber. Fiber misalignment, which is strongly
de.pendent on processing conditions and can be considered as an inherent defect, increases
the possibility for the fiber to buckle. For each misalignment angle 9, the composite area
fraction with buckled fiber w(9) corresponding to fibers with misalignment angle greater
than 9, can be taken as measure of damage. Since the fiber misalignment distribution is
Gaussian, the critical compressive damage D1c is

Dle = w«(J*) = 1 - erf(A~) (36)

where erf(-) is the error function, A the standard deviation of the actual Gaussian
distribution of fiber misalignment, and 9* is the critical misalignment angle at failure
[31,32]. The value of A can be measured experimentally [33] or computed in terms of
experimental values for F ic, F6 and 0 12 using Equations (4.74)-(4.75) in [17].

In the transverse direction, it is possible to think of the matrix as a periodic link
structure enclosed between fibers. Assuming a constant probability distribution for the
failure of the matrix link it is possible to derive the maximum admissible strength for the
bundle matrix [5]. The ratio between the broken links and the initial ones can be
considered a measure of damage. Therefore, the critical damage value is

1
Dlc =-

2
(37)

MODEL IDENTIFICATION AND VALIDATION
I

Unidirectional lamina experimental data for two materials, Aramid/Epoxy and Carboni
Epoxy are used to obtain all the parameters required in the model [2]. Laminate and
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off-axis experimental data for the same materials is then used to demonstrate,: the
predictive capabilities of the proposed model.

In-plane shear experimental data of unidirectional composite in Figure 1 is used to
adjust the model parameters for Carbon/Epoxy T300/915. The material properti~s are "
given in Table 1. The intermediate parameters, determined completely in terms of the
material properties are given in Table 2. The adjustable model parameters, determined
with the aid of the shear stress-strain plot, are given in Table 3. The model is use,d, to
predict the amount of unrecoverable strain, and the results are compared with
experimental data in Figure 2. The predicted damage evolution is shown in Figure 3.
Failure is predicted'to occur when the transverse damage d2 equals the critical value D2t, as
shown in Figure 3. In the actual test, the sample failed at about 3% shear strain, in good
agreement with the predicted val~e of str~in at failure. Next, the model is used to predict

Table 1. Material properties.

Propm-ty

E1(GPa). undamaged
E2(GPa)e undamaged
G12(GPa) undamaged
G12(GPa) damaged
V12 undamaged
F1t(MPa)
F1C(MPa)
F2t(MPa)
F2C(MPa)
F6 (MPa)

Carbo,n/Epoxy T300/915

142.0
'°10.3

'7.29
3.71
0.27

1839
1096
57
57

86

Aramid/Epoxy

73.4
5.5
3.65
2.21
0.34

1137.1
212.5

27
27
47

Table 2. Intermediate parameters unlvocallv determined In
terms of the material properties given in Table 1.

Property Carbon/Epoxy T300/915 Aramld/Epoxy

J11 0.2523910783 x 10-14 0.4647013345 X 10-13

J22 0.1166642654 X 10-12 0.1380462161 X 10-12

~ 0 0
H1 0.1297694304 X 10-7 0.7518017147 X 10-6 ,

H2 ~0.75544663738 X 10-8 -0.3245140897 X 10-6

Hs 0 0
ks 0.515 0.605
's 0.581 0.416

/ Table 3. Model parameters.

Property Carb~n/Epoxy T300/915

0.17
-8.9 x 105

-0.2
1.2 x 10-6

0.25

Aramld/Epoxy

0.1
-4.0 x 105

-0.3
1.5 x 10-6

0.5
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the monotonic loading behavior of a [45/-45]2s laminate, which compares favorably with:
cyclic experimental data in Figure 4. Comparison between predicted and meastlrea
unrecoverable strain versus total shear strain is shown in Figure 5. Comparison between
predicted and measured axial stiffness versus total axial strain of a [45/-45]2s is shown in
Figure 6.

Experimental data for unidirectional Aramid/Epoxy loaded with cyclic in-plane shear is
used to adjust the model parameters, as shown in Figure 7. The model is then used to
predict the amount of unrecoverable strain, and the results are compared )\lith
experimental data in Figure 8. The predicted damage evolution is shown in Figure 9.
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Figure 2. Accumulated unrecoverable strain of unidirectional T300/915 Carbon/Epoxy under shear loading.
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Figure 3. Damage evolution up to failure of unidirectional T300/915 Carbon/Epoxy un~er shear loading.
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Figure 5. Comparison with experimental accumulated unrecoverable strain in [45/-45128 T300/915 Carbon/
Epoxy.

The AramidjEpoxy failed in shear at about 3% shear strain, when the predicted
longitudinal damage d1 is 90% of the critical value D 1c= 0.114. Next, the model is used
to predict the monotonic loading behavior of a 10° off-axis lamina, which compares
favorably with cyclic experimental data in Figure 10. Also, the model is able to accurately
predict the accumulated unrecoverable strain of the 10° off-axis test, as shown in Figure 11.
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Figure 7. Cyclic shear behavior of unidirectional Aramid/Epoxy.

SUMMARY

The procedure used to adjust the model parameters is summarized in this sectipq. The
model parameters describe. damage and unrecoverable deformation respectively.

The damage evolution parameters Cl, C2 control the damage evolution by Equation (10).
The damage threshold Yo represents the initial size of the damage surface. No damage' can
occur until the thermodynamic forces Y reach the damage surface. These three parameters
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are adjusted with the monotonic loading part of the shear stress-strain diagram, such· as
the top curve in Figure I.

The unrecoverable deformatio~ parameter cf controls the evolution of unrecoverable
strain. The threshold parameter Ro represents the initial size of the unrecoverable
deformation surface (yield surface). These two parameters are adjusted with the experi-
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Epoxy.

mental unrecoverable deformations resulting from unloading, such as those read from
unloading in Figure 1 and plotted in Figure 2.

The influence of these parameters on the predictions is discussed next, using
T300j915material as an example. The performance of the model is measureq by the x2

statistical measure of the difference between the predicted values Pi and the experim~ntal

values ei during an appropriate test over which the values have significant influence. The
statistical measure is defined as follows
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'.
(38)

First, the damage evolution parameters (c}, C2, Yo) are varied within one order of
magnitude around the optimum values previously determined in the preceding section,
.while keeping the unrecoverable deformation parameters fixed. Equation (38) is used to
evaluate the error in predicting the loading portion of the shear stress-strain curve (e.g.,
top curve in Figure 1). It can be seen in Fig~re 12 that the error of the prediction, as
measured by Equation (38), has a minimum for the optimum values of CI and C2. Any
deviation from those values results in a clear loss of accuracy.

From Equations (10) and (15), setting the damage threshold Yo < - Cl starts damage
immediately (tS = 0). Larger values can be used to delay the onset of damage when it is
necessary, but for T300/915, damage must start immediately in order to yield curvature to
the stress-strain loading curve from the onset of loading, as shown in Figure 1.

Keeping the damage evolution parameters fixed, the unrecoverable deformation
parameters (cf, Ro) were varied within one order of magnitude around the optimum
values previously determil)ed in the preceding section. Equation (38) is used to evaluate
the error in predicting the unrecoverable deformations (e.g., Figure 2). It can be seen in
Figure 13 that the error of the prediction, as measured by Equation (38), has a minimum
for the optimum value of cf The unrecoverable deformation threshold Ro controls when
unrecoverable deformations start accumulating (see Figure 2).

The internal material constants J II , J22, HI, H2, rs, and ks are used to write the ~odel

equations in a concise form. These are not adjustable model parameters since their values
are univocally determined in terms of the available material constants Flh Fie, F2h F2c, F6,

Gi2 (see section Internal Material Constants) and the critical damage values D}h Die, D21 '

(see section Critical Damage Parameters). The latter are fixed values in terms of mat~rial
constants m and A as described by Equations (35)-(37). The Weibull dispersion of fiber .
strength m and the misalignment angle A are avai~able from the literature [9,34,35,37] and
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'.
well-established procedures exist to measure them for new materials [33,36]. Finally, the
material constants E1, E2, G12, and V12 are readily available. The only information that is
not readily available is the shear stress-strain plot, as in Figure 1. The loading part of the
plot is necessary to adjust the damage evolution parameters (Cl, C2, Yo). The unloading part
of the plot is necessary to adjust the unrecoverable deformation evolution parameters
(cf,.Ro). Such a plot can be determined experimentally using a shear test fixture such as
described in ASTM D5379.

CONCLUSIONS

The proposed model predicts the damage and unrecoverable deformations phenomena
of a laminated composite material under proportional loading. A limited number of
internal variables are used in the model to represent the evolution of the damage and
unrecoverable deformations phenomena. Comparisons between experimental data and
model predictions are good in terms of damage and unrecoverable deformations
evolution. Some further development and improvements are envisioned to account for
closure during unloading. Also, further validation would be useful as additional low-cycle
stress-strain data becomes available.
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