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Abstract

A new model for fatigue damage evolution of polymer matrix composites (PMC) is presented. The model is based on a com
bination of an orthotropic damage model and an isotropic fatigue evolution model. The orthotropic damage model is used to predict
the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue
damage accumulated as a function of the number of cycles. This approa~h facilitates the determination of model parameters since
the orthotropic damage model parameters can be determined from available data from quasi-static-Ioading tests. Then, limited
amount of fatigue data is needed to adjust the fatigue evolution model. The combination of these two models provides a com
promise between efficiency and accuracy. Decomposition of the state variables down to the constituent scale is accomplished by
micro-mechanics. Phenomenological damage evolution models are then postulated for each constituent and for the micro-structural
interaction among them. Model parameters are determined from available experimental data. Comparison between model pre
dictions and additional experimental data is presented. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

Various fatigue damage models can be classified ac
cording to the complexity of the material they model
(isotropic, transversely isotropic, orthotropic) and by
the order of the tensor representing the damage measure
(scalar, vector, second-order tensor, and so on). Long
fiber reinforced polymer matrix composites (PMC) are
strongly orthotropic and they damage in an orthotropic
fashion as well [18,19,23]. Models capable of repre
senting such a general situation require many experi
mental parameters and high computational effort.

Fatigue damage of metal matrix composites has been
modeled using a scalar damage measure and considering
the material to be homogeneous and transversely iso
tropic [3]. Such models are efficient in that a limited
number of tests are sufficient to determine the model
parameters, but all tests need to be fatigue tests, which
may be difficult and time consuming. On the other hand,
quasi-static-Ioading damage models can be generalized
for fatigue loading by introducing cyclic hardening [32-
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35]. That is, the hardening law is generalized to include a
dependency on the number of cycles N. Such models
usually require detailed computation of each and every
cycle during the life of the material, which may be
computationally expensive. A compromise between
these two approaches is sought in this paper.

Using classical laminate theory and other similar
approaches, PMC are routinely analyzed by assembling
the laminae stiffness response into laminate stiffness re
sponse [6]. The laminate response to external loads is
then decomposed into laminae responses; that is, the
point stress and strains on the homogeneous orthotropic
lamina material are found. Similarly, micro-mechanics
allows us to predict lamina stiffness from constituent
(fiber, matrix, and interphase) properties [6]. Some micro
mechanical models [2,11 ,20~32-35] make it possible to
decompose the lamina state variables (e.g., stress, strain,
damage) into their components in each of the con
stituents. Therefore, damage evolution models and
failure criteria can be fonnulated at the constituent level.
The shortcoming of this approach is that only dis..
tributed damage with a length scale much shorter than
the characteristic dimensions of the micro-structure
should be modeled by continuous damage mechanics.
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Otherwise, interaction effects between the constituents
due to relatively large cracks in the individual phases are
neglected at the constituent level. Such. interaction ef
fects are recovered herein by adding an extra step at the
lamina level. The resulting integrated model accounts
for different initiation, evolution, and failure of the two
main phases, fiber and matrix. The additional lamina
model accounts for any effects not captured by the
constituent models.

Regarding the assumption of distributed damage, the
following comments are in order. The characteristic
length of a material element over which the stress and
strains do not change rapidly is the lamina thickness.
The fiber diameter, fiber spacing, and dimensions of
micro-cracks are much smaller than the lamina thick
ness. Therefore, fiber breaks, matrix crazes and micro
cracks can be analyzed as distributed damage. Since,
damage of the fiber phase contributes only to loss of
stiffness and strength in the fiber direction, the charac
teristic length of the fiber phase is of the order of the
fiber length, supporting the assumption that fiber breaks
can be modeled as distributed damage [15,28]. Trans
verse matrix cracks spanning the lamina thickness can
not be considered as distributed damage [12,24,26,27,
29]. Therefore, a lamina-level model was added to ac
count for those effects, always in an average sense. An
alternative option would be to formulate the quasi-static
model completely at the lamina level [5,7,9,17]. Such
approach requires a more extensive database of lamina
strength values. In this work, it was decided to use the
constituent level approach because of the basic nature of
the strength data required, namely fiber strength, Wei-
bull dispersion, and so on. ~

Due to the orthotropic nature of the damage measure
Do used in this work, loss of transverse isotropy of a
lamina due to damage can be predicted. The material
parameters controlling damage evolution in each phase
and their interaction, within a loading cycle, are deter
mined from quasi-static-loading tests, which are avail
able [10,17,31]. Then, a S-N curve of a single laminate is
used to adjust two additional parameters governing the

Table 1
Material properties for T300/5208

Property Fiber Matrix Lamina
Modulus, E (OPa) 230 2.6
Poisson's ratio v 0.22 0.38 0.268
Initial volume fraction 0.7 0.3
Fi (GPa) 3.654 0.0586 0.0586 (trans-

verse)
Fe (GPa) 1.096 0.1876 1.096 (longi-

tudinal)
Critical Dt 0.105161 0.5 0.105161
Critical Dc 0.110945 0.5 0.110945
F6 (GPa) 0.08616
G12 (OPa) 104.545 0.971 5.090
Weibull dispersion m 8.9

evolution of the magnitude of fatigue damage as a
function of the number of cycles. Finally, predicted S-N
curves for other laminates are compared with their
corresponding test data. The only problem encountered
was to find fatigue data for the same materials systems
for which comprehensive quasi-static data exists (the
data required is listed in Table 1).

2. Damage

2.1. Quasi-static damage model

The first building block of the proposed approach is a
damage model for a single loading cycle. The model is
based on the combination of two continuous damage
models at the constituent level and one continuous
damage model at the lamina level. For each phase,
damage is represented by a state variable, in the form of
a second-order damage tensor Do, or by its complement
the integrity tensor Dr} [16]. Since tension, compression,
and shear have different effects on damage, crack closure
coefficients en and Cs, for compression and shear re
spectively, are introduced in the definition of effective
stress, as follows:

(I)

where

(2)

and Cijkl = 1 if i = j = k = / = 1, 0 otherwise, and the
brackets {} represent the Heaviside function. Such def
inition assures symmetry of the effective stress tensor.
The effect of crack closure on the normal and shear
components of effective stress can be adjusted from no
effect to full effect by varying the coefficients Cn , cs, from
o to 1.

The stiffness tensor C of one configuration (say
damaged) is obtained in terms of the stiffness t of the
precursor configuration (say virgin) by using the energy
equivalence principle [16], as

C = M- 1
: C: M- 1

• (3)

The analysis involves three configurations [32-35]:
effective (a), partially damaged (0:) and damaged (0"). In
the effective configuration, the undamaged portion of
fiber and matrix carry the load. In the partially damaged
configuration, the fiber and matrix are damaged but the
interaction damage is not present. In the damaged
configuration, all the damage is present. The three
configurations are illustrated in Fig. 1, starting with
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Fig. 1. Damage configurations, from left to right, effective, partially damaged, and damaged.

415

(5)

(8)

damaged on the right, partially damaged at the center,
and effective on the left.

Mapping between configurations is accomplished by
the appropriate damage effect tensor, ML from damaged
to partially damaged (due to interaction damage effects),
M and Am from partially damaged to effective for fiber
and matrix phases, respectively. The total damage-effect
tensor M that accounts for the combined effect of fiber,
matrix, and interaction damage is given by

(4)

At each configuration, mapping between phases
(fiber, matrix, and lamina) is accomplished by micro
mechanics using the stress and strain concentration
tensors, B and A respectively, according to

ci = Br
: (1, Br = Cr

: Ar
: C-1

,

er = Ar : e, Ar = C-f
: Br : C,

where aT indicates the average stress in the phase r =f,
m, L, and (J is the average stress in the homogenized
material. Eq. (5) account for the stress redistribution
between the fiber and the matrix that must take place
when both phases undergo damage at different rates.
Stress redistribution also takes place at the macro-level
(among laminae) as a result of updating of the lamina
stiffness tensor C according to Eq. (3).

The stress and strain concentration tensors are ob
tained using [20) in the effective configuration. Then~ the
concentration tensors in the partially damaged config
uration are computed as:

Af = [vmM-m1m:4-fM-f + vfI]-l,

i m = ~ [I - tIif], (6)
v
1

[ijkl = 2. (OikOjl + fJiJ~jk).

Similar equations are used to compute the concen
tration tensors in the damaged configuration in terms of
the same in the partially damaged one. Also for each
configuration~ the stiffness tensor of the homogenized
material is computed by micro-mechanics as

C = vfer : Af + vmem : Am, (7)

where vf and un are the fiber and matrix volume frac
tions of the current configuration. The volume frac
tions in the damaged configuration are those determined
during fabrication of the composite. The volume frac
tions in the effective configuration are different than
those in the damaged configuration because the effective
configuration deals with the volume of undamaged fiber
and matrix, both of which are different from the original
volumes of fiber and matrix of the as-produced com..
posite. The fiber and matrix volume fractions in the
effective configuration are computed by taking into
account the amount of damaged volume in the fiber and
matrix phases [8], as follows:

-r vr(l - D~q)
v = ,

vr(l - ~q) + vm(l - D~)

D~q = (D~j1Y,j) 1/2.
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Table 2
Intermediate coefficients in tenns of properties in Table 1

Parameter Fiber Matrix Lamina

HI 0.26300364 X 10-13

H2 = H3 0.26300364 X 10-13

J Il -0.14275391 X 10-5

J22 =J33 -0.14275391 X 10-5

0.214158 X 10-13

0.214158 X 10-13

-0.61699 X 10-6

-0.61699 X 10-6

0.14713 X 10-10

0.7319 X 10-13

-0.00003137
0.1296912 x 10-8

2.2. Damage evolution (13)

where the free energy t/J is given by the sum of the strain
energy 1t plus the damage dissipation potential r, as

A damage surface is assumed to limit the space of
thermodynamic forces Y for which no damage occurs.
In this work, an off-centered surface is used [5] to ac
count for different behavior in tension and compression
of each phase~ as follows:

g(Y) y) = v'r :J : Y + y'jH7Yf - (y + Yo), (9)

(14)

(16)

in terms of two empirical parameters Cl and C2 to be
determined from experiments, with the damage para
meter changing according to

og
dc5 = Jl- = -Jl. (15)oy

The damage multiplier is found interactively so that
the consistency conditions g = 0 and dg = 0 are met.
That is, after an increment of strain that causes damage,
the Y-state must remain on the g = 0 surface with no
further change of that surface (dg = 0). Once the dam
age surface is reached, damage accumulates along the
normal to the damage-flow surface defined as

Eq. (13) coincides with the Tsai-Wu criterion when
y + Yo = 1. Since the Tsai-Wu criterion predicts lamina
failure in terms of available strength data, it is possible
to determine all the coefficients of the tensors J and H in
Eq. (9) in terms of available strength data for each phase
(see Table 1), as described in [1,5]. The numerical values
are given in Table 2.

The size of the damage surface in Y-space evolves
according to the following equation:

The magnitude of additional damage is controlled by
the damage multiplier so that

dDij = Jl:f/ Dij =JdD/j, flij = ljij - D jj < (17)

A transversely isotopic lamina· may become ortho
tropic as a result of damage, which is allowed in the
formulation by virtue of Eq. (3) using an orthotropic
damage tensor D and damage-effect tensor M. Also, the
model separates damage in the fiber and matrix, and
redistributes the stress into the fiber and matrix.

The quasi-static-loading model described in this sec
tion is capable of predicting damage accumulation for
one cycle only. Since the evolution of the damage sur
face, given by Eq. (14), is independent of the number
of cycles, no further damage can occur during cyclic
loading at constant strain amplitude. A phenomeno-

!(Y, "I) = Jy :J : Y - (y + Yo)·

(10)

(12)

(11 )t/J = n(e,D) + r(<5),

where J and H are second-order tensors of material
coefficients which are univocally related to the material
properties of each phase, y is the damage parameter in
Y-space, and Yo is the damage threshold in Y-space. The
second-order tensor Y contains the thermodynamic
forces, dual to the damage tensor, in the thermodynamic
sense as

where ~ is the damage parameter. Based on experi
mental observations [25,36], it is possible to assume that
the damage principal directions coincide with the prin
cipal material directions, in which case the damage and
integrity tensors become diagonal. With this simplifica
tion, it is possible to derive explicit equations relating
the thermodynamic forces to the stress components. For
example, using contracted notation [6] and a state of
plane stress we have

1 (ell 2 e12 (766 2)
Yl =2 -40'1 + N 20'10"2+ N~(16 ,

01 01 ~41Q2 ~41~42

1 (C22_2 C12 C66 2)Y2=2' -402+ 2-20'10"2+220"6 ,
02 02 01!r42 0 1°2

Y3 =0.

U sing these explicit equations, the damage surface
can be written in stress space, and its shape is the same
as that of the Tsai-Wu quadratic failure criterion, but its
size is variable as controlled by the magnitudes of the
damage threshold and damage parameter. In summary,
Eq. (9) reduces to



G.P. Abde/a/ et aJ. I Composite Structures 56 (2002) 413-422 417

logical model is therefore necessary to predict the ac
cumulation of damage during cyclic loading, as it is
described in Section 3.

3. Cyclic loading

Then, substitute the thermodynamic forces as

5Ymn
dYmn = -~-dupq • (24)

u(Jpq

Since Eq. (24) can be evaluated explicitly from Eq.
(12), it is possible to write Eq. (23) as

Fig. 2. Computational procedure.

4. Computational procedure

(25)

The computational procedure is illustrated in Fig. 2.
First, for a fixed strain amplitude S, one loading cycle is
analyzed using the quasi-static model described in Sec
tion 2 to determine the orthotropic damage tensor Dr of
each phase, the damage decomposition tensor ar of each
phase (Eq. (29»), and the estimated life N of the lamina
CEq. (18).

A finite increment of the number of cycles ~n is then
selected. This can be selected as the lowest remaining life
in the structure, as the number of cycles to the next
stress amplitude change, or any other user selected num
ber of cycles. The magnitude of the damage tensor is
then computed with Eq. (20). The orthotropic damage

dDt} = }{,'jpq dapq

in terms of the damage-stress tensor X. Using Eq. (25)
and the average stress theorem at the lamina level

dDL = XL : dO' = XL : (vfdaf + vmdam). (26)

Substituting the fiber and matrix stress we get

dDL = XL : (vfX-f : dDf + vmX-m : dun). (27)

Using the chain rule

~~~ = rlXL
: X-r (r = f, m). (28)

Then, using Eq. (28) into (27) we get the damage
decomposition tensor for phase r = f, m as

r aD aD oDL

C( = aDr = aDL : cDr = constant, (29)

which can be used to decompose the total damage into
the damage in each phase according to Eq. (22) [1]. A
procedure to evaluate the derivatives in Eq. (29) is given
in Appendix A.

(23)

Use of a scalar fatigue damage evolution reduces the
amount of fatigue data needed to a minimum, since only
two parameters need to be adjusted in the isotropic
damage model. Stress redistribution that results from
orthotropic damage is recovered by re-computing the
relative magnitude of damage among the three principal
material directions. Stress redistribution among the
phases is also accomplished by distributing the scalar
damage into the contributions of fiber, matrix, and in
teraction effects.

The scalar model of Arnold and Kruch [3] was used
to track the magnitude of damage accumulated as a
function of the number of cycles n. The number ofcycles
to failure N is predicted as

1-(1 _ gP-i] I-a
N(n) - n (18)

- F£(l - (1.)([3 - 1) ,

where 0: and Pare parameters adjusted using an exper
imental S-N curve of a laminate, On is the scalar mag
nitude of the integrity tensOf, computed from Eq. (17) as

an = (QijQij)1/2 (19)

and the normalized stress amplitude Fm is defined in [3]
in terms of experimental parameters defined in Table 4.

From Eq. (18), the scalar magnitude of the damage
tensor can be calculated as

_ [ ( n ) 1/0-«)] 1/(1+~)
Dn - 1 - 1 - N . (20)

The magnitude of fatigue damage Dn is used to up
date the magnitude of the orthotropic damage tensor as

Dn(n + ~n)
Djj(n + on) = D.(n) Djj(n). (21)

The next step is to decompose the damage into fiber
and matrix damage. Experimental data suggest that the
rate of damage accumulation dD/dn is approximately
constant fOf most of the fatigue life, with faster accu
mulation near fracture [12]. Therefore, it is possible to
assume that the total increment of damage dD decom
poses into fiber and matrix damage (r == f, m) as

dDll = aij;/ dDij, (22)

where a.f is the damage decomposition tensor for phase
r = f, ffi, L, which is derived as follows. Start with the
consistency condition
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Fig. 3. Predicted and experimental, quasi-static, shear stress-strain curve for carbon/epoxy T300/5208 unidirectional lamina.

cycle. For each phase (fiber, matrix, and lamina), there
are three parameters: C1, c2' in the evolution law Eq.
(14) and the damage threshold 1'0 in Eq. (9). The nine
parameters are determined by modeling quasi-static
loading tests for which data are available. The proce
dure is illustrated using available data, shown in Table 1
for T300/5208 carbon/epoxy composite [10].

First, a longitudinal tensile test (ASTM 03039 [4]) is
simulated. The fiber parameters (c{, c~, y~) are adjusted

Parameter Fiber

Table 3
Static parameters for T300/5208

tensor of the lamina is then scaled up with Eq. (21).
Then, the damage tensor is decomposed into the phases
using Eq. (22).

At this point, with n cycles applied, the quasi-static
model is used again to refine the damage tensor Dr of
each phase. The stress is redistributed using Eq. (3) at
the laminate level and using Eq. (5) at the constituent
level.

The procedure is repeated until the remaining life is
equal to zero. The pair (S, N) obtained in this way is
used to plot one point in the predicted S-N curve. The
procedure is repeated for several values of strain am
plitude S until the complete S-N curve is generated. The
predicted curve is then compared with the experimental
S-N curve and the parameters IX and f3 in Eq. (18) are
adjusted to minimize the difference.

Nine model parameters (three per phase) are neces
sary to track the evolution of damage within one loading

Ct

C2

Yo
CD

Cs

1.0
-1.1 x lOs
-6.5
1.0
1.0

Matrix

1.0
-4.2 X 106

2.0
1.0
1.0

Lamina

1.0
-1.5

0.0
1.0
1.0

Table 4
Fatigue parameters for T300/5208

Parameter Symbol Value Method of determination

Static tensile strength (OPa)
Longitudinal to transverse normal strength ratio
Longitudinal to transverse shear strength ratio
Longitudinal to transverse normal fatigue limit ratio
Longitudinal to transverse normal normalizing stress amplitude ratio
Longitudinal to transverse shear fatigue limit ratio
Longitudinal to transverse shear normalizing stress amplitude ratio
Fatigue limit (MPa)
Normalizing stress amplitude (OPa)
Fatigue life coefficient

Fatigue life exponent p

1.55
29
2.5

12.48
12.0
0.8
0.95

148
2.5
0.2

12.6

Experimental
Experimental
Experimental
Experimental
Experimental
Experimental
Experimental
Experimental
Experimental
Adjusted with laminate S-N
curve
Adjusted with laminate S-N
curve
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Fig. 4. Predicted and experimental S-N curve for [451-45]8 carbon/epoxy T300f5208.

so that at failure the fiber stress equals the fiber strength
~f and the fiber damage equals the known value Df =
1 - exp(-11m), where m is the Weibull modulus [15,28],
which is available [14,21,22,30] (Table 1).

Second, a transverse tensile test is simulated [4]. The
matrix parameters (cf,~ , y:r) are adjusted so that at

failure the transverse stress equals the known transverse
strength of the composite F:n and the matrix damage
equals~ = 1/2 as estimated by [13] (Table 1).

Next, adjust the lamina parameters (cr, C~t yk) to
minimize any discrepancies in the shape of the shear
stress-strain plot of a unidirectional lamina, as seen in
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Fig. 5. Predicted and experimental S-N curve for [30/-30]5 carbon/epoxy T300/5208.
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Fig. 6. Predicted and experimental S-N curve for [O/90/45/-45]s carbon/epoxy T300/S208.
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The parameters tX and f3 given in Table 4 were ad
justed to fit the S-N data of [45/-45]28 carbon/epoxy

T300/5208 with R = 0.1 [37], as shown in Fig. 4. The
remaining parameters in Table 4 are obtained directly
from experimental data [3,10,12,26,37].

Keeping all the parameters fixed, the 8-N curve of
T300/S208 [0/30/-30]68 laminate [26], also atR = 0.1, was
predicted and compared with experimental data in Fig. 5.
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Fig. 7. Effect of strain ratio R for [O/90/4SI-4S)s carbon/epoxy T3001S208.
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now differentiate Eq. (4) with respect to ML [8]

oMUra ( f Mf Bf mMm Bm )J.aML = C ijkl kluv + C ijkl kluv ~~
mnpq

(
f aM£kl f m °Ml}kl Bm) L+ C OML Bkluv + C OML kluv Muvra

mnpq mnpq

Using the same parameters, the predicted and ex
perimental S-N curves of T300/5208 [0/90/451-45]8
laminate [12], also at R = 0.1, are shown in Fig. 6.

The effect of the strain ratio R on the number of
cycles to failure of the 90° lamina of the [0/90/45/-45]s
laminate is shown in Fig. 7.

5. Conclusions

oM~mn oM~mn oot oD~
aM!oxz = aot oQ~ oMloxz

r=f,m

(no summation),
(A.3)
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