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ABSTRACT: An analytical model to predict the linear viscoelastic behavior of
thin-walled laminated fiber-reinforced plastic (FRP) composite beams is presented. Using
the correspondence principle, this new model integrates micro/macro-mechanics of com­
posites and mechanics of thin-walled laminated beams to perform beam. analyses in the
Laplace or Carson domains. The analytical expressions for beam relaxation coefficieQts are
obtained. Using a collocation method, the flexural creep behavior of beams in the time do­
main is numerically solved. Predictions by the present model are compared favorably with
experimental data for glass fiber-reinforced plastic structural laminates under tension and a
box-beam under bending. The influence of beam fiber architecture and fiber volume frac­
tion on the linear viscoelastic response for a wide-flange beam is examinedto show that this
model can be efficiently used in the flexural creep analysis and design of FRp· structural
shapes.
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INTRODUCTION

CREEP INDUCED DEFORMATION or damage ofengineering structures may even­
tually lead to exc,essive deflections and catastrophic failure. Therefore, it is

critical to predict the long-term response of a structure during its lifetime service.
Viscoelasticity is an important concept for determining long-term behavior (ser­
vice-life time) of structures. Viscoelasticity permits us to describe the behavior of
materials exhibiting strain rate effects under applied loads. These effects are illus­
trated by creep phenomena under certain loads or by stress relaxation under a con­
stant deformation. For most composites, the viscoelastic behavior is primarily due
to the matrix. Composite materials are reinforced with fibers in part to resist creep
deformation. The magnitude of the creep deformation induced in a composite
structure under a certain loading is influenced by a variety of factors, such as mate­
rial architecture, temperature, humidity, loading frequency, and stress level. Due
to the variety of composite materials, it may be costly and difficult to characterize
the creep behavior of composites through experimental tests. Also, the real time
experimental tests under different temperature and moisture conditions are very
time consuming and difficult to carry out. Therefore, a need exists to develop an
analytical model which can accurately predict the creep behavior of composite
structures and to verify this model with experimental data. The worldwide applica­
tions of cost effective pultruded glass fiber-reinforced composites in civil con­
struction provide a motivation for the development of analytical models to charac­
terize the long-term creep behavior of structural components made of composite
materials.

In practical engineering design, deflections and stresses are very important cri­
teria in reliability and serviceability evaluations of structures. The potential
long-term viscoelastic, or creep behavior, response under loading must be antici­
pated and accommodated in design, because creep can lead to a gradual decrease
of the..structural effective stiffness and result in unacceptably large deformations.
These effects may take place during a long time and may induce failures due to
creep rupture. Therefore, the viscoelastic behavior of a composite structure over
its life-span must be considered in design practice. Since most engineering struc­
tures are designed within the linear elastic range of the material and likely to func­
tion within a relatively narrow range of stresses, the material can be assumed to be
linearly viscoelastic [1].

There is limi.ted information available on flexural creep ofcomposite structures.
Lee and Ueng [2] proposed a "law of mixture" model for the creep behavior of a
unidirectional composite to study the creep phenomenon of simple composite
structures, such as a 3-bar truss and beam bending problems. However, the model
predictions were not compared with any experimental data. Holmes and Rahman
[3] conducted an experimental investigation on the creep behavior of glass rein­
forced plastic box-beams. The rate of tensile, compressive, and shear creep strains

as well as deflections were measured. However, no theoretical predictions related
to their experimental data and materials exist.

Several mathematical models have been developed to predict the viscoelastic
behavior of materials. These mechanistic models are essentially composed of
springs and dashpots to simulate the elastic and viscous responses of materials
(e.g., Maxwell and Maxwell-Voigt Models), where the spring and dashpot repre­
sent the initial elastic response and the time dependence property of the material,
respectively [4]. The viscoelastic behavior of matrix and fiber can be represented
by these models. Numerous micromechanics models are available to evaluate the
viscoelastic properties of composites and can be used to predict the
macromechanics properties ofcomponents. Hashin [5,6] first used the cylinder as­
semblage model to evaluate the macroscopic viscoelastic properties of fiber-rein­
forced materials. In the composite cylinder model, the correspondence principle is
applied between the elastic and viscoelastic relaxation moduli of composites with
identical phase geometry. Christensen [7] applied the same analogy with the com­
posite sphere model to predict the effective modulus ofcomposite materials. Laws
and McLaughlin [8] estimated the viscoelastic creep compliance ofcomposites by
applying the self-consistent method. Wang and Weng [9] adopted the
Eshelby-Mori-Tanaka method to obtain the overall linear viscoelastic properties
ofcomposites with different geometries of inclusions. The above studies indicated
that many well developed micromechanical models for the elastic case could be
extended to the viscoelastic range of composites and could efficiently predict the
macroscopic behavior of the materials over time.

A model for linear viscoelastic solids with periodic microstructure was pre­
sented by Barbero and Luciano [10] and Luciano and Barbero [11]. They extended
models for elastic solids with periodic microstructure [12,13] to the viscoelastic
case and developed analytical expressions for the relaxation moduli of linear
viscoelastic composites with periodic microstructure [11]. They derived
closed-form expressions in the Laplace domain for the coefficient of the linear re­
laxation tensor of composite material with periodically distributed elastic inclu­
sions (fibers) in the linear viscoelastic matrix. Assuming that the viscoelastic be­
havior of the matrix can be represented by a four-parameter (Maxwell-Voigt)
model, the inversion of the linear relaxation tensors to the time domain was carried
out analytically for composites reinforced with long fibers. Their micromechanics
model can predict the creep response of fiber-reinforced composites with trans­
verse isotropy without the use ofempirical correction factors. Any geometry of fi­
bers and spatial distribution of inclusions can be modeled, and it can be further ap­
plied to predict the long term viscoelastic behavior of fiber-reinforced plastic
(FRP) composite structures. Harris [14] and Harris and Barbero [1] combined this
model with a macromechanics model to predict the viscoelastic behaviors ofcom­
posite laminates under tensile loads, and a good correlation with experiments un­
der various environmental effects was obtained. It is envisaged that this mi-
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(1)

Viscoelastic Constitutive Equations and Material Properties

J
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VISCOELASTICITY OF LAMINATED COMPOSITE BEAMS

then Equation (1) can be expressed in the Carson domain as

If there is no stress or strain existing before time t =0, the constitutive equation

for viscoelastic material [21] can be expressed in the time domain as:

where ](t) and E(t) are the I-D creep compliance and relaxation tensors, respec­

tively. Using the Correspondence Principle, a relationship between the relaxation

tensor and the creep compliance tensor can be found. The Carson transform [8] of

a functionf(t) is denoted as

The viscoelastic problem of composite materials with periodic microstructure

ha~ been presented by Luciano and Barbero [11]. The assumptions used are that

the matrix is linear viscoelastic and the fibers are elastic. The viscoelastic Corre­

spondence Principle is applied and the problem is solved in the Carson domain,

where the fonnulas for the relaxation functions of transversely isotropic compos­

ites are expressed in terms of the properties of the matrix and the fibers and account

for the geometry of the inclusions. The ply relaxation matrices in the Carson do­

main can then be obtained in terms of the relaxation tensors by usin$ I?la!1e stress

assumptions. In the Carson domain, the laminate relaxation matrix (A, B, D) can be

derived using Classical Lan'ination Theory (CLT), and the beam relaxation coeffi­

cients can be further obtained based on the Mechanics of Laminated composite

Beams (MLB); the fonnulas for the beam linear viscoelastic behavior under bend­

ing can be derived in the Carson domain, as shown in the following sections.

cro/macromechanics model can be combined with a structural model to predict the

linear viscoelastic behavior of composite structures at the component level (e.g.,

beams and columns).
Several structural models are available to evaluate the linear elastic behaviors of

laminated composite beams under bending [15] and torsion [16,17]. The approach

proposed by Whitney et al. [18] and Tsai [19] considered that the effective moduli

of a laminated beam are computed from the reciprocals of the components of the

corresponding laminate compliance matrix, which is obtained by full inversion of

the laminate stiffness matrix. The basic assumption in this approach is that the re­

sultant force and moment generated by the transverse normal stresses are negligi­

ble. This approach was adopted by Barbero et al. [15] to model thin-walled lami­

nated composite. beams with open or closed-sections using first-order shear

deformation theory. In the Mechanics of Laminated Beams (MLB) [15], the bend­

ing response of FRP beams is evaluated by considering that the stiffness coeffi­

cients of a beam are computed by adding the contributions of the stiffnesses of the

component panel laminates, which in turn are obtained from the effective moduli

of laminates. This model accounts for membrane (in-plane) and flexure stiffnesses

of the thin-walled panels, and the beam deflections are obtained from

Timoshenko's beam solution, which contains both bending and shear deflections.

Davalos et al. [20] showed that an experimentally-verified micro/macromechanics

model combined with MLB can accurately predict the linear elastic beam response

of FRP structural shapes in bending. In this combined micro/macromechanics

model, the ply stiffnesses and panel laminate properties are predicted by

micromechanics formulas [13] and macromechanics, and the overall response of

FRP beams in bending is analyzed by MLB. However, no theory has been devel­

oped for linear viscoelastic behavior of FRP structural shapes. The successful ap­

plication of micro/macromechanics models with MLB in the elastic domain pro­

vides motivation for developing a model for the viscoelastic response of laminated

composite beams.
Therefore, the objective of this study is to extend the model of linear viscoelastic

composites with periodic microstructure to predict the creep responses of

thin-walled laminated FRP beams. Based on the Mechanics of Laminated

composite Beams (MLB) [15,20], the analytical expressions for beam relaxation

coefficients in Carson domain are developed, and the long term bending responses

of laminated beams are derived. The inversion to the time domain is solved numer-

.ically by a collocation method [21] and the creep behavior ofbeams is analyzed. In

addition, a systematic computer code to predict behaviors of laminated FRP

composite beams is developed. A pultruded FRP box-beam is

experimentally tested under sustained loading to validate the proposed model.

Finally, the influence of material architecture, such as fiber orientation and

fiber volume fraction, on the creep flexural responses of FRP beams is dis­

cussed.

..,.
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where the Carson transform of the creep compliance M(s) and the relaxation

tensor L(s) satisfies the following relation:

which is the usual formula for the calculation of i(s) when M(s) is given or vice

versa [8].

Since most conventional fibers used today in composite materials display little

or no creep effects, the fibers can be assumed to behave elastically. Hence, the

viscoelastic compliance moduli of composites depend mainly on the viscoelastic

response of the matrix. In this study, the matrix is assumed as linear viscoelastic

and the fibers as elastic. By using this assumption, we can obtain the compliance

moduli of composites using micromechanics formulas [11,22]. The viscoelastic

properties (creep compliance) of matrix in the secondary creep (steady-state)

range are approximated by the Maxwell model [4] as

Since the fibers remain elastic, the Lame properties of fibers in terms of the fiber

modulus E1 are

(9)

(8)

EI

J.11 = 2(1 + vI)

Eo
f.Lo = 2(l+vo)

E1VI
Al =----..;;;-----

(1 +v l )(I- 2vI)

,.. Eovo
Ao = (1 + vo)(l- 2vo)

(4)L(s)M(s) = M(s)L(s) = I

1 t
M(t) = EM + IJ.M (5)

Consistent with the literature [9,21], t~e Poisson ratios of matrix (vo) and fibers

(VI) are assumed to remain constants in time.

and the Lame properties of matrix are expressed in terms ofEo as

MicrolMacromechanics of Composites in the Carson Domain

In this section, the analytical expression of relaxation tensors for unidirectional

composite with periodic microstructure are first introduced. Then, transversely

isotropic relaxation tensors in the Carson domain are obtained by an averaging

procedure. An FRP laminate or panel that is manufactured by the pultrusion pro­

cess can be simulated as a layered system, and the panel's relaxation moduli in the

Carson domain can be computed by Classical Lamination Theory (CLT) in terms

of the ply relaxation tensors.

UNIDIRECTIONAL COMPOSITES WITH PERIODIC MICROSTRUCTURE

Using Fourier series techniques to describe materials with periodically.distrib­

uted voids or inclusions, the mechanical behavior of composite materials with pe­

riodic microstructure was first introduced by Nemat-Nasser and Taya [23]. A gen­

eral procedure to analytically evaluate the overall properties of composites with

periodic elastic inclusions or voids was developed by Iwakuma and Nemat-Nasser

[12]. This procedure can be extended to estimate the overall elastic moduli ofcom­

posite materials but it entails considerable numerical effort. Luciano and Barbero

[13] presented closed-form expressions for the coefficients of the stiffness tensor

and the elastic moduli of unidirectional composite materials with periodically and

randomly distributed fibers. Applying similar analytical expressions in the

Laplace domain, they obtained the overall linear viscoelastic relaxation tensors for

composites with periodic inclusions [11].

(7)

(6)1 1,.. +----
M(s) = EM SIJ.M

where 1/EM is the initial modified compliance modulus of matrix; EM is the elastic

modulus Ee plus the effect of all primary creep deformations lumped at time t =0;

J.1M is the inverse of the slope of the secondary compliance creep. Both values are

obtained from the creep testing of the matrix only. EM is not the true initial elastic

modulus of the material, because the Maxwell model neglects the primary creep

region which typically occurs over a short time compared to the secondary creep

response of the material. Since the modeling of the primary creep that occurs over

a short period is often negligible in structural design, and the main interest is on the

resp~nse for a long period of time, the Maxwell model provides a good representa­

tion over long-time ranges for both neat matrix and composites [1] and is used in

this study. The expression of Equation (5) in the Carson domain becomes

·From Equation (4), the effective relaxation modulus Eo of matrix, which is the in­

verse of creep compliance [Equation (6)], is expressed as

,..,.. 1 SEMJ.LM
Eo = L(s) =-,..- =--­

M(s) EM + SJ.LM

..
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For unidirectional composites reinforced by long circular cylindrical fibers
along the Xl axis, the linear vi~coelastic relaxation tensors (i*) in the Carson do­
main are expressed as (the expressions in the Laplace domain are given by Luciano
and Barbero [11])

L"'* ( )- \' 2'" V [S~ 2S6S3 aS3 Sg - Sf aS6 + bS7 a
2

- b
2

J/H
'11 s - ~o + J.10 - I - - -- - - + + +

,15 ii5g iioc ii5g2 iiogc 4c2

S3 =0.49247 - 0.47603VI - 0.02748Vl

S6 = 0.36844 - 0.14944VI - 0.27152V}

S7 =0.12346 - 0.32035VI + 0.23517V}

(11 )

"'* _ " [2S3 A -1 4S7 ]-1L44 (s) - J.10 - VI --,,- + (J.10 - J.1I) + -",-~-
J.10·· J.10(2 - 2vo)

L~(s)=iio -Vt [- ~: +(iio -JLt)-IT

I

where VI is the fiber volume fraction, and the coefficients of a, b, c, g and H are
given by

"* "*Cll (s) =Lll (s)

where eis the rotation about the Xl axis of the i * tensor and T(9) is the fourth-or­
der orthogonal rotation tensor. After the integration of Equation (12), the relax­
ation tensors of transversely isotropic material (C) are expressed explicitly in
terms of the relaxation tensors (i*) of unidirectional composites as

VISCOELASTIC PROPERTIES OF TRANSVERSELY ISOTROPIC MATERIAL
Due to the periodicity of the microstructure, the linear viscoelastic relaxation

tensors for unidirectional composite represent an orthotropic material with square
symmetry. To model composites with transverse isotropy, the following averaging
procedure [21] is used to obtain the relaxation tensor C* of the transversely isotro-

pic material

(12)c* =!J1T [T(9)]i *[T(9)]T d9
1T 0

"* "'*CI2 (s) = LJ.2 (s)

(10)

i~2(S) = ~o +Vlb[~ 2 56 ~ 57 _ a + b]/H
2cJ.10 2cJ.1og 4c2

i* ( ) _ \' +V [aS7 ba + b
2

]~3 S -~o I -A-- /H
2J.1ogc 4c2

"* '" " [as as a
2

- b
2

]L22 (s)=AO +2J.10 -VI _~+_",_6_+ /H
2J.1oc 2J.1ogc 4c2

a = J.1I - iLo'- 2J.1IVo + 2,10vI

b = vIJ.11 - iLovo - 2J.1I VOVI + 2,1Ivovi
"* 3 "'* 1 "'* 1 "'*C22 (s) = - L22 (s) + - L23 (s) + - L44 (s)

442
(13)

c = (,10 - J.1I)(J.1I - ,10- 2J.1IVo - ,10Vo + J.11VI + 2,10vI + J.1I vI + 2,10VovI - 2J.11VoVI)

g =2 - 2vo

'" * 1 A* 3 "'* 1 "'*C23 (s) = -L22(s) + -L23(s) - -L44 (s)
442

and
aS2 as S a(S2 - S2) S (b2 - a2) S (a2 - b2) + S (ab + b2)H=_3_---2....1.+ 6 7 + 3 + 6 7

2iLfic . Jlfigc 2,1fig2c 2tloc2 2iiogc2

A* "'*C66 (s) =L66 (s)

a3 - 2b3 - 3ab2
+------

8c3

The series S3' S6' and S7 are obtained from Nemat-Nasser et al. [23] accounting
for the geometries of the fibers and are expressed as parabolic functions [13]:

"* 1 "* 1 "* 1 "'* 1 "*' 1 "*C
44

(s) = -C22(s) - -C23 (s) =- L22(s) - - L22(s) + - L44 (s)
2 244 2

The constitutive equation (Hooke's law) for a transverse~y isotropic material
[21], with the axis of symmetry along Xl' is then expressed as
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"'* "'* "'* 0 0 0<111
Cll C12 CI2 EllA* A* A*

<122
C12 C22 C23 0 0 0

E22

<1
33

, "'* A* A*
0 0 0

A
C12 C23 C22 E33= '" ~ (14)

"'*(J'23 0 0 0 e44 0 0 'Y23

<113 0 0 0 0
A*

0 113C66
<T12

0 0 0 0 0 "'* 112
C66

To model a ply, the assumption of plane stress is used, and the constitutive rela-
tionship for a unidirectional composite reduces to
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reduced relaxation coefficients Q*are obtained from Equation (16); their trans­
formed reduced relaxation coefficients are obtained through appropriate transfor­
mation matrices. The CSM layer is assumed to be isotropic in the plane, and the
properties can be obtained from approximate relations [24]. A new model for de­
termining the properties and reduced relaxation coefficients for a CSM layer was
presented by Harris and Barbero [1]; adopting the averaging procedure in the plane

as

where [B(9)] is the transformation matrix for in-plane rotation and is given by

[

cos2 8 sin2 9 -sin 9cos9 ]

[B(9) = sin2 9 cos2 9 2sin 9cos9 (18)

sin 9cos 9 - sin 8cos 9 cos28 - sin2 8

After completing the integral, the following reduced relaxation coefficients for

a CSM layer are given explicitly as

"'* 3 "'* 1 "'* 3 "'* 1 "*
(Q11)CSM = SQI1 + "4 Q12 + SQ22 + 2"Q66

(17)'" 1 J'IT "(Q*)CSM = - [B(8)] [Q*] [B(8)]T d9
1l' 0

(15){~1I}E22

111
{

<111 } Q~ Q:; 0
'" "'* "'*
~22 =Q12 Q22 A

O

<T12 0 0 0:6

where the reduced relaxation coefficients Q* are given by "'* "'* 1 "'* 3 "'* 1 "* 1 "*
(QI2 )CSM = (Q21 )CSM = SQI1 +"4 QI2 +SQ22 - 2"{4;6 (19)

"'* '" "'*2
QlI = Cl~ - C12

"'*C22

"'* 3 "'* 1 "'* 3 "* 1 "*
(Q22)CSM = SQlI + "4 Q12 + SQ22 + 2"0i6

'" * A* A A* "'*
QI2 =Q = C* C23CI2

21 12 - ----"'*C22
(16)

"'* 1 "'* 1 "'* 1 "'* 1 "*
(0i6kSM = SQI1 - "4 Q12 +SQ22 + '2 0i6

with all other coefficients being equal to zero.

"'* '" A*2
Q22 =Ct2 - C23

"'*C22

"'* "'*Q66 = C66

For a typical pultruded FRP section, each laminate or panel can be simulated as
a laminated configuration and mainly includes the following three types of layers
[20]: (1) Continuous Strand Mats (CSM); (2) angle- or cross-ply Stitched Fabrics
(SF); and (3) rovings or unidirectional fiber bundles. The SF and roving layers are
usually modeled as unidirectional composites with distinct orientations, and their

LAMINATE RELAXATION COEFFICIENTS
Once the reduced relaxation coefficients ofcorresponding layers are computed,

the relaxation matrices of an ith panel ([Al;, [B]i' [Dl; )in the Carson domain can
be computed from Classical Lamination Theory (CLT). In particular, the panel
creep compliance matrix, which is obtained by inversion of the extensional relax­
ation matrix [Al;, is used to compute the creep compliance coefficients and relax­
ation moduli of the ith panel (Ex,Ey,Gxy), as shown in the work by Harris and

Barbero [1].

Mechanics of Thin-Walled Lamination Beams in the Carson Domain

A formal engineering approach to the mechanics of thin-walled laminated
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(23)

(22)

"0 all a12 a16 ~11 ~12 ~16 NxEx

"0 " NyEy (112 (122 (126 ~12 ~22 ~26
"0

(l16 (l26 (l66 ~16 (326 (316 NX)."YX)' = A ~ (21)
Kx ~11 ~12 ~16 811 812 816 Mx

Ky ~12 ~22 ~26 812 822 826 My
"

~16 ~26 816 826 866 MX).KX).
~66

Nx All A12 A16 811 812 816
"0
Ex

Ny A12 A22 A26 812 822 826
"0Ey

Nxy A16 A26 ~ 816 826 866
.1'0.0

=
Exy ~ (20)

Mx 811 812 816 Dll D12 DI6
.1'0.0Kx

My 812 B22 B26 DI2 D22 D26
"0Ky

Mxy B16 B26 B66 D16 D26 D66
"0Kxy

Ny =My =0

Considering Equations (22) and (23), Equation (21) reduces to

For bending without torsion, we can further state that

MX). =0

where [Al;,[8];, and [b]; are the ith panel relaxation submatrices in the Carson do­
main as introduced in laminate relaxation coefficients. By full inversion of the
panel relaxation matrix [Equation (20)], we can express the midsurface strains
(E~, E~, ~~.) and curvatures (Kx ' Ky , KX).) in terms of the creep compliance coeffi­
cients and panel resultant forces as:

where [al; ,[~l; and [8l; are the panel creep compliance submatrices in the Carson
domain. Consistent with beam theory and based on the above given assumptions,
we consider for each panel (Figure 1) that the resultant force and moment gener­
ated by the transverse normal stresses (in the y; direction) are negligible:

x, y, z: local coord. for ith panel I " Nx

{EX}
all ~ll (116

"X, Y, Z: global coord. for the thin-walled beam "
~ll 811 ~16 Mx } (24)K =

1:' ~16 a66
"

I a 16 NX).Figure 1. Global (beam) and local (panel) coordinator systems.

BEAM RELAXATION COEFFICIENTS
For a laminated panel, the general constitutive relation between resultant forces

and moments and midsurface strains and curvatures is given by CLT as

beams (MLB) [15],'based on kinematic assumptions consistent with Timoshenko
beam theory, is incorporated.in this study to model the overall viscoelastic re­
sponse of pultruded FRP sections.

BASIC ASSUMPTIONS AND COORDINATE SYSTEMS
Straight FRP beams with at least one axis of geometric and material symmetry

are considered. The FRP sections are modeled as assemblies of flat panels. We de­
fine a global coordinate system (X, 1': Z), with the Z-axis parallel to the axis of the
beam, and a local coordinate system (x;, y;, Zi) for each panel, with t~e z-axis per­
pendicular to the plane of the panel and the xi-axis as the longitudinal direction of
panel (Figure 1). Based on Timoshenko beam theory, two basic assumptions are
used in MLB. First, the beam contour does not deform in its own plane, and there­
fore, the in-plane (beam cross-section) motions are functions of the beam axis
only. The second assumption is that a plane section originally normal to the beam
axis remains plane, but not necessarily normal to the beam axis due to shear defor­
mation.
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where the overbar identifies a panel quantity. By restricting the off-axis plies to be
balanced symmetric (for most pultruded FRP sections, the off-axis plies are manu­
factured with balanced symmetric patterns), the shear-extension (&16) and
shear-bending (~16) coupling creep compliance coefficients in Equation (24) van­
ish:

The shear correction factor Ky in the Carson domain can be derived in a similar
manner as for the elastic case [15]. As an approximation in design [20], the shear
correction factor for pultruded sections can be taken as 1.0. In this study, we as­
sume that the shear correction factor Ky equals 1.0 for pultruded FRP sections and
remains the same in both elastic and viscoelastic domains.

&16 =~16 =0 (25)

Then, by inverting the creep compliance matrix in Equation (24), we can obtain
the relaxation matrix of the ith panel of a thin-walled laminated beam as:

Fix Ai Bi
o {~}"

Ex

Mx = Bi Vi o ~x (26)

NX). 0 0 ~ 1x

PREDICTION OF BEAM CREEP DEFLECTIONS AND STRAINS
Viscoelastic displacement and rotation function can be obtained by solving the

Timoshenko beam equilibrium equations. Viscoelastic deflections at discrete lo­
cations can be computed by employing energy methods that incorporate the beam
bending and shear relaxation coefficients. General formulas for maximum bend­
ing and shear deflections for typical beam loading and boundary conditions are
available in manuals. For example, the creep central deflection for a three-point
bending of a beam of span L and load Py applied at the center is:

Thus, in the present formulation, the deflection components due to bending and
shear can be separately evaluated.

For the ith panel, the midsurface viscoelastic strains and curvatures in terms of
the beam resultant forces and moments are calculated as

" "" "
where" Ai' Bi ,Vi' and F; are, respectively, the ith panel extensional, bending-exten-
sions, bending, and shear relaxation coefficients in the Carson domain.

General expression for the beam relaxation coefficients are derived from the
beam variational formulation [15]. Hence, beam axial (Az ), bending-extension
coupling (By), bending Dy ), and shear (fry) relaxation· coefficients that account
for the contribution of all the panels can be computed as:

n "

Az =LAibi
i=1

" P, L3 PyL
" " +8 =~+-,,-,,-
8 Total =8Bending Shear 48D

y
4K

y
F

y

(29)

n " "
By =L[Ai(~ - Yn ) + Bi cos<f>;]bi

;=1 (27)

~ _ Nz - My
Ey --,,-+(lj -Yn )-,,-

Az Dy

by = t[A; ((Y; - Y" t + hi sin2 <n) + 2B;(~ - ~ )cos<f>; + Vi cos2 <f>;]b;
1=1 12

n "
fry =LFibi sin2 <f>;

i=1

" My s~- - --co 'Pi
K}' - by

~ _ Vy .
'YX)' - ~sln<f>;

KyFy

. (30)

By imposing the condition By = 0, the neutral axis of bending is defined by the
coordinate Yn as

Az

n" "

L(~A; +cos<!>;B;)bi
y = .:.-;=1=--- _

n (28)

where Nz, My, and Vy are, respectively, the resultant internal axial force, bending
moment, and shear force acting on the beam. Then, applying Equation (26), we can
obtain "th~ resl}ltant forces and moments acting on the ith
panel: Nx' Ntx and NX)'. Combining the constitutive relations ofEquation (21) with
the assumptions of Equations (22) and. (23), the midsurface creep strains and cur­
vatures on the ith panel are obtained as:
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Computer Program: FRPCREEP

In this study, we use both power-law and linear functions to fit the numerical
data of viscoelastic responses in the time domain. A power-law is given as

(34)

(35)y=a+'JlX

h(t) = Co + Cnt l1

where y = In(h(t) - Co) and x= In(t). A linear regression technique is then used to
obtain the parameters a and 11. Since the secondary creep behavior of composites
often shows a linear response with time, we could also use a linear function di­
rectly to fit the numerical data of viscoelastic response. In this study, the "multiple
correlation coefficient," R2, is used to evaluate the goodness-of-fit.

where for t = 0, we get Co = h(O). The natural log of Equation (34) is expressed in
compact form as

Based on the above viscoelastic theory for FRP beams and numerical models for
the solution of the viscoelasticity ofcomposites in time domain, the computer pro­
gram FRPCREEP (flowchart shown in Figure 2) is developed to predict the

NUMERICAL ANALYSIS OF COMPOSITE IN TIME DOMAIN

Collocation Method

The equations for viscoelastic analysis ofcomposite beams presented above are
valid in the Carson domain. The inversion of these formulations from the Carson
domain to the time domain can be carried out numerically by using a numerical
'collocation method [21], if the viscoelastic behavior of the matrix is known.

where the overbar identifies a panel quantity. Based on classical lamination theory
(CLT), we can obtain the ply creep .strains through the thickness of each panel
(Ex,E)" and EX).) in the Carson domain. Using coordinate transformations, the ply
creep strains (E

1
, E2' and 1'12) in the Carson domain can also be computed in princi-

pal material directions.
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~O

~llEx all al6
~o'
Ey al2 a26 ~12 Nx
~o

al6 ~16'Yxy = <X.66 Nxy ~ (31)
Kx ~ll ~16 811

Ky ~12 ~6 812
Mx

Kxy ~16 ~66 816

The collocation method [21] performs the inverse Laplace of functions in the
Laplace or Carson domain and obtains discrete values in time domain as

Therefore, there are N + 1 known values available in the time domain, and they

can be fitted by corresponding empirical models.

where h(t) is the time domain function; ](s) and !(s) are, respectively, the func­
tions in the Laplace and Carson domains. This method uses the Legendre polyno­
mials of order N to approximate the solution in the interval of (-1,1); then the
roots of polynomials are shifted and adjusted in the time scale. This numerical in­
version technique provides N output data points (N = 5 is used in this study). An
additional point can be obtained at t = 0 using the initial value theorem:

I.. I .... I I' ~IPly~Strams

nmeDo...la

Figure 2. Computational flowchart of FRPCREEP program.

(33)

(32)

h(t = 0) = lim ](s)
s~oo

h(t) = Laplace-1[](s)] = Laplace-1[!~s)]
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0.100 ,

viscoelastic behavior of composite beams, from the viscoelastic constituent mate­
rial properties to the creep flexural responses of thin-walled· FRP beams. This pro­
gram can predict the creep responses of FRP panels as well as thin-walled beams
under tension or bending.

APPLICATIONS

Several studies on the applications of the above systematic approach are pre­
sented in this section. To validate the model, experimental data on viscoelastic re­
sponses of FRP laminates and beams are compared with the predicted values by
the present theory. Parametric studies are also performed to study the influences of
the fiber archit~cture and fiber volume fraction on creep behavior.
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eo
~ 0.080e
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-0- Linear fitting ofMaxwell model
-0- Power-law fitting ofMaxwell model
- -6-· Experimental data [14]

Viscoelastic Response of Laminates 0.070 I "I

Figure 3. Creep compliance of laminate [(+/-45°/CSM)2]S for 21°C and 12% RH.

Comparisons between experimental and analytical results for composite lami­
nates' under tension are presented, and a parametric study of laminate creep com­
pliance coefficients as functions of fiber orientations is carried out.
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Time (hours)
15 20

-0- Linear fitting ofMaxwell model
-0- Power-law fitting ofMaxwell model
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Figure 4. Creep compliance of laminate [(+/-45°/CSMJ21s for 66°C and 80% RH.
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Table 1. Material constants of vinylester resins by Maxwell model [14J.

GLASS-FRP LAMINATES UNDER TENSILE LOADS
Harris [14] measured the creep responses of neat vinylester matrix and several

glass fiber-reinforced plastic (FRP) laminates under tension. The laminates were
fabricated using glass fibers [Ef = 72.5 GPa (10.5 X 106 psi) and vf = 0.22] and
vinylester resins. The specimens were tested at different temperature and humidity
leveis to study the environmental effects on the creep behaviors. The viscoelastic
behavior of vinylester resins under various environmental conditions was charac­
terized and represented by a two-parameter Maxwell model, as shown in Equation
(5). The material constants of vinylester resins obtained by the Maxwell model for
two environmental conditions are listed in Table 1. Two laminates,
[( +45°/-45°/CSM)2]s and [(90o/+45°/-45°/CSM)3]s, were tested under tensile
loads, and the comparisons of the predicted creep compliances with the experi­
mental data are shown in Figures 3 through 6. The differences at 20 hours between
experiments and proposed model by the power law fitting are about 1.0% (Figure
3) and 6.7% (Figure 4) for the [( +45°/-45°/CSM)2]s laminates under two

Environmental Conditions EM(GPa) p.M (GPa·hr)

.,.
21°C (70°F) and 12% RH*

66°C (150°F) and 80% RH*
3.86

2.62

855.09

165.99
*RH: relative humidity.
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different conditions; whereas for the [(900 /+45°/-45°/CSM)3]s laminates, the
differences are 2.5% (Figure 5) and 1.5% (Figure 6), respectively. As shown in
Figures 3-6, the proposed model can accurately predict the creep responses of
laminates under tensile loads.

Figure 5. Creep compliance of laminate [(90o/+/-45°/CSMJi!s for 21°C and 12% RH.

0.0750 I , ' , , ' I

PARAMETRIC STUDY ON THE CREEP COMPLIANCES OF I +/-9°1s
LAMINATES

Since the resin or matrix is reinforced with fibers to resist in part creep deforma­
tions, the orientations of fiber reinforcement may have significant effects on the
creep resistance of composite materials. FRP laminates with [+/-9°]s lay-up con­
figuration are used to demonstrated the influence of fiber orientations on their
viscoelastic response. The laminate creep compliance coefficients (Sij) versus the
fiber orientation (9) are plotted in Figure 7. As shown in Figure 7, the creep
compliances S11 and S22 are antisymmetric to each other, and the curves also illus­
trate that the laminates have the lowest creep compliance (S66) at 9 = +/-45°, which
implies that the [+/-45°]s laminates provide the best creep· resistance under
in-plane shear loading.

Viscoelastic Response of FRP Beams

20IS10

Time (hours)

--0- Linear fitting ofMaxwell model
-0- Power-law fitting ofMaxwell model
--6-· Experimental data [14]
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To demonstrate the accuracy of the present model to predict flexural creep of
beams, a pultruded FRP box-beam is tested under sustained loading over a 5-day
period, and the experimental data are computed with the present model. Also, a
study on the influence of fiber architectures on flexural creep of an FRP
wide-flange beam is presented.

CREEP BEHAVIOR OF A GLASS FRP BOX-BEAM
A pultruded FRP box-beam manufactured by Creative Pultrusions, Inc., Alum

Bank, PA is tested under bend loading, and its creep flexural behavior is evaluated
by applying a sustained load over a 5-day period. The beam was tested at room
temperature and relative humidity. The beam is simply supported with a span of
3.66 m (12.0 ft) and subjected to 1/3-span permanent point loads of 4.5 kN (1.0
kip) each. The box-beam, 101.6 x 101.6 x 6.35 mm (4" x 4" x 1/4"), is manufac­
tured from E-glass fiber and vinylester resin, and each panel consists of two con­
tinuous strand mats and one unidirectional roving layer. Displacement transducers
and strain gages are installed at the beam midspan section and transv~rse deflec­
tion and maximum compressive and tensile strains are recorded over time. The
viscoelastic properties of vinylester resin used in the model are the same as those
listed in Table 1. The results for deflections obtained with Equation (29) are com­
pared to the experimental data (Figure 8). The differences for deflections between
experimental and predicted values at 120 hrs are about 5.4% for linear fitting and
negligible for power-law fitting of Maxwell models. For the maximum compres­
sive strains at the beam midspan (Figure 9a), the percentage differences at 120 hrs

20IS10

Time (hours)

. -0- Linear fitting ofMaxwell model
-0- Power-law fitting ofMaxwell model
- -6-· Experimental data [14]
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~t5 0.11
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Figure 6. Creep compliance of laminate [(90o/+/-45°/CSMJ:Js for 6tr'C and 80% RH.



Figure 7. Creep compliance coefficients of [+/-6Js laminate.
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Figure 9b. Midspan tensile strains at the bottom flange for glass FRP box-beam.

Figure 9a. Midspan compressive strains at the top flange for glass FRP box-beam.
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are about 5.4% for linear fitting and 4.9% for power-law fitting of Maxwell
models; while for the maximum tensile strain, the. percentage differences are
negligible (within 1.6%) for both fitting approaches of Maxwell models. As indi­
cated in Figures 8 and 9, the model predictions correspond favorably to the experi­
mental data.
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Figure 12. Beam creep deflection profile with respect to time.
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Figure 11. Creep deflection versus time for beam with zero fiber volume fraction.

To indirectly validate the proposed model for "isotropic" WF beams, the
viscoelastic behavior of the beam shown in Figure 10 but composed of only
vinylester resin (Vf = 0) is examined first. The beam can be considered to be iso­
tropic, and its deflection under 3-point bending is

Figure 10. Fiber architecture of FRP wide-flange beam.

Table 2. Elastic response comparisons for wide-flange beam.

Span Length L = 3.66 m (12.0 ft)

Loading 3-Point Bending 4-Point Bending

Experimental FRPBEAM Experimental FRPBEAM
Result Type [26] [27] [26] [27]

Bmax (mm/kN) 0.213 0.215 0.199 0.201
Emax (IJ.E/kN) 23.6 25.3 18.0 18.6

FLEXURAL CREEP OF FRP WIDE-FLANGE BEAMS UNDER BENDING
Since there is only limited information available in the literature, an analytical

study on the viscoelastic behavior of thin-walled FRP wide-flange beams is car­
ried out. First, the accuracy of the results is partially checked for the model made of
only vinylester resin without reinforcing fibers (Vf =0). Later, the trends ofpredic­
tions with respect to certain parameters, such as fiber orientations and fiber vol­
ume fractions, are examined. The material properties of the vinylester matrix used
in the model are those given in Table 1 for 21°C (70°F) temperature and 12% rela­
tive humidity.

Based on an optimized design [25], a Wide-Flange (WF) section [304.8 x

304.8 x 12.7 mm (12" x 12" x 1/2")] was produced by industry and tested in the
elastic range. The section lay-up is shown in Figure 10, and the fiber percentages
ofCSM, SF, and roving layers are 5.0%,13.0% and 26.3%, respectively. In Table
2, the measured mid-span maximum elastic deflections and strains compare well
with the predicted elastic micro/macromechanics results [26,27].
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1
EC = L(t) = M(t)

where Ky = 1.0; I and A are the geometric cross-sectional properties; and EC and
GC are the relaxation moduli ofmatrix and obtained from the creep compliance of
Equation (5). Assuming that the Poisson ratio of matrix (vo = 0.35) remains con­
stant in the time domain, the moduli are:

CONCLUSIONS AND RECOMMENDATIONS

The model proposed in this study is used for predicting the creep flexural behav­
ior of thin-walled laminated FRP beams. The formulas for creep deflections and

In Figure 11, the predicted creep deflections of the FRP WF beam modeled as
isotropic through Equation (36) compare favorably with the values obtained from
the present model for zero fiber-volume fracture.

Using the FRPCREEP program, the "viscoelastic response of the WF beam
shown in Figure lOis characterized. The model is subjected to a central load P, and
the beam length is L = 3.66 m (12.0 ft). Figure 12 shows the beam creep deflection
profiles over time for P = 4.5 kN (1.0 kip). The linear viscoelastic responses of
strains under different load levels are illustrated in Figure 13. The influence of SF
material architecture on the beam viscoelastic behavior is analyzed next. The
beam creep deflections for varying orientations (6) of SF layers are plotted in
Figures 14(a) and (b). After about 90 hours, the fiber orientation of SF layers
around 6 =30° shows a better creep resistance [Figure 14(a)] and an approximate
line..ar and stable creep displacement trend [Figure 14(b)]. Thus, when the orienta­
tion (6) of SF layers is around JO°, the beam has the least creep deformations over
time. The beams with 6 =0° orientation of SF layers show a better creep perfor­
mance within a short time-range; however, as time increases, the creep deforma­
tions also increase quickly due to the increased shear creep deformations. The in­
fluence of fiber volume fractions (VI) on the beam creep behavior is presented in
Figure 15. As expected, the beam creep deflections have a stable variation over
time for beams with high fiber volume fractions. Most practical pultruded sections
have Vfvalues between 0.3 and 0.5.
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Figure 14a. Beam creep deflection versus orientation (9) of SF layers.

Figure 13. Maximum creep tensile strains (EJ on the bottom flange of beam.
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1.9 -r-----------------__ strains are derived in the Carson domain, and their corresponding numerical solu­
tions in the time domain are presented. Good agreements with experimental data
for both FRP laminates under tensile loads and a box-beam under bending load are
Qbtained. The deflection predictions of the model for a wide-flange beam [304.8 x

304.8 x 12.7 mm (12" x 12" x 1/2")] manufactured only from vinylesterresin com­
pare well with those for an isotropic material model. The parametric study of the
influence of material architecture and fiber volume fraction on the linear
viscoelastic response of the wide-flange beams demonstrates the capability of the
present model as an efficient tool for flexural creep analysis and design of FRP
beams.

There is limited information in the literature on experimental flexural creep re­
sponse ofFRP beams, and therefore, experimental testing ofcreep behavior ofvar­
ious FRP beams in bending is needed to correlate results with the present model. In
the present study, the environmental effects on the viscoelastic response of FRP
beams are not considered. These effects, such as temperature and humidity, are
significant in practical designs and can be further incorporated in the present
model. These additional concerns need to be addressed in creep analysis of FRP
beams, and the present model can be used as the basis for further work in this area.
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Figure 14b. Beam creep deflection versus orientation (6) of SF layers.
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ABSTRACT: A calculation method based on M-CLT (Modified Classical Lamination
Theory) for the friction coefficient of a CFRP (Carbon Fiber Reinforced Plastic) composite
laminate edge is proposed. It is derived based on experimental friction coefficients in unidi­
rectional off-axis laminae and a high-order algebraic equation from a numerical solution to
the specific boundary for the frictional contact problem. A numerical experiment of a fric­
tional contact problem is also performed by means of a nonlinear three-dimensional finite
element analysis and the results are compared with those obtained from the M-CLT method
for various contact directions. Good agreement is found between the two sets of results.
Finally, the friction coefficient derived by using the M-CLT method is applied to a
two-dimensional contact stress analysis of a pin-loaded composite laminate. The effects of
the method used to calculate the friction coefficient on the contact stress distribution are in-
vestigated.

KEY WORDS: CFRP laminate, friction coefficient, M-CLT method, pin-loaded com­
posite laminate, contact stress.
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