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BEAM-COLUMN DESIGN EQUATIONS FOR WIDE-FLANGE PULTRUDED

STRUCTURAL SHAPES

By Ever J. Barbero! and Liliana DeVivo2

ABSTRACT: A simple procedure is developed for the selection of pultruded structural shapes to be used as
beam-columns in structural design. The design equations are then validated by comparison with experimental
data gathered during beam-column testing of wide-flange and I-beam pultruded structural shapes. The design
procedure accounts for axial load eccentricity and bending action induced by lateral loads and end-moments.
The design equations are set in the context of load and resistance factor design, considering both strength and
serviceability. This paper addresses the methodology to determine the resistance factors, which should be used
with properly selected load-factors accounting for the variability and uncertainty of the loads. The design equa­
tions use section-properties, such as the bending stiffness (El), which must be measured and supplied by industry.
It is found that the section-properties used in the design of beams and columns are sufficient for the design of
beaql-columns. Therefore, the cost and time involved in testing structural shapes are minimized. This paper also
addresses the means by which section-properties can be generated effectively and inexpensively.
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FIG. 1. Beam-Column Geometry and Coordinate System

(1)

z

L

b J
~o

where PL = short-column load (determined experimentally or
numerically as noted in the Design Equations section of this
paper); and ki = interaction factor, given as

h

Concentric Loading

Experimental data from the literature are used here to de­
scribe the behavior of columns without eccentricity. Eq. (1),
which is plotted with a solid line in Fig. 2, provides a con­
servative estimate for the buckling load of columns without
eccentricity. According to Barbero and Tomblin (1994), the
column buckling load is given by

SUPPORTING EXPERIMENTAL DATA

Experimental data, for both concentrically and eccentrically
loaded FRP columns, are used in this section to identify the
dominant features of the problem. Based on the experimental
observations listed below, it is concluded that the main factors
controlling the failure of beam-columns are the eccentricity e,
column length L, material properties, and geometry of the
cross section. An attempt is then made to represent the influ­
ence of these parameters into simple design equations.

INTRODUCTION

Fiber-reinforced polymer (FRP) structural shapes are pro­
duced in standard shapes by pultrusion. The geometry of the
cross section and the material properties are fixed by the man­
ufacturer, who offers a broad selection of such structural
shapes. Thus, the design carried out by the structural engineer
consists of sel6·cting the proper structural shape to carry the
loads imposed on a particular member of a structure (frame,
truss, etc.). This paper deals with the structural design, or se­
lection, of FRP structural shapes from a given set of available
products. Wide flange (WF) and I-sections are used to illustrate
the procedure.

FRP columns and beams are being used in a variety of struc­
tures, s~ch as buildings, salt storage sheds, bridge superstruc­
tures, etc. Design equations for FRP columns and beams are
available in the literature (Bank: 1989; Barbero and Tomblin
1994; Zureick and Scott 1997). In many applications, columns
are also subjected to bending loads. A member that is subject
to a combination of axial load and bending moments is called
a beam-column (Fig. 1). Bending moments on beam-columns
may be caused by transverse loading acting over the member's
span, from loading in adjacent members in frames, or by ec­
centricity of reactions and applied forces in frames. The re­
sponse of an isolated member to a known system of end forces
and moments is considered in this paper. Furthermore, the
scope of this paper is limited to the case of eccentricity, lateral
load, or end-moment producing bending with respect to the
minor axis. Because the structural shapes considered are sym­
metric about the major axis, no twisting occurs (Galambos
1988; Barbero 1998).

The design of steel beam-columns is addressed by the AISC
(1989) and the AISC 1978 Specifications Section 1.6. The de­
sign with traditional materials is done using beam-column in­
teraction diagrams that account for the reduction of column
load capacity due to bending. Such diagrams do not exist for
FRP structural shapes. Therefore, the objective of this paper
is to develop design equations and accompanying diagrams to
be used by structural engineers in the design of structures us­
ing FRP structural shapes.
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FIG. 2. Failure Loads of Columns Subject to Axial Load without Eccentricity
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TABLE 1. Section Properties Used for Design (Weak AXis)

0.3
P/PL

only column to fail by material crushing did so after very large
lateral deflection, which would be inadmissible in a practical
application due to serviceability constraints. A serviceability
design equation is presented later in this paper to cover this
aspect.

As expected, load eccentricity results in a nonlinear load­
deflection plot, as shown in Figs. 3 and 4. The maximum load
of an eccentrically loaded column is reduced significantly as
compared with the column load without eccentricity. Lateral
deflections 0 were measured at the midspan and normalized

{) It
FIG. 3. Load versus Lateral Deflection of WF 203 x 203 x 9.53
mm, L=3.35m

I (E/) (GA) PL Mer
Section (kPa. m4

) (kPa. m2
) (kN) c (kN·m)

(1 ) (2) (3) (4) (5) (6)

102 x 102 x 6.35 29.644 5,246.0 226.9 0.65 4.26
152 x 152 x 6.35 89.528 7,763.2 169.8 0.65 5.51
152 x 152 x 9.53 148.925 11,858.9 493.8 0.65 17.83
203 x 203 x 9.53 380.355 16,809.6 369.2 0.65 18.24
203 X 102 x 9.53 49.922 8,626.0 640.5 0.65 7.91

(2)

Eccentric Loading

Twenty-four WF pultruded shapes produced by Creative
Pultrusions, Inc., were tested under axial load with eccentricity
(Table 1). The columns were simply-supported at both ends
using the testing equipment described by Barbero and Tomblin
(1994). Axial, lateral, and flange defonnations were recorded
in addition to the load. Complete details of the experimental
setup and the experimental observations are presented by Bar­
bero and Turk (1999). The following experimental observa­
tions were made.

Twenty-three out of 24 columns tested showed significant
development. of buckling modes before material failure. The

where the slenderness A is defined as

A. = kL ["P";
1T\j(Ei)

Here, k = end-restraint coefficient; L = length of the column;
c = mode-interaction constant; and k~.. = (1 + I/A2)/2c = in­
termediate factor introduced to facilitate the computations. As
shown in Fig. 2, (1) provides a conservative estimate to the
data from Barbero and Tomblin (1994), Zureick and Scott
(1997), Barbero and Trovillion (1998), Brown et at. (1998),
and Barbero et ale (1999), when the mode-interaction constant
is set to c = 0.65. The classical local and Euler curves are
recovered by setting c = 1. Note the strong dependency on the
slenderness of the column. Also note that the material prop­
erties are introduced through the bending stiffness (El) and the
short-column load PL, which is a function of both the material
properties and the geometry of the cross section. Values of
(EI) andPL were taken from the respective references while
constructing Fig. 2. The data in Fig. 2 correspond to different
cross sections and manufacturers. It must be noted that data
from various sources must be compared in dimensionless form
because the material properties of the columns differ among
manufacturers and fabrication data, even for the same cross
section, a fact that is often overlooked in the literature.
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FIG. 4. Load versus Flange Deflection of WF 203 x 203 x 9.53
mm, L=3.35m
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FIG. 5. Deformed Geometry as Predicted by FE Model

by the flange thickness t. The maximum flange deflection oc­
curs at the edge of the flange. This is shown in the finite
element (FE) model of an eccentrically loaded column as de­
picted in Fig. 5. Experimentally, these deflections were mea­
sured by an optical technique called shadow moire (Barbero
et ale 1999).

FE SIMULATION

FE modeling was used to consider numerous eccentricities
and slenderness, which, due to sample availability, testing
equipment, and time constraints, could not be met by testing
alone. For example, only eccentricity e = 25.4 mm could be
applied in our existing testing setup. Some configurations
could not be tested at all. For example, it is relatively simple
to introduce load eccentricity in a column test, but it is very
difficult to introduce a constant end-moment while the axial
load is increased up to failure. For this reason, the design
equations for the case of end-moment are based exclusively
on FEM simulation. For the simulations to be of value, the
model must be verified by experiments. Twenty-four columns
were tested for this purpose. The model simulated all aspects
of the test setup, including the actual boundary conditions.

The material properties of all the sections tested are reported
in Tables 2 and 3 using the coordinate system shown in Fig.
1. The material properties were predicted using micromechan­
ics (Luciano and Barbero 1995). This procedure has been val­
idated experimentally for similar pultruded shapes (Lopez-An­
ido et al. 1995; Davalos et al. 1996a,b; Qiao et al. 1998) by
comparing the predicted material properties with coupon test
results.

TABLE 2. Material Properties of Flange for All Sections

Ex Ey Gxy t
Flange (MPa) (MPa) (MPa) Vxy (mm)

(1 ) (2) (3) (4) (5) (6)

102 x 102 x 6.35 26,659 12,921 4,067 0.356 6.35
152 x 152 x 6.35 23,496 12,645 4,012 0.368 6.35
152 x 152 x 9.53 25,373 12,968 4,086 0.357 9.53
203 x 203 x 9.53 28,538 13,769 4,344 0.349 9.53
203 x 102 x 9.53 29,698 14,140 4,458 0.346 9.53

TABLE 3. Material Properties of Web for All Sections

Ex Ez Gxz t
Web (MPa) (MPa) (MPa) Vxz (mm)

(1 ) (2) (3) (4) (5) (6)

102 x 102 x 6.35 22,171 12,158 3,866 0.367 ' 6.35
152 x 152 x 6.35 20,602 11,475 3,674 0.364 7.14
152 x 152 x 9.53 21,798 11,760 3,731' 0.363 9.53
203 x 203 x 9.53 22,095 11,861 3,764 0.361 9.53
203 x 102 x 9.53 34,064 16,590 5,327 0.322 9.53

The FE mesh was created by dividing the cross section into
12-16 elements, depending of the type of cross section, and
repeating the pattern along the length of the column as many
times as necessary to model one-half the column length (Fig.
5). The aspect ratio of all elements was kept equal to one.
Symmetry conditions were imposed at the midspaIi~ and mul­
tipoint constraints were used to keep the cross section flat but
free to rotate at the pinned end, where the load is applied with
eccentricity e. Thus, the column bends with respect to the
weak axis.

Elements of type SR8 (quadratic, thin-shell, orthotropic)
were used (Abaqus 1998). An eigenvalue analysis was per­
formed to find the buckling load Pr of columns without im­
perfections under eccentric load. The Riks' method was used
to solve the nonlinear problem beyond the maximum post­
buckling load Pa for columns with geometric imperfections.

A typical deformed mesh is shown in Fig. 5, displaying
results of the nonlinear analysis. Note that both Euler and local
modes coexist and interact with each other. It can be seen in
Fig. 5 that as a result of lateral deflection (Euler mode), one
side of the flanges (side A) has more compression load than
the other (side B), which precipitates a local mode (flange
deflection). The local mode in tum debilitates the section by
reduction of the (El), as a result of the altered geometry. A
reduced (El) in tum yields more lateral deflection (Euler
mode), which feedbacks more load on the compression side
of the flange, etc. This is called mode interaction and it has
been formally described in the literature (Godoy et ale 1995;
Kabir and Sherbourne 1998). The nonlinear analysis per­
fonned captures this behavior correctly. The failure load Pa

predicted by nonlinear analysis is given by the apex of the
load-deflection plot in Fig. 3.

DESIGN EQUATIONS

Perfect Column-Concentric Loading

Based on simulation and experimental results, the effects of
various parameters on the failure load were successfully sep­
arated as follows. Material properties and geometry of the
cross section are accounted for by the bending stiffness of the
section (El), the short-column load PL without eccentricity, and
the mode-interaction coefficient c. These three values can also
be used for the design of columns without load eccentricity.
In this ~ork, they are considered to be section-properties, in­
dependent of the length of the column and the loading con­
ditions. Procedures for the detennination of these parameters
are available in the literature as follows.
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The 95% confidence interval shown in Fig. 6 delimits a
region with a 95% probability of containing the linear regres­
sion line when a new set of data is used. The lowest of the
two 95% lines could be used for design, but, as can be seen
in Fig. 6, it would not be conservative for all of the cases

The short-column load PL can be determined easily by a
column test (Tomblin and Barbero 1994). The values should
be reported by industry in their design guides. For example,
it is reported (Strongwell, Section 10, Eq. C-2) that P L =
0.5EAI(blt)1.5, based on experimental data for their product; A
is the area of the cross section, E is the modulus, and band t

~e the width and thickness of the flange, respectively. The
value of PL can also be obtained by numerical simulation.

The bending stiffness (El) can be determined using the pro­
cedure described by Bank (1989). The value of (El) is reported
by all pultrusion manufacturers as two factors: E and I. In their
design manuals, I is the geometric moment of inertia and E is
the· apparent modulus· obtained by dividing the experimentally
measured bending stiffness (El)· by the value of I.

The mode-interaction constant c is easily found (Barbero
and Tomblin 1994) from the failure load of a centrally loaded
column of critical length [A =1, (3)]. The test is always done
with pin-pin end-conditions (k = 1), but the resulting failure
mode is not Euler buckling. Instead, interaction of local and
global modes takes place, which has been proven both theo­
retically (Godoy et al. 1995; Kabir and Sherbourne 1998) and
experimentally (Barbero et ale 1999). If this value is not avail­
able, setting c =1 reduces (1) and (2) to the classical case of
having two separate equations for stubby and slender columns
(see isolated modes in Fig. 2). 'Barbero and Tomblin reported·
c =0.84 as the best fit value for their experimental data. From
Fig. 2 it is concluded that (1) with c = 0.65 provides a con­
servative estimate for a variety of WF sections from several
manufacturers. The interaction constant is used for the design
of concentrically loaded columns [(1)] and for the service­
ability of beam-columns [(18)].

Perfect Column-Ec·centric Loading

To .determine the influence of the remaining parameters (ec­
centricity e and length L), the problem was divided in two.
First, the beam-column was assumed to be perfect, that is,
without geometric imperfections but with load eccentricity.
The buckling load of a perfect column is reduced by the effect
of load eccentricity e. The reduced buckling load Pr can be
found from a simple eigenvalue analysis (Abaqus 1998). Be­
cause a perfect column does not exist, no comparison with
experimental data can be provided at this point, but a com­
parison will be provided on the final result. From the simu­
lation it was learned that the normalized buckling load PrlPL

of a perfect column with eccentricity depends mainly on the
ratio elt. Other factors such as material properties and geom­
etry are accounted for by the value of PL, which must be de­
termined experimentally from a short-column test without ec­
centricity (Tomblin and Barbero 1994).

All of the simulation data of five different columns at six
different eccentricities and three different lengths are shown
in Fig. 6, where kr =PrIPL • Some of the data points overlap,
partially because the value of kr is insensitive to the length of
the column. A linear regression of the data yields a correlation
coefficient of 0.92. This means that 92% of the variability in
the data is accounted for by the linear regression in tenns of
elt, whereas only 8% is due to factors other than elt (Mont­
gomery 1991). To account for those undetermined factors and
the variability in the data, the design line was traced parallel
to the regression line, but leaving all of the simulation data
above the line, which yields

(5)

(6)

o FEM Data
--+- Linear Regression
• • • 95% Confidence Line
-- Design Line

ka = 1.102 - 0.644X-

kr =0.871 - 0.0814 (e/t)~
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The design line [(6)] accounts for the slenderness A. and the
variability of the behavior among the different columns. Once
again, the chosen design line has more than a 95% probability
of being conservative. Eq. (6) is valid in the range 0.5 < A. <

Imperfect Column-Eccentric Loading

The buckling load of a perfect system (e.g., column) pro­
vides a good estimate of the actual failure load unless the
system is imperfection sensitive, which is the case for a beam­
column with eccentricity. In this case a nonlinear analysis ac­
counting for the geometric imperfections is required to esti­
mate the actual failure load. In this work the imperfection was
assumed to be in the shape of a linear combination of the local
and global modes, both of magnitude 0.25t, where t is the
thickness of the flange. The local and global modes are found
by an eigenvalue analysis of the perfect system using the FE
model. They are then superposed to the geometry of the col­
umn to· simulate an imperfect column.

By normalizing the failure load Pa of the imperfect beam­
column by the buckling load Pn it is possible to isolate the
influence of slenderness A on the beam-column behavior. A
linear regression of ka =PjPr in tenns of A. (Fig. 7) captures
87% of the variability in Pa over the entire sample population.
In this case the sample population consists of five sections,
five lengths, and three eccentricities. This means that A ac­
counts for most (87%) of the changes in PjPr from sample to
sample. The remaining 13% of the variability is due to other
unknown factors. To take all of the variability into account, a
design line is proposed by drawing a line parallel to the re­
gression line, but leaving all of· the available data above the
line, which yields

Eq. (4) is valid within the range 0 < elt < 8, for which
simulation results were generated. No attempt was made to
extend the range further because serviceability clearly controls
the design for larger values of eccentricity.

considered. Because the chosen design line is below the 95%
line, (4) has more than a 95% probability of being conserva­
tive.

The design line [(4)] accounts for the eccentricity elt and
the variability of the behavior among the different columns.
Therefore, the buckling load of a perfect beam-column can be
predicted in terms of the known short-column load PL as

0.2 uu.u.u..u.LLu..&J.JWJ.JL.u..LJu..u.J.J..I..I.I.J.J...U.J..LLl.~I.Lu.JL..l.u..J..LJ.u..u..1J..LLIl.JL..LU.J~ll..u.JJ]
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elt
FIG. 6. Resistance Factor to Account for Load-Eccentricity in
Case of Eccentric Axial Load (0 < elt < 8). Some Data Points
Overlap

(4)kr =0.871 - 0.0814(elt)



1.1 ,.--------- --,
actual end-conditions are used. The maximum deflection of a
beam under a variety of lateral loads and support conditions
can be found using standard formulas in tenns of the bending
stiffness (El) and shear stiffness (GA) (Barbero 1998, Fig. 8.2).
For example, a clamped-clamped beam under a uniform dis­
tributed load yields a maximum deflection

qL4 qL2

omax =384(£1) + 8(GA) (8)

The shear deformation tenn in (8) may be significant, even
for weak axis bending (up to 17% of the total deflection on
some WF sections used in this study, at 'A =1). Values of (GA)
should be reported by the industry, for both weak and strong
axis bending.

The equivalent end-moment Mo is found using the formula
for the maximum deflection of a simply-supported column un­
der end moments

1.21.11.00.8 0.90.70.6

o 0 FEM Data
o • Experimental Data

o --+- Linear Regression
• • • e 950/0 Confidence Line
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FIG. 7. Resistance Factor to Account for Slenderness in Case
of Eccentric Axial Load (0.5 < A. < 1.2). Some Data Points Overlap (9)

1.2, for which simulation results and experimental data were
available. No attempt was made to extend the range to high
values of slenderness because serviceability controls the de­
sign of slender beam-columns, as discussed in the subsection
entitled Serviceability. From a design standpoint, kr and ka

given by (4) and (6), respectively, are resistance factors needed
to predict the failure load Pa using the following design equa­
tion:

where omax is computed by (8). Note that unlike the case of
load eccentricity, the end-moment caused by lateral load or
transmitted by frame action has a fixed value, independent of
the .axial load.

The resistance factors for the case of end-moment are found
by describing the design lines in Figs. 8. and 9 as

(10)

in terms of the short-column load PL , which should be avail­
able in all design manuals provided by industry. Although PL

can be estimated well as the lowest eigenvalue of an FE anal­
ysis, it is suggested that, for design purposes, its value be
detennined experimentally (Barbero and Tomblin 1994).

To validate the procedure summarized by (7), the experi­
mental data were added to Fig. 7. Note that all of the experi­
mental data are above the design line, thus supporting the pro­
posed procedure. Not all of the 24 points can be seen because
of some overlap.

The design line is defined using the simulation data. The
experimental data are used to corroborate its validity. This
method is preferred to the use of experimental data to for­
mulate the design line directly simply because of cost and bias.
Experimental data are always limited by the availability of
samples (due to its cost), limitations of testing equipment (e.g.,
only e = 25.4 mm could be tested in our lab), and the cost of
testing. Furthermore, new pultruded shapes appear every year
and testing them all would be prohibitively expensive. If only
limited test data are used, the sample population tends to be
biased toward the particular types of sections, sample lengths,
or testing variables (e.g., eccentricity) for which more data are
available.

A purely experimental study could be formulated and car­
ried out if substantial funds are available. In that case, the
design line [(6)] would be based on experimental data. The
important point of this work is to show how the effects of
material properties, cross-sectional geometry, column length,
and eccentricity can be separated and represented by simple
design· equations.

1.1 _---------------------,
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FIG. 9. Resistance Facor to Account for Slenderness in Case
of End-Moment (0.5 < A. < 1.2). Some Data Points Overlap

Eq. (7) can also be used for a beam-column subjected to
axial and lateral load. First the equivalent end-moment 1vlo is
computed so that it gives the same maximum deflection on a
simply-supported beam as the actual lateral load would give
on the beam-column when no axial load is applied and the
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where Mer = ultimate moment of· the structural shape under
bending load only (Table 1) and

ka =1.148 - O.803>t (11)

where M o = end-moment computed by (9), equivalent to the
lateral load. A comparison between predicted and experimental
deflections is shown in Fig. 3.

In (10), Mer is the actual bending moment at failure of the
section tested as a beam, reported by the manufacturer from
experimental -data or from an accepted prediction methodol­
ogy.

This project was sponsored by the West Virginia Division of Highways
under contract RP No. 131. The structural shapes were provided by Cre­
ative Pultrusions, Inc.

FE simulation and statistical methods were used to develop
resistance factors that represent a lower bound to the expected
beam-column load of WF pultruded shapes. Experimental data
were generated and used to validate the proposed design equa­
tion. The design procedure is synthesized into two dimension­
less load-resistance factors (kr and ka). Simple linear equations
are developed to compute the resistance factors as functions
of the dimensionless load eccentricity elt and column slender­
ness A. The coefficients in the linear equations apply to the
set of sections used in this study, which are -representative of
current pultruded structural shapes. As new shapes appear in
the marketplace, the procedure described in this paper can be
used by industry to refine the numerical values of the coeffi­
cients in the linear equations describing the resistance factors.
By using the design equations proposed herein, the structural
engineer is concerned with only a few relevant section-prop­
erties, all of which are nonnally provided by industry.
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(EI)~ == (EI) - (kLI'rr)2p

Note that when X. » 1, (17) reduces to the classical (16) by
virtue of Pc approaching PE • Finally, the lateral deflection un­
der combined axial and lateral load is computed as

MoL 2

0=--
8(EI)R

The argument follows that when Preaches PE, (EI)~ reduces
to zero and the column buckles. To extend the P - Ll proce­
dure to the whole range of slenderness, the same argument is
used, but on the equivalent bending stiffness. Multiplying (16)
by PclPE as in (14), we get

(EI)R = [(£I) - (kLI7r)2p] Pc
PE

p = (EI)'
c (kLl'rr)2

if the equivalent stiffness (EI)' is defined as

p __ p = (EI)
c E (kLl'rr)2

Although the Euler formula can be corrected for shear defor­
mation [divide the result of (12) by 1 + PEI(GA), Gaylord and
Gaylord (1972)], the effect is usually small for weak-axis
buckling «4% for all WF sections in this study at >t = 1).

For a stubby column (X, « 1), the column load Pc given by
(1) approaches the short-column load PL (Fig. 2). However,
the load Pc still can be computed by the Euler fonuula

with Pc computed by (1).
In the classical P - Ll procedure for slender columns (Ba­

zant and Cedolin 1991), it is argued that the bending stiffness
can be computed from the Euler load as

(EI) = (kLI'rr)2PE (15)

When P < PE , the term (kLI'Tr)2p can be interpreted as a
reduction of (EI), so that

Serviceability

There are situations when the combination of axial load,
load eccentricity, and lateral load will produce excessive lateral
deflections, even if the column does not fail. In this case ser­
viceability considerations control the design. Therefore, a ser­
viceability design equation is developed in tenus of a reduced
bending stiffness, similar to the classical P - ~ effect for
slender columns, which is well known in the literature (Bazant
and Cedolin 1991). By taking advantage of (1), the procedure
is extended in this section to columns of any slenderness, in­
cluding short columns. The slenderness X. is defined in (3) for
all column lengths.

For a slender column (X. » 1), the column load Pc predicted
by (1) approaches the load given by the Euler formula
(Fig. 2)
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