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3. Rigid Motion
For rigid motion, we only have to compute kinetic energy associated with P.

ForIt we include, as already said, panels, and stringers mass. This is 6 · 6 matrix.
4. Assembly

Clearly, each ofthe above matrices must be assembled in the matrices appearing
in Equation (27). Assembly is made through a routine procedure.
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ABSTRACT: A new model to predict the creep response oflaminated composite materialsis presented. The correspondence principle is used to perform the micro- and macro­mechanics ana.Iysis in the Laplace domain. A new set ofmicromechanical formulas are used,which are accurate without the use of empirical correction factors. A macro-mechanicalmodel is developed, which includes provisions for modeling materials with randomly ori­ented reinforcement. Experimental data for the neat vinyl ester resin and various laminates ispresented. The theoretical model accurately predicts the experimental creep response ofpolymer matrix composites considered in this work.
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1. INTRODUCTION

POLYMER MATRIX COMPOSITES (PMC) display important viscoelastic behavior,
which is sensitive to environmental effects (temperature, humidity, radiation,

etc.). The general constitutive relations between applied stress and strain for vis­
coelastic response are described by Schapery [19,20]. Short and long term creep ef­
fects have been experimentally studied, but very few micro-mechanical and
macro-mechanical models have been developed to predict creep oflaminated com­
posite materials from constituent properties. On the other hand, many micro­
mechanical models have been developed to describe the elastic behavior ofunidi­
rectional composite materials. Such models include approximate equations such as
the rule of mixtures formulas [12], formulas using correction factors such as the
Tsai-Halpin formulas [4], and asymptotically exact fonnulas [17], among many
others.

The correspondence principle [3] offers a powerful tool· for modeling linearly
viscoelastic materials; that is, when the viscoelastic behavior can be assumed to be
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independent ofthe stress level. Using the correspondence principle, most analytical
tools developed for elastic materials can be used by taking a Laplace transfonn.
This excludes iterative techniques (e.g., the self consistent method) and fonnulas
containing empirical factors because the dependence ofempirical factors as a func­
tion of time is unknown. In structural design, the sizing of members, and thus the
level ofstress is determined to satisfy requirements such as maximum deflections,
fatigue limits, notched strength, compression after impact, etc. Therefore, the
structure is likely to operate in a relatively narrow range of stress values. In this
case, the material can be assumed to be linearly viscoelastic within the operating
range of stress.

The creep behavior of any linearly viscoelastic material can be represented by
empirical models such as the power law, Maxwell, Voigt, and Maxwell-Voigt
models [8], 'etc. These empirical models simply represent a curve fit ofexperimen­
tal creep data. The problem with this approach is the prohibitive cost associated
with creep testing ofcomposites with various fibers and resin types, various values
of fiber volume fraction, under various temperature and moisture conditions, etc.
Also, several types of tests are necessary to evaluate the creep behavior in shear as
well as longitudinal and transverse directions [25]. If linear viscoelasticity cannot
be used, more complex models such as the Schapery nonlinear model [16] have to
be used.

Previous use of micro-mechanical models include the rule of mixtures, which
was used by Lee and Ueng [14] along with a numerical solution procedure for a
uniaxial state ofstress. The micro-mechanics method ofcells proposed by Aboudi
[1-3] was used by Yancey and Pindera [24] to obtain the effective elastic moduli of
the composite in the Laplace domain, in terms of the constituent moduli and vol­
ume fractions. A numerical method proposed by Bellman [6] was used for the in­
version ofthe effective moduli in the Laplace domain to the time domain. The creep
properties ofthe matrix and the elastic properties ofthe fibers were back-calculated
using the same model.

The present work uses a new micro-mechanics model that provides closed-form
analytical formulas for all the components of the relaxation tensor while retaining
the accuracy of an asymptotically exact solution. Any geometry of fibers and spa­
tial distribution of inclusions can be modeled [17]. Furthermore, layers with ran­
dom reinforcement are included in the macro-mechanical model. Original
experimental data is generated to validate the model. The experimental data is
based on laminated composites including continuous strand mat, unidirectional,
and bi-directional stitched fabric layers. The fabrics were supplied by Brunswick
Technology Inc. The composites were fabricated by Hard Core DuPont using
Derakane resin supplied by Dow Chemical. Neat resin samples were tested to ob­
tain the matrix creep properties directly, without relying on back calculation using
any micro-mechanics equations. Besides being economical, this method has the ad­
vantage that various matrices can be experimentally qualified for creep response

under various environmental conditions (temperature, moisture, radiation) before
fabricating any composite samples. Potential does exist for relating the creep be­
havior of the polymer matrix to the polymer structure [9]. In this way, the present
work contributes to the development ofa model to predict the influence ofpolymer
structure on the final composite properties.

Once the creep behavior (shear, longitudinal, and transverse) of the composite is
known, either at the layer or laminate level, several numerical methods exist to inte­
grate the viscoelastic equations. General laminate predictions were obtained by Dil­
lard [7] using numerical integration in the time domain. The creep properties ofeach
layer in the laminate were determined experimentally for the actual composite mate­
rial as explained, for example, by Tuttle and Brinson [23]. Lin and Hwang [15] used
the finite element method and the general constitutive equations for viscoelastic ma­
terials applied directly to the laminate. Kennedy and Wang [13] modeled individual
plies in the laminate using 20-node isoparametric solid elements. An alternative
method to finite elements, proposed by Zhang and Xiang [26], provides the viscoe­
lastic response by using the viscoelastic constitutive relation given by Schapery [19].
The parameters ofthe constututive equations ofthe laminate are determined experi­
mentally. A method proposed by Singhal and Chamis [22] uses a general power law
to describe the viscoelastic response ofcomposites with the parameters being deter­
mined experimentally for the laminate. A problem encountered with these proposed
models is that they rely on experimental results ofthe composite. This means that an
expensive experimental program needs to be completed before attempting the design
of the composite.

Halpin and Sims [11] used a combined micro-mechanical and macro-mechanical
approach to predict the overall creep response of unidirectional or laminated com­
posites.They used the semi-empirical Halpin-Tsai micro-mechanics formulas [4] for
an elastic material to determine the viscoelastic response ofa unidirectional compos­
ite. In order to use the correspondence principle, a Laplace transform ofthe Halpin­
Tsai equations has to be done. But, these equations contain empirical parameters
which may be a function of time. Sims and Halpin back-calculated the matrix creep
behavior from composite creep data assuming the empirical parameters to be inde­
pendent of time.

In this paper, the micro-mechanics used does not contain any empirical parame­
ters. While the micro-mechanics used here is asymptotically exact without requir­
ing empirical correction factors, the formulas are still analytical expressions, thus
facilitating the evaluation of their Laplace transform. Furthermore, the micro­
mechanics used here accounts for the geometry ofthe inclusions, whether these are
fibers or particles. The fibers are considered to be elastic and transversely isotropic.
The matrix is assumed to be linearly viscoelastic. The model uses parameters deter­
mined experimentally from matrix creep tests, and the known elastic properties of
the fibers, to detennine the overall viscoelastic perfonnance of a laminated com­
posite.
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2. MICROMECHANICS
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The micro-mechanics used to describe the composite viscoelastic behavior is a

closed form solution based on Fourier expansion developed by Luciano and Bar­

bero [17] which offers a better representation ofthe shear and transverse properties

without the need of empirical correction parameters. Using the correspondence

principle for linearly viscoelastic materials, the micro-mechanics fonnulas devel­

oped for elastic materials can be used directly in the Laplace domain. The equations

are easier to manipulate using the Carson transfonn (indicated by i), which is re­

lated to the Laplace transform (indicated by L) by

i * [f(t)] = s l * [f(t)]

wheref(t) is any function of time.

The components of the relaxation tensor in the Carson domain for a unidirec­

tional composite with periodically arranged fibers given by [5,18]
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The series S3, 86, 87 represent the geometry and spatial distribution of the inclu­

sions. For circular cylindrical fibers, they are given by [17]
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where Vf is the fiber volume fraction and the Lame constants are given by

Eov o
i 0 = (I + v 0 )(1 - 2v 0 )

(2)Eo
# 0 = 2(1 + v 0 )

where Eo and vo are the relaxation modulus and the Poisson ratio ofthe matrix, £1

and VI are the elastic modulus and the Poisson ratio ofthe fiber. The Poisson ratio of

the matrix is considered constant over time, consistently with earlier work [3J. The

matrix data can be represented by any empirical model (Maxwell, Maxwell­
Kelvin, Power Law, etc.)

To model a material with transverse isotropy, the following averaging procedure
is used
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IJ:rC= - [R][L][R]T d(}
n 0

(3)

By expanding Equation (5), the new reduced relaxation coefficients are given by

QII = elI - ~I;
C22

where the rotational matrix [R] is the fourth-order orthogonal rotational tensor rep­
resenting a rotation () about the Xl axis (fiber direction). After completing the inte­
gration, the tensor Cis given by
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where the reduced relaxation matrix [Q] is symmetric. The final constitutive rela­
tionship for a unidirectional layer is given by
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where the new tensor is the averaged relaxation tensor for a transversely isotropic
material. .

3. MACROMECHANICS

Equation (7) can be rotated from the material coordinate system (1,2,6) to any
other coordinate orientation using the classical transformation equations ofclassi­
cal lamination theory. The transformation matrix for a rotation () is

For a layer reinforced with randomly oriented fibers (such as continuous strand
mat, chopped strand mat, etc.) we propose the following reduced relaxation matrix

A relation between the relaxation trensor [C] and the reduced relaxation matrix
[Q] for a unidirectional layer can be found by applying plain stress conditions to
the following constitutive equation
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After completing the integral, the coefficients of the matrix are given by

(8)

(9)
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or simply by computing the elastic stiffness matrix [A(t =0)]. The N + I points are
then fitted with the same empirical model used to represent the matrix creep data in
the time domain (Maxwell, power law, etc.).

Working in the Carson domain, the relaxation matrix [A] was inverted analyti­
cally to obtain the creep compliance matrix
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Q
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Next, a laminated composite material can be represented by applying classical
lamination theory, but in the Carson domain. Ifthe laminate is symmetric about the
midplace surface, the relation between the stress resultants and strains is

which can be back-transfonned to the time domain using the same procedure de­
scribed above. The collection method provides N points for each coefficient ofthe
creep compliance matrix [a(t)] (N = 5 was used in the examples).

An additional point can be obtained by using the initial value theorem or simply
by computing the elastic compliance ofthe laminate [a(t =0)]. The N+ I points can
be fitted with the same empirical model used to fit the matrix creep data (the Max­
w.ell model was used in the examples).

[A(t = 0)] = lim [A(s)]
S-'OO

where the superscript (k) indicates the layer number, t(k) is the layer thickness and n
is the number of layers.

Following the theory presented in Sections 2 and 3, a computer program was
written to perfonn the micro/macro-mechanical analysis. The basis for the program
is micro-mechanics [Equation (1)] and classical lamination theory [Equation (11)].
The program uses a numerical collocation method developed by Bellman [6] to
perfonn the inverse Laplace transfonn of the relaxation matrix [A] matrix [Equa­
tion (11 )]. The numerical inversion technique provides the solution at N points. An
additional solution point at t = 0 is obtained using the initial value theorem

4. REPRESENTATIONOF CREEP DATA

where Go is the applied constant stress. A graphical representation is given by Figure 2.
The initial modified compliance I/K ofthe Maxwell model is not the inverse

of the elastic modulus of the material, as shown in Figure 2. The graph shows
that the Maxwell model does not fit well the primary creep region, but repre­
sents well the secondary creep region. Accurate modeling of the primary creep
region is often not necesary in structural design because these effects occur
over a short period oftime compared to the service life ofthe structure. The pa-

(13)
e(t) 1 t
-=-+-
Go K C

A simple method for representing the relaxation and compliance moduli of
the matrix and the composite is needed for structural design. The simplest
method of representation is by a spring and dashpot system where the spring
represents the initial response of the material and the dashpot represents the
time dependence property ofthe material [8]. The time dependent property dis­
plays the viscous damping of the material over time. Any arrangement of a
spring-dashpot system can be used to describe the response of a material, but
the most common representation used in engineering design is the Maxwell 2­
parameter model. The Maxwell model has two parameters, the initial modified
compliance I/K and the creep rate I/C. The Maxwell model can be illustrated
as a single series spring-dashpot system, as shown in Figure 1. The mathemati­
cal representation is given by
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Figure 1. Maxwell spring-dashpot system.

Table 1. Laminate constituents.

K

~
c

Laminate

[(90/CSM)4]S
[(901+45/-45/CSM)3]s

Resin

Derakane 411-350
Derakane 411-350

Fiber

BTl UM1810
BTITVM3408

Fiber
Volume

Fraction (v,)

68%
44%

Nominal
Thickness

(mm)

4.115
7.087

5. EXPERIMENTAL SETUP

Two different laminated composites were chosen for the experimental program.
The constituents ofeach laminate are described in Table I. The constituent proper­
ties ofthe reinforcing fabrics are described in Table 2, which provides the amount

CSM(oz/ft2)

Table 2. Fiber fabric properties.

goo (oz/yd2) +45° (oz/yd2) -45° (oz/yd2)Fiber Mat

of fiber in each direction of the laminated composites. The laminates were fabri­
cated using vacuum assisted resin transfer molding (VARTM), also known as
SCRIMP. The matrix was Derakane 411-350 with cumene hydroperoxide (CHP)
used as a catalyst and cobalt naphthenate (CoNap) used as a promoter.

A method for testing the creep response of materials at a constant load is ac­
complished by using a dead load testing machine, allowing the specimen to be
loaded up to 53.4 kN. The grips are constructed out of7075-T6 aluminum which
displays negligible corrosive effects in the environmental chamber. The method
of fastening the specimens to the grips is by using pins which allows for thermal
expansion of the system and for the specimen to be aligned properly.The speci­
men, shown in Figure 3, is dog-boned to ensure that the maximum creep region
will be in the center of the specimen. The dimensions were selected to prevent
creep or failure at the grip region for the neat matrix samples. The composite
specimens were fabricated with the same dimensions, which provided more than
sufficient strength in the grip region.

An environmental chamber, Cincinnati Sub Zero ZH-32, enclosed the sample
and the grips. The chamber has a temperature range of-40°F to 375°F and a humid­
ity range of0% RH to 99% RH. The chamber is digitally controlled and can be pro­
grammed for constant or transient conditions. The strain over time was measured
by strain gage mounted on the sample. A Micro Measurements CEA-13-250UN­
120 strain gage was used. This strain gage has a temperature range of -100°F to
40QoF for continuous use in static measurements and has a strain Jilll it of5%. Micro
Measurements M-bond 200 adhesive is used to fasten the gage to the specimens
which is allowable to be used within the temperature limits ofthe tests. To keep the
strain gage protected from the hot and wet environment, an RTV coating was ap­
plied over the gage area (Figure 3). The RTV coating used is Dow Corning 3140
RTV which is non-corrosive and will not damage the strain gage. Standard strain

rameter IIC is the creep rate of the material. This model has been primarily
'used to describe metallic materials which display straight line secondary creep
regions over very long periods of time. The use of this model to represent the
response of polymer materials has been controversial, because a power law
better represents the creep ofpolymers for relatively short times. For structural
de~ign,.however,the main interest is on the response for long periods of time.
Experimental data for both neat matrix and composites suggest that the Max­
well model provides a good representation for long times. Because of its sim­
plicity compared to the power law, the Maxwell model is routinely used in
design. The Maxwell-Voigt 4-parameter model can be used if the primary
creep region needs to be modelled accurately. For long values of time, the 4­
parameter model reduces to the 2-parameter model.

c
!
US

f
UK

1 I
Time

Figure 2. Graphical representation of the Maxwell model.

BTl UM1810
BTl TVM3408

18
16 9 9

1.0
0.75
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Figure 3. Creep specimen.

gage application techniques are used to fasten the gages. The strain gage was wired
for temperature compensation. Finally, the method of applying the load to the
specimen is accomplished by using a crank mechanism. This method allows for the
load to be applied instantaneously to the specimen.

The strength and elastic modulus were determined separately by a quasi­
static test in a universal testing system. During creep testing, the stress level
should be within the linearly elastic range of the stress-strain response, which
is known from the previous quasi-static tests. The tests were run until a well­
defined secondary creep region developed. A time period offour hours proved
to be sufficient for all temperature and humidity conditions included in the ex­
perimental program.

6. EXPERIMENTAL RESULTS

Experimental creep tests were performed on the polymer matrix and on the
two previously described laminates. The matrix was the first material to be
tested and evaluated. The material was tested at a constant stress level approxi­
mately one quarter of the ultimate strength (II MPa). The low stress level was
chosen to display that the material has a significant creep response even at low
stress levels. The tests were condicted for a period offour hours, which is suffi-
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The Maxwell model was used to describe matrix creep data. The data in Figures
4-5 are converted into compliance dividing it by the constant applied stress uo.
Then, a linear regression is performed using Equation (13) to obtain the parameters

7. MODELING PREDICTIONS

cient to display the primary and secondary regions of the material quite well.
Two sets of four specimens were tested at two different environmental condi­
tions. The measured creep response ofthe matrix is shown in Figures 4-5. The
creep strain rate increases with temperature and humidity, as expected [21].
Also, the primary crep region extends over a longer time as a result of increased
temperature and humidity, but a clearly defined secondary creep region is ob­
served within the first four hours of testing.

The creep response of the [(90/CSM)41f and [(90/+45/-45/CSM)3]s laminates
have the same general trends as the neat vinyl ester matrix, with two exceptions; the
initial strain ofthe laminates is lower in value compared to the matrix, and the sec­
ondary creep rates ofthe laminates are lower in value comparedto the matrix, as ex­
pected. These laminates were tested for four to twenty hours at approximately one
quarter of the ultimate strength of each laminate (9 MPa and 29.6 MPa respec­
tively). The creep response of these materials is illustrated in Figures 6-8.
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Table 4. Maxwell fit parameters for [(90/CSM)4]. at
each environmental condition.

21.1°C and 12% RH
65.6°C and·80% RH

Environment

Table 3. Maxwell fit parameters for the matrix at
each environmental condition.

K (106 kPa)

3.328
2.616

C (106 kPa*hr)

854.6
165.9

given in Table 3, for the matrix at the two environmental conditions. The quality of
the approximation achieved with the Maxwell fit is illustrated in Tables 4-5.

The first stage ofthe laminate modeling was to predict the creep response of the
[(90/CSM)4].r lalninate which is Inost susceptible to creep, because the fiber orien­
tation is transverse to the loading direction. The micro/macro-mechanical nlodel
developed in Sections 2 and 3 predicts the secondary creep response ofthe compos­
ite experimental data with good agreement (Figures 6-7). The second laminate to
be modeled was the [(90/+45/-45/CSM)3]s composite (Figure 8). In both environ­
mental conditions, the micro/macro-mechanical model predicts the secondary
creep response with good agreement. Tests were performed for 20 hours on the
[(90/+45/-45/CSM)3]s laminate to validate the model predictions for periods of
time longer than those used to collect matrix creep data.

Comparisons between the experimental data and values predicted using the pro­
posed model (Sections 2 and 3) are shown in Figures 6-8. The predictions were ob­
tained using the four-hour matrix creep response properties to predict the creep
response ofthe laminate for up to twenty hours (see Figure 8). It can be seen that the
model is able to predict the response of the composite accurately. The model pre­
dicts all the components of the compliance and relaxation including shear and
transverse properties. Only the component ofthe compliance corresponding to the
available experimental data is shown in the figures.

Table 5. Maxwell fit parameters [(90/+45/-45/CSM)3]sat
each environmental condition.

Environment

21.1°C and 12% RH
65.6°C and 80% RH

Environment

21.1°C and 12% RH
65.6°C and 80% RH

K (106 kPa)

20.17
17.45

K (106 kPa)

12.12
10.71

C (106 kPa*hr)

8566.5
1910.2

C (106 kPa*hr)

5146.3
1180.8

8. CONCLUSIONS

A new micro/macro-mechanical model was developed to predict the linear vis­
coelastic behavior of laminated composites, which may include random and fab­
ric reinforcement. The method requires only experimental creep data for the
matrix. The creep properties of the composite are obtained using micro­
mechanics and macro-mechanics in the Laplace domain, followed by a back­
transformation to the time domain. As such, the method is restricted to linearly
viscoelastic materials.

Experimental creep data is presented and used to validate the model. Within the
scope ofthis. investigation, good agreement was achieved between the experimen­
tal data of the [(90/CSM)4]s and the [(90/+45/-45/CSM)3]s laminates and the pro­
posed model at short and long time response, even when the matrix creep behavior
was experimentally characterized only for a short time. The Maxwell model was
used to represent the matrix creep data, and also to display the predicted composite
creep behavior. However, any model such as Maxwell-Voigt or power law, can be
used following the same procedure [10].
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