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2 COLUMN SAMPLES

Three types of samples were used in this investigation.
All have the same cross-section, in the shape of a wide­
flange I section of width and depth b = d = 304·8 mm,
with both flanges and the web having thickness
t = 12·7 mm. The area of the cross-section is
S= 112·9cm2, and the area moment of inertia is
1= 5998·5cm4.

The difference among the samples is the fiber reinfor­
cement used. The first section, labeled CP, contains
roving (unidirectional fibers) and continuous strand mat
(CSM), with predicted stiffness given in Table 1. The
second section, labeled Fl, contains additional roving
and CSM to achieve higher extensional and bending
stiffness. The third section, labeled F2, contains addi­
tional stitched bidirectional fibers to achieve higher
local buckling load. Note that the global buckling
(Euler) load can be accurately predicted from the bend­
ing stiffness5 using the standard column buckling load
equation

Note that because of the various materials and fiber
orientations used in the cross-section, the term (El)
cannot be separated into a stiffness E and a moment of
inertia I, as it is done for steel sections. Also, the exten­
sional and bending stiffness of these sections can be
accurately predicted using the analysis presented.6 The
length of the columns (see Table 1) used for testing were
chosen to correspond to three local buckling half-waves
(Table 1), predicted using the model described in
Section 5.

3 EXPERIMENTAL PROCEDURE

The samples were loaded with an MTS hydraulic
machine with load capacity 4·454MN (Fig. 1) at a
loading rate of 1·27mmmin- l . The samples were
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Abstract
Experimental measurements on axially loaded columns

, made of fiber-reinforced composite materials are pre­
sented. Experimental load/deflection plots at twelve
flange points and three web points allow for an accurate
description of the deformations, including the post-critical
behavior. Data processing by two methods is described
and a comparison is made between the two methods. In
one method, the incipient buckling data are used, while in
the second method, the post buckling data are used. The
effect of damage accumulation is illustrated. The beha~

vior, including the curvature of the post-critical path, is
predicted by using stability theory. Comparisons between
predicted and measured values of critical load and post­
critical path curvature are presented. © 1998 Elsevier
Science Ltd. All rights reserved
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Pultruded structural shapes are used for civil-engineer­
ing construction when corrosion resistance is impor­
tant. 1 Pultruded structural shapes resemble cold-rolled
steel structural shapes and they are used as a direct
replacement fOf'steel. The material used is a fiber rein­
forced composite produced by pultrusion from high­
strength E-glass fibers embedded in a 'y!nyl ester or
polyester polymer resin. The composite ma1erial is quite
strong (up to 482 MPa in compression2, less stiff than
steel (up to 50 GPa), and more expensive (2 to
8US$kg- I ). For these reasons, and because of limita­
tions on the maximum thickness that can be produced
by pultrusion, all pultruded structural shapes are thin­
walled structures. Consequently, local buckling controls
the failure of these products when used as columns.
Bracing is usually employed as ani) inexpensive way to
control global (Euler) buckling. Since the material
remains linearly elastic in the region of interest3, pre­
diction of the critical load and the post-critical path can
be done in the context of elastic stability.4 .
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Table 1. Sample length and structural properties

Material Sample Axial stiffness Bending stiffness
type length (m) ES (MN) EI (MNm2)

CP 1·816 289·887 1·511
F1 1·499 363·920 1·917
F2 1·511 333·916 1·740

clamped at the ends by potting them with a room-tem­
perature polyester resin into steel groved end-fixtures
(Fig. 2). Since the polyester resin is flexible, the effect of
the end-fixtures is to introduce an approximately
simply-supported condition for each panel (flange and
web) while restricting any distortion of the cross-sec­
tion. The end-fixtures rest on fixed flat plates on the
Universal Testing System (UTS). Therefore, from a
global point of view, the column is under fixed-end
conditions.

Flange deflections were continuously recorded, along
with the load, using a data acquisition system on a per­
sonal computer. The position of the linear variable dif­
ferential transducers (LVDT) is shown in Fig. 1. A set
of typical load-deflection curves for one of the columns
is shown in Fig. 3.

Fig. 1. Testing setup for sample H of material F2.

4 DATA REDUCTION

The objective of data reduction schemes is to infer the
critical load, pCR, and the curvature of the post-critical
path, p(2), of the column. These values are necessary for
the design of structures where such columns may be
used. Since the samples contain imperfections, non-zero
deflections are recorded for all values of the load, mak­
ing it difficult to identify the critical load directly from
the load-deflection plot (Fig. 3).

In the case of local buckling, the location of the
maximum deflection of the buckling mode is not known
a priori, unlike the case of global buckling where the
maximum deflection occurs at the mid-span. Therefore,
the magnitude of displacement recorded by the trans­
ducers depends on their location along the length of the
column. Also, the load displacement data may have
more or less deflection for a given load depending of the
magnitude of the imperfections. It is therefore necessary
to process the data to obtain a critical load and post­
critical curvature, independently of the magnitude of the
imperfection and the position of the transducers.

4.1 Modified Southwell method
Southwell's method, conceived for global buckling7, was
extended to the case of local buckling8 taking into
account that the displacement transducers may not be
placed at the point of maximum deflections of the
buckling mode. Basically, the load/deflection data are
assumed to have an hyperbolic shape (Fig. 4). Then, by
plotting the transformed data (deflection/load vs
deflection, Fig. 5), a straight line is obtained and a linear
regression can be done to find the slope and the abscissa
at zero load. The inverse of the slope in Fig. 5 is the
critical load, or asymptote of the load/deflection curve
in Fig. 4. The abscissa at zero load gives an indication
of the imperfections in the sample. 8 However, previous
work did not take into account the stiffening of the sys­
tem along the post-critical path. This stiffening is inves­
tigated here.

Southwell's method assumes that the load-deflection
curve of an imperfect column has an hyperbolic shape
(Fig. 4). The method seeks to find the asymptote of the
hyperbola assuming that the post-critical path is flat
(constant load). This leads to correct results for the case
of global buckling because the stiffening of the post-cri­
tical path is very small. But for local buckling, the
stiffening of the post-critical path may be considerable
(Fig. 3). In this case, the post-critical data may corrupt
the results of the method leading to an artificially high
critical load. The magnitude of the induced error
depends of the curvature of the post-critical path. The
maximum error encountered in this investigation was
220/0 with respect to the value obtained using the quad­
ratic approximation described in the next section.

The values of the critical load pCR are reported in
Table 2 with the 95% confidence interval given in par­
entheses. Southwell's method provides the critical load



Fig. 2. Schematic of the end-grip used to support the sample.
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perturbation expansion used for post buckling analysis.4

Wpile the critical load peR is independent of which
perturbation parameter is chosen, the curvature of the
post-critical path depends of which perturbation para­
meter is chosen. In this study, two possibilities exist for
the selection of the perturbation parameter.

Consider an I-section with the axis of the column
oriented along the z-coordinate axis and web on the y-z
plane. In addition, the flange and web have both width b
and the columns is loaded at the origin. If the axial dis­
placement under the load is chosen as the perturbation
parameter (s = w~O,O,O)), the curvature in the load­
stroke space is P~t;oke. If the maximum deflection at the
tip of a flange is used as a perturbation parameter
(s = v(b/2,b/2,z*)), the curvature in the load-flange­
deflection space is p)idnge' In the later case z* indicates
the position of maximum flange deflection. While the
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2

1000

900

_800

700

Z
~ 600

"ns 5000
...I

'iii 400

~
300

200

100 Sample CP2

0

0 5 10 15 20 25

Transverse Deflection [mm]

only, with no provision for the computation of the cur­
vature of the post-critical path.
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4.2 Quadratic approximation of the post-critical path
Based on the experimental observations (Fig. 6), it is
clear that the post-critical path can be accurately
approximated by a quadratic expansion of the load

where pCR is the critical load, p(2) is the curvature of the
post-critical path, P is the axial load, and s is the per­
turbation parameter. This expansion is similar to the

Fig. 3. Load-deflection plot of flange transducers 1 and 3 and
web transducer 5.



Table 2. Critical loads (95% confidence interval in parentheses)

Table 3. Post-critical curvature of load vs flange-deflection plot
(95% confidence interval in parentheses)

CP Fl F2

p(2)stroke Experimental 42·84 73·69 72·28
[kNmm-2] (1·35) (3·92) (12·68)

p(2)stroke FEM 50·86 28·57 80·05
[kNmm-2]

, ..

solution provides the postbuckling mode shape, the
measured deflections at the positions of the transducers
could be used to extrapolate the maximum deflection on
the basis of the computed mode shape. This could give a
more accurate prediction for the curvature of the post­
critical path based on transducer data.

The axial displacement (w(O,O,O» was measureddur­
ing the test as the stroke of the testing machine. There­
fore, the curvature of the post-critical path can be
evaluated from the load-stroke experimental data. The
measured and predicted values are indicated in Table 4.

For each of the fifteen load-deflection curves avail­
able for each specimen, the post-critical path was fitted
with eqn (2). The data corresponding to flange or web
deflections larger than tj10 was used, where t is the
thickness of the panel (t= 12·7mm in this case). A
typical fit is shown in Fig. 6. The values of the critical
load are reported in Table 2. The values of the critical
load computed by Southwell's method are included for
comparison.

Table 4. Post-critical curvature of load vs stroke plot (95%
confidence interval in parentheses)

4.3 Effect of damage accumulation
The data must be collected during the first loading of
the column, as the test introduces damage in the mate­
rial when the deformations are large. Finite element
analysis indicates that the material remains linear up to
buckling but becomes non-linear during post buckling
because of the large deformations that occur at this
stage. To investigate the effect of damage, the columns
were re-Ioaded for a second time after the initial test.
When the initial test involved large post buckling
deflections, the re-Ioading load-deflection curve shows
evidence of deterioration of the material, as it can be
seen in Fig. 7.

The effect of damage is equivalent to a magnification
of the initial imperfections in the column. The mode
shape developed during re-Ioading is identical to the
mode shape of the first test but the deflections are more
noticeable at smaller values of the load. However,
Southwell data reduction leads to similar values for the
critical load.

The load-displacement data from LVDT number 1
of sample CP2 during the first (undamaged) and sec­
ond (damaged) loading is shown in Fig. 7. The same
data, represented in the format used in the Southwell
method are shown in Fig. 8. The predicted critical loads
are 852 and 922 kN for the undamaged and damaged
cases.
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Fig. 5. Experimental data in Southwell's format.
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CP Fl F2

Per Southwell [kN] 724·51 1169·19 1192·21
(279·79) (16·57) (35·66)

Per Quadratic [kN] 698·31 954·72 1139·36
(6·71) (25·03) (17·73)

Per FEM [kN] 660·46 866·26 1207·52

numerical values of curvature P~;Joke and p)i2nge are dif­
ferent, the predicted load computed using eqn (2) and
the appropriate perturbation parameter should be iden­
tical. Note in Tables 3 and 4 that p)i2nge« P~;Joke
because the flanges loose most of their the stiffness when
they buckle, while the axial stiffness of the column (in
the stroke direction) remains high even after the flanges
have buckled.

The most accurate measurements of deflection are
those corresponding to flange deflection data (v(bj2,bj
2,z». However, there is no assurance that the transdu­
cers measure the deflection at the maximum of the mode
shape because the transducers are instf\lled at arbitrary
locations that may not coincide with the points of max­
imum deflection. On the numerical model, the pertur­
bation parameter was chosen as the maximum
deflection of the mode shape. The measured and pre­
dicted values are shown in Table 3. Some inaccuracy in
the measurement of the curvature p)i2nge for the CP
samples is likely caused by the fact that only two sam­
ples were available for testing. Since the finite element

P(2)flange Experimental [kN mm-2]

p(2)flange FEM [KN mm-2]
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Fig. 8. Damaged and undamaged data in Southwell's format.

computer code based on perturbation techniques was
developed.9,lo

Not only can the curvature of the post-critical path be
obtained but also the possibility of having two or more
interacting modes can be evaluated. II ,12 When two
buckling modes have bifurcation loads that are close or
even coincident, the two modes may interact and form a
new mode. While the two isolated modes may have
stable post-critical path (as shown in Fig. 3), the new
mode may have an unstable post-critical path. In this
case, the actual load that can be sustained by the
imperfect structure will in general be significantly lower
than the predicted, isolated mode, bifurcation load. In
this case, the structure is called an imperfection sensitive
system. This type of behavior has been shown inl3 for
pultruded structural shapes similar to the ones used. in
this study. Therefore, when buckling mode interaction is
a possibility, the critical, or bifurcation load provided
by standard finite element packages may be of little sig­
nificance to the designer, who should be aware of a
possible reduction of the actual failure load with respect
to the bifurcation value. Interacting modes were avoi­
ded in this study by selecting a sample length much
shorter than the critical interaction length.

One half of the length of the column was modeled
because of symmetry. The finite element model consist
of 120 elements distributed in 20 sets along the length,
each set having 6 elements to describe the cross-section.
All elements are Lagrangean quadratic elements with 9
nodes. One element was used for e~ch flange and two to
represent the web. From a convergence study that was
carried out, this was the minimum mesh refinement
necessary for 20/0 accuracy on the critical load.

The material properties of the composite material
were computed for flange and web using the lay-up
information from the manufacturing process. A repre­
sentative description of the fiber architecture used in
sample Fl is shown in Fig. 9. First, each panel (flange
or web) of the section is idealized as a stack of layers.
Each layer corresponds to a different fiber architecture
used during pultrusion (roving, continuous strand mat,
bidirectional stitched mat, etc.). For each layer the fiber
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Fig. 6. Quadratic fit of the post-critical experimental data.
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behavior.

The similarity of the predicted critical loads is because
both load-deflection plots seem to approach similar
asymptotes of load. In fact, the slope of the two curves
in Fig. 8 are very similar, especially if theqata for large
displacements are disregarded. Therefore,·~ the damage
accumulated during the first loading of the column acts
as a magnification of the imperfections but it does not
degrades the load-carrying capacity of the column dur­
ing post-buckling.

Buckling and post buckling analysis was performed
using the finite element code.9,IO While the buckling
load and buckling mode shape can be obtained by a
number of commercial finite element packages, none of
the commonly available packages can predict the cur­
vature of the post-critical path without performing an
expensive fully non-linear analysis. For this reason, a

5 FINITE ELEMENT MODEL
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6 CONCLUSIONS

The fit of the post-critical deformations provides an
accurate measurement of the critical load and the
curvature of the post-critical path for fiber reinforced
composite columns. The data must be collected during
the first loading of the column, as the test introduces
damage in the material when the deformations are large.
The modeling techniques used, from micromechanics to
finite element modeling, proved accurate for predicting
the critical load and the curvature of the post-critical
path. While the modified Southwell's method is also
adequate to obtain the critical load, care must be taken
of not using data well into the post-critical path because
of the inaccuracies introduced by a stiffening post-cri­
tical path.

Knowing the fiber volume fraction and the basic
elastic properties of the E-glass fibers (E= 72·34S"MPa,"
v = 0·22) and the matrix (Vinyl Ester Ashland D-1419,
E=4·0S1MPa, v=0·24), the periodic microstructure
model14 is used to predict the stiffness properties of each
layer. Then, Classical Lamination Theory (CLT)15 is
used to compute the stiffness of the panel (flange or
web), that is the A, B, and D matrices of the flange and
the web. These matrices are then provided as input to
the finite element code.

The finite element code was used to predict the
critical load and the curvature of the post-critical
path. The curvature of the post-critical p(2) can be
used to predict the load P during the post-critical path
according to eqn (2). The predicted values are compared
to the experimental values in Tables 2--4. The numerical
predictions of critical load are within 9·3% of the
experimental values. This is considered quite accurate
taking into account that the material properties were
computed from matrix and fiber data using micro­
mechanics. Using First Order Shear Deformation
Theory (FSDT) instead of CLT did not affect the cri­
tical loads significantly. Any discrepancies between
numerical and experimental results are most likely the
result approximations in the prediction of the stiffness
coefficients.

When the flange displacement was used to com­
pute the curvature of the post-critical path for sam­
ples Fl and F2, the predicted values were within 12·1°A>
of the measured values. The error and the 9S%
confidence interval was larger for the CP samples,
likely because only two samples were available for
testing·

Finally, the stroke was used to compute the curvature
of the post-critical path. The number of readings of
stroke data was too small in the case of samples Fl to
allow for accurate measurement of the curvature P~;;oke.
The data acquisition rate was corrected for samples F2,
obtaining as low as 10·8% difference between the pre­
dicted and measured values.
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Fig. 9. Fiber architecture of samples Fl.

where w is the weight of the mat in grm-2, p is the
density of the fibers (2·5gr cc-1) and tc is the thickness
of the layer in mm.

Since layers are not clearly defined in the pultruded
product, the thickness of the layers are ;::selected so that
the fiber volume fraction is approximately uniform
through the cross-section and equal to the overall fiber
volume fraction of the panel. Also, the thickness of
various layers are selected so that the total thickness of
the lay-up be equal to the thickness of the pultruded
part (12·7mm in this study).

For continuous strand mat (CSM) and bidirectional
stitched mat (± ()) layers, the fiber volume fraction is
computed as

where TEX is the weight of the roving in gr Km-1, P is
the density of the fibers (2·S grcc-1), b is the width of
the panel in cm, and tc is the thickness of the layer in
mm. The TEX can be computed from the yield Y
ydlb-1, which is used in the U.S., as

1340

volume fraction is computed based on the weight of the
fibers in that layer. For roving layers
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