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ABSTRACT: Compressive strength prediction for a fiber-reinforced composite material still
remains an unresolved topic when dealing with composites in the design process. Although
significant scatter is present in the experimental data, experimental test results are the only
criteria on which to base design parameters. Although significant advances have been accom­
plished recently by various modeling techniques, only quantitative comparison with experi­
mental data may be realized. This quantitative comparison requires the use of a semi­
empirical parameter into the model formulation, which is usually set as the fiber misalign­
ment. By using a single value of the fiber misalignment within the composite~ model predic­
tions easily match the experimental data because of the extreme sensitivity of the model with
respect to fiber misalignment. However~ it is well known that there is not a unique value of
fiber misalignment for all the fibers but rather a distribution of misalignments throughout the
composite. In this paper, using the complete fiber misalignment distribution, stability theory is
coupled with continuous damage mechanics to generate a model for compressive strength of
continuous fiber-reinforced composites. Sample results are also presented showing the corre­
lation of the analytical model with experimentally measured strengths.

KEYWORDS: compression strength, fiber misalignment, microbuckling, elastic stability

The application of composites in advanced structures is gradually increasing as more
information about their mechanical properties, manufacturing techniques, corrosion resis­
tance, stealth characteristics, and durability in various operating environments becomes
available. Current design requirements mandate the use of composites in various areas
primarily because of the greater strength-to-weight and stiffness-to-weight ratios over con­
ventional metallic materials.. As the use .of composites continues to grow, it becomes
necessary to be able to predict failure of various structural components in order that
appropriate factors of safety can be applied to the designs. Unfortunately, predicting and
determining one of the primary material properties (the compression strength) still remains
an unsolved subject in the behavior of composites.

The major difficulty with the current models for the compressive strength evolves around
the fiber misalignment (on the order of 1 to 2°) existing within the cured composite. It has
long been known and hypothesized that fiber alignment is extremely critical with respect to
compressive strength since the misaligned fibers are in a buckled state initially. Since a
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distribution of misalignment exists within the composite, a model with an idealized single

fiber misalignment value (which represents the misalignment within the entire composite)

becomes invalid. Because of the high sensitivity of the predicted compression strength to the

fiber misalignment, virtually any experimental compressive strength value may be matched

with the theoretical model predictions by choosing the value of the fiber misalignment.

Hence, any gains realized by theoretical model predictions are immediately offset by

arbitrarily choosing or guessing a value of existing fiber misalignment within the cured

composite. . .

In this paper, a classical damage mechanics formulation is used to incorporate a Gaussian

fiber misalignment distribution into an imperfection sensitivity model for compressive

strength. The resulting model provides a deterministic, reliable value for predicting compos­

ite compressive strength, which may be used for design purposes based on misalignment

distribution data obtained for each class of advanced composites.

Background

Compression strength of continuous fiber-reinforced composites is one ofthe most impor­

tant material properties that strongly influences the design and utility of composites for

structural applications. After three decades of research, models for the failure of unidirec­

tional composites are just starting to appear that show reasonable comparison with experi­

mental results [1-5]. Although these models have made significant improvements towards

the prediction and understanding of compression strength, comparison is accomplished by

introducing a semi-empirical parameter into the formulation that is chosen based upon the

experimental compressive strength results. Hence, agreement between the experimental data

and the analytical models is achieved by introducing an appropriate knockdown factor (the

fiber misalignment value) into the formulation.

By using past models for compressive strength [1-5], it has been shown that the compres­

sive behavior of continuous fiber composites is strongly influenced by several factors. Two

factors believed to dominate the compressive response are the nonlinear shear stress-strain

behavior and the fiber misalignment or waviness. Unfortunately, these two factors are

synergistic and act in unison to drastically degrade the compressive strength of fiber­

reinforced composites. Hence, the accurate characterization of these material properties is

essential to any model validation.

Unidirectional continuous fiber composites have small angular deviations (between 1 to

10°) about their mean direction even though all fibers may be aligned in the same nominal

direction. The detrimental effect of fiber misalignment has been shown to effect the com­

pressive strength experimentally [6,7].' By taking measurements of the fiber misalignment

existing within the cured composite [8], quantitative comparisons may be realized between

the compressive strength and fiber misalignment distributions by using the mean or standard

deviation of the measurements.
Currently, there are several compressive strength models that appear to predict the

compressive strength relatively well [J -4]. These models have accounted for such effects as

the nonlinear shear' response of the matrix, initial fiber misalignment, shear deformation of

the fibers, and random fiber spacings [3,4]. Since a variety of misalignment magnitudes exist

within the composite, simply choosing a single representative value of the fiber misalign­

ment only quantitatively verifies the model predictions. Given the extreme sensitivity of

these compressive strength models with respect to fiber misalignment values, the exact

nature as to the true effect the entire fiber misalignment distribution has with respect to the

compressive strength remains unresolved.

To compound the problem further, not only does the fiber misalignment distribution vary
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with respect to the fiber and resin system used, but also with respect to the manufacturing
method. Thus, different experimental strength results are likely to be obtained for the same
fiber and resin system if manufactured by different methods, even when the same test fixture
is used. This may be one of the main reasons such a wide scatter band is present in the
compressive strength data available in the literature.

Nonlinear Shear Characterization

Previous models relating the compressive strength have shown the importance of includ­
ing the nonlinear shear response [1-5]. In fact, if the nonlinear shear response is removed
from the formulation, the postbuckling response of the system becomes stable and imperfec­
tions in the form of fiber misalignments are not expected to lower the compressive strength
[9,10]. Hence, it becomes very important to have an accurate and reliable characterization of
the nonlinear shear response. Unfortunately, the shear response is also one of the most
difficult material properties to characterize.

The exact role the fiber misalignment has with respect to the shear response is unknown.
From the basis of coordinate transformation, the misalignment should not affect the com­
pressive strength until the fibers are misaligned at approximately 10° off-axis for a linear
analysis. But the effect the misalignment has with respect to the complete nonlinear curve
has not been investigated. Therefore, by characterizing the shear response on a specimen
produced by the same manufacturing method and layup configuration of the specimens for
which the fiber misalignment and compressive strength was determined, a meaningful
comparison between model and experiments may be accomplished.

Problems in measuring the nonlinear shear response are still encountered at present day
even though ASTM standards exist. Various methods for the shear response characteriza­
tion iilclude the [+ 45] coupon test, the 100 off-axis test, the rail shear, Iosipescu, Arcan,
and the torsion test. Although all these methods produce relatively acceptable values of
the linear shear modulus, wide scatter exists in the nonlinear region and the ultimate shear
strength [11].

An additional problem encountered in the shear response is modeling the behavior for
input into an analytical model. Since classical rule-of-mixtures formulas are not accurate for
the shear response, it becomes necess~ to seek a reliable relationship to represent the
nonlinear shear stress-strain diagram. In the current investigation and for the purposes of
developing a compressive strength model, the following relationship for modeling the shear
response was assumed

(1)

where Tull is the shear strength, and GLT is the longitudinal shear modulus. This· hyperbolic
relationship has the proper characteristics for large strains and is asymmetric with respect to
the origin·, which is important to produce a symmetric bifurcation point in the stability
analysis. In addition, this equation depends only upon two constants, which are typically
measured and reported for shear responses. Figure 1 shows the correlation between the
hyperbolic relationship with respect to two experimentally obtained' shear responses for a
unidirectional graphite/epoxy [AS41E7K8] composite: The data reported in Fig. 1 were
generated by a 00 Iosipescll specimen (900 notch) and have been corrected according to the
procedure described in Ref 11. For the compressive strength model formulation proposed,
an accurate and reliable nonlinear relationship between shear stress and strain is essential for
model validation.
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FIG. I-Typical shear response (AS4/E7K8) along with hyperbolic curve-fit.

Stability Model for Compressive Strength

. Buckling of perfectly aligned fibers was considered initially by Rosen [12] and has since .

been modified by many investigators. Although Rosen's formulation produced unrealistic

values of the compressive strength, the fundamental assumptions, such as shear mode

microbuckling and the two-dimensional fiber-matrix model, still prove useful in the current

formulations. Presently, by modifying Rosen's initial·formulation accounting for nonlinear

shear response and fiber misalignment, more realistic values of compressive strength are

obtained [2,9,10].
Using these fundamental assumptions in an energy approach, the authors have also

established a two-dimensional compressive strength model formulation using the general­

ized theory of elastic stability [3] based upon the representative volume element shown in

Fig. 2 and assuming the fibers to fail in the shear microbuckling mode. The results obtained

from this model are similar to other current formulations in that the compressive strength is

dominated by the nonlinearity of the shear response and the initial fiber misalignment. As

shown in Refs 9 and 10, an analysis of the perfect system (in which no fiber misalignment

exists) yields an unstable, symmetric bifurcation point at

(2)

which is exactly the bifurcation load originally obtained by Rosen [12]. By using the

stability formulation, the postbuckling nature of the bifurcation point was established as

unstable. This result indicates that imperfections, in the form of fiber misalignments, are
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expected to lower the maximum obtainable compressive load in the composite (this result is
similar to the postbuckling response of axially loaded cylindrical shells). This unstable
phenomenon is depicted in Fig. 3a for varying degrees of imperfections (fiber misalign­
ment). Hence, once the loading of the fibers reaches the apex of the equilibrium path, the
load-carrying ability of that specific fiber is drastically reduced. The details of the stability
formulation are beyond the scope..of this paper and may be obtained from references [9,10].
Models similar to the one proposed have also been presented by other authors using
different formulations [1-4].

Using the stability model formulation, the postbuckling characteristics of the fibers, when
coupled with the nonlinearity of the matrix in shear, produce an imperfection sensitive
system in which the fibers have no postbuckling strength. As shown in Fig. 3a, the unstable
nature of the postbuckling. path produces a limit load condition in which the bifurcation
point traditionally encountered in buckling problems cannot be obtained, thereby lowering
the maximum attainable compressive load. As shown in Fig. 3a, for increasing imperfec­
tions E (i.e., the fiber misalignment) the maximum attainable compressive load within the
composite is reduced. By connecting these peaks for increasing values of fiber misalign­
ment, an imperfection sensitivity curve may be established as depicted in Fig. 3b.

This imperfection sensitivity relationship is extremely important to the validation of
compression strength model formulations. From the stability viewpoint, this curve is cus­
tomarily produced using pertubation methods [13]. Due to the complexity of the analysis
and the requirement to include large angles of misalignment (on the order of 3 to 6°), a
closed form solution of this relationship is not possible. Hence, numerical methods must be
employed to obtain an implicit relationship of the imperfection sensitivity curve. Figure 4
shows the imperfection sensitivity relationship using perturbation methods (up to the fifth
order) along with the numerical solution. As seen from Fig. 4, .perturbation methods achieve
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order) along with the numerical solution.

the required degree of accuracy for very small misalignments but diverge at large magni­

tudes. Therefore, the use of perturbation metbods in the analysis becomes unacceptable and

the numerical solution must be adopted.

Since the primary go~ of this paper is to establish a compressive strength model that

couples together the complete distribution of fiber misalignment along with the stability

characteristics of the misaligned fibers, it becomes necessary to establish an explicit rela­

tionship for the imperfection sensitivity curve. An exponential equation was proposed to fit

the imperfection sensitivity curve in the form

(3)

where GLT is the composite shear stiffness, a is the misalignment angle, and k1, k2, k3 are

functional constants determined by a curve fit. Note that Eq 3 has the following characteris­

tics:

1. When a = 0, lTeR = GLT (Rosen's model).

2. When a -+ 7T/2, iTeR~ o.

Figure 5 shows a typical implicit numerical solution coupled with the curve fit using Eq 3.

Th~ curve-fit constants were obtained by minimizing the chi-squared test statistic [14].

Although the imperfection sensitivity curve enables one to quantitatively make a compari-
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(Eq 3).

son for various types of fiber misalignment values, the model still encounters the same

difficulties as other model formulations by using a representative value for the fiber mis­

alignment. This effect has been counteracted by other investigators by using a value

representative of the distribution, like the standard deviation, two times the standard devia­

tion, expected value, etc. Furthermore, there is no theoretical justification for assuming all

the fibers to have the same misalignment angle. Using this result as a basis for this

investigation, the authors have proposed a more systematic approach to include the effect of

the entire distribution into the formulation.

Fiber Misalignment Characterization and Modeling

Although measurement techniques have been established for characterizing the fiber

misalignment, actual misalignment measurements for fiber-reinforced composites are sparse

and seldomly reported. Du~ to the sensitivity of compressive strength with respect to fiber

alignment, this commonly overlooked or hypothesized number or distribution becomes ex­

tremely important in verifying an analytical modeL

Using the method developed by Yurgartis [8], misalignments within the cured composite

may be obtained by sectioning the composite at a known angle <I> (this angle may also be

defined by the mean misalignment distribution). Once sectioned, the cylindrical fibers form

ellipses and may be observed microscopically by polishing the cut face. Figure 6 shows a

typical cut section obtained for a unidirectional graphite-epoxy [AS41E7K8] composite. By
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FIG. 6-Typical microscopic field-oJ-view showing used for fiber misalignment measure­
ments (AS4/E7K8).

measuring the major and minor axis (fiber diameter) of the ellipses, the angle of that
individual fiber with respect to the cut face w may be obtained by the relation

. minor axis length
SIn w = -----­

major axis length
(4)

By taking measurements randomly over the entire cross section, a distribution of angles may
be obtained W';. Knowing the angle of cut <P, the distribution with respect to the longitudinal
direction may be obtained by

(Xi = Wi - <I> (5)

f

r

r

Since the fibers in a composite have a distribution of misalignment, the statistical nature
of the qlisalignment must be incorporated into the compression strength model. Using the
discrete transformed distributions, the next step in the statistical process is to chose a
continuous distribution to represent the fiscal system. Once a continuous distribution is
chosen, the statistical nature of the fiber misalignments may be incorporated into the analyti­
cal model.

Although the fiber misalignment data presented in the literature are sparse, the obvious
choice for the statistical model is Guassian or normal with a probability function f(x)

1 [- (x - IL)]f(x) = V exp ; - 00 < x < 00

U 217" 2u2
(6)

:l

a
y

where U' is the standard deviation, J..L is the mean, and x is the continuous random variable.
Assuming the distribution of the misalignment to be symmetric (I-L = 0), measurement bias
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and distortion, of the measurement technique may be circumvented by discarding the "lower
half" of the discrete transformed measurements and using the "upper half' to estimate the
distribution f<a) [8]. The assumption of normality may also be checked using the cumula­
tive distribution function (CDF) and probability scales [14].

Since fiber microbuckling occurs at the same load for positive or negative misalignment
angles, it was necessary to convert the normal distribution to a "half" normal, which is the
special case of the more general "folded" normal distribution [15,16]. In the "half" normal
distribution, the random variable z is given as

z = lxl (7)

where x is the random variable of the regular normal distribution. In other words, the' 'half"
normal distribution represents the normal distribution 'without the algebraic sign. Hence, in
application of the "half" normal distribution to the problem of compressive strength,
positive and negative angles of misalignment have the same effect on compressive insta­
bility_

Using the new random variable z, the density of the "half" normal distribution is derived
as [15,16],

f(z) =.: {2exp [- Z2] ; z 2= 0
0' -V ;: 20'2

or in terms of an misalignment angle ex

(8)

1 (2 [-a2
]f(a) = - -V ;exp --2 ;

U a 'IT 2u IX

a>O (9)

where U a is the standard deviation of the measured discrete normal distribution. Figure 7
shows the resulting density function of the "half' normal distribution. Physically, Eq 9
represents the probability that a fiber chosen at random in the cross section has a misalign­
ment of value cx. But more importantly, assuming the number of fibers in the cross section is
large, Eq 9 gives the ratio of the number of fibers that have a misalignment ex over the total
number of fibers.

Damage Model Formulation

Based on the stability model presented previously [9,10], it was demonstrated that due to
the unstable nature of the bifurcation, the fibers were unable to carry a postbuckling load.
When this result was related to an imperfect system that contained fiber misalignments, the
system became characterized by a limit load condition, the degree to which was determined
from the initial misalignment of the fibers. Hence, considering an individual fiber with initial
misalignment, once the critical load limit is reached, the fibers' ability to carry load is lost.
The inability to carry the post-buckling load does not imply permanent damage within the
composite once the limit load condition is reached. This result just indicates that the load­
carrying capacity of that fiber is much lower than the applied load. The fiber may break in a
bending mode when this lateral deflection becomes large [1,17].

From the basis of the inability of the fiber to carry a post-buckling load, a one-dimen­
sional damage mechanics formulation [18] was proposed to account for the accumulation of
the microbuckling process. According to the imperfection sensitivity curve, those fibers that
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have a large initial misalignment value have a lower critical load limit. -Therefore, once the
critical load is reached, the load must be redistributed onto the remaining fibers that have not
reached their limit load. The one-dimensional damage mechanics relation that describes this
is given by the relation

O'max(a) = ucR(a)[l - w(a)] (10)
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where w(o:) is the area of failed fibers per unit of initial fiber area. The critical stress CTCR(a)
represents the stress-at which the corresponding fiber has reached its limit load and is given
by the imperfection sensitivity relationship CEq 3). This failure is depicted graphically in
Fig. 8. As seen from Fig. 8, the damage model induces the compressive failure process to
proceed from high to low misalignment magnitudes.

Using the above relation, the expected compressive strength for a given composite may be
obtained using the misalignment distribution. Unlike the previous models for compressive
strength, the proposed model will account for the complete distribution of fiber misalign­
ment values. Assuming the fibers may be modeled statistically using a probability density
function f(a), the damage variable w(a) becomes

w(a) = 1 - F(a) = 1 - La f(a)d~ = f: f(a)da (11)

where F(a) is the cumulative density function representing the percentage of unfailed fibers.
Figure 9 depicts the failure process with respect to· the total number of fibers within the
composite.
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When the probability relationship is combined. together with the one-dimensional damage

mechanics law, a maximum is reached on the applied stress O"max (Eq 10). Physically, this

maximum is the point at which the compressive force overcomes the reloading process (see

Fig. 10). This apex may be obtained by evaluating the derivative of the one-dimensional

damage mechanics law (Eq 10) to obtain the corresponding critical misalignment angle aCR.

This value may then be substituted back into the ~overning equation to obtain the expected

G.J (ex)

F (D:)

ex
(3

-4'
Failure

FIG. 9-Failure propagation with respect to fiber misalignment distribution.
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value of the compressive strength. Figure 11 shows the solution procedure for obtaining the
compressive strength coupling together the stability and statistical models.

The proposed damage model formulation presented accounts for the fact that during the
compressive loading process, as the misaligned fibers become unstable, the load redistrib­
utes among the remaining stable fibers_ Therefore, failure of highly misaligned fibers does
not trigger complete failure unless the compressive load reaches its apex_ In most damage
model formulations, the damage process is considered as irreversible, resulting in fiber
breakage accumulation, etc. In the fiber instability damage JJlodel, assuming thepostbuck­
ling response to remain elastic, the process is reversible. Hence, when unloaded, the damage
variable w(a) returns to zero. In the case in which the deformations become plastic or large
and fiber kinks form, the reversibility of the system becomes invalid&

Example Correlation with Experimental Compressive Strength

Although the literature contains an abundance of experimental compression strength data
for various fiber and matrix systems, relatively few investigations measure all the required
information needed for model validation and correlation. For accurate correlation with the
model presented in the previous sections, the following information about the composite
system is required:

1. Ultimate shear strength, TULT.

2. Initial shear modulus, GLT-

3. Fiber misalignment -standar~ deviation, (Ta-

4. Longitudinal compressive strength, U CR -
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Since the complete combination of these parameters is difficult to find in the current
literature, a sample correlation will be presented for a graphite/epoxy system (AS41E7K8).
Using data from MIL-HDBK-17-2C [19], the longitudinal compressive strength of
AS41E7K8 was found as 209 ksi using a SACMA 1-88 test method (which uses an ASTM
Test Method for Compressive Properties of Rigid Plastics [Metric] (D 695) test fixture).
When this value is normalized by the fiber volume fraction of 60%, a value of 245 ksi
(1.69 GPa) is presented. Unfortunately, shear and misalignment data were not presented
with the dataset.

Since shear and misalignment data were not presented with the dataset given in MIL­
HDBK-17-2C, separate shear and misalignment measurements on AS41E7K8 were per­
formed. A typical shear curve for this system is shown in Fig. 1 (two tests) using the
Iosipescu test fixture according to ASTM Test Method for Shear Properties of Composite
Materials by the V-Notched Beam Method CD 5379) along with the hyperbolic curve-fit (Eq
1), which was used for the stability model formulation. From the curve-fit procedure, a value
of the initial shear modulus and ultimate shear strength was found as

GLT = 1.15 Msi (7.93 GPa)

'TULT = 13.2ksi(91.0MPa)

These values were obtained from a 0° laminate configuration and then subsequentially
modified by the correction factor given in Ref 11.

Using a microscopic video analysis system, measurements of the fiber misalignment were
also performed according to the procedure outlined by Yurgartis [8]. A typical field of view
for an AS41E7K8 composite is shown in Fig. 6 with approximately a 50 sectioning angle. By
measuring both the major and minor axes of the resulting ellipses and correcting for mea­
surement sensitivity by discarding the lower half of the assumed normal distribution [8], a
standard deviation based on 2016 measurements was obtained for the AS41E7K8 as

U a = 1.179 degrees = 0.02058 rad

It should also be noted that since a variation of misalignment distributions is expected with
respect to the manufacturing process, the laminates manufactured for this analysis were
produced using recommended prepreg manufacturer processing specifications.

Using the 'stability model [9,10] along with the obtained shear response values, an
.imperfection sensitivity curve was established for this system with respect to fiber misalign­
ment (Fig. 5) and was modeled using Eq 3. It should be noted that the use of the model
presented. in Refs 9 and 10, although.. it is crucial to the overall compressive strength
prediction, does not depend on the formulation used to ~btain the imperfection sensitivity
relation. Even though minor differences may result from different formulations, the imper­
fection sensitivity curves given in Refs 1-4 may alsq be utilized with the damage mechanics
formulation.

Using the standard deviation of the measured misalignment magnitudes, Eq 9 (half
normal) was used to model the mjsalignment distribution. The resulting distribution is then
insensitive to the sign of the misalignment and depends only upon the absolute value of the
misalignment. In this sense, both positive and negative degrees of misalignment will effect
the compressive strength identically.

Following the solution schematic presented in Fig. 11, both models (statistical and
stability) are combined together using Eq 10. As previously stated, the use of Eq 10
accounts for the fact that once an unstable fiber has reached its limit load, the load must be

.:.l..
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redistributed onto the remaining stable fibers. When this reloading process reaches the
critical stage, the compressive strength may be found. For the AS41E7K8 system considered
in this example, the maximum compressive stress was found as

lalf
len
the
feet

U max = 235ksi(I.62GPa)

By. correlating this result with the experimentally measured st~ength, a difference of 12 and
4% is obtained with respect to the raw and normalized experimental results, respectively.

and
10

: be

Discussion and Conclusions

By using the example presented in the previous section, the correlation of the analytical
model with respect to experimentally measured strengths was presented. As seen from this
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correlation, relatively good predictions may be obtained for the compressive strength with­
out assuming a constant misalignment value for the composite system. By using the
imperfection sensitivity curve, a constant misalignment of approximately 2.5° is required to
yield·the. experimentally observed' compressive strength. This value (2.5°) does not correlate
with either the standard deviation (1.179°), 't~e expected value of the half-normal distribu­
tion (0.941°), nor the variance of .the half-normal distribution (0.505°) of the measured
misalignment distribution. Hence, the model presented provides a logical correlation be­
tween the experimentally measured fiber misalignment distributions and the experimentally
observed compressive strength values.

Although the model presented provides relatively good correlation with the experimen­
tally measured compressive strength, various aspects of the.ffiodel need further investigation
and are listed below:

1. Good correlation of the current model has also been obtained. using a glass/polyester
system [10] in which substantially more variation of the misalignment magnitudes
exists. Additional correlations with other material systems are needed for c.omplete
model validation.

2. Parametric studies are also required correlating the effects of the initial shear modulus,
ultimate shear strength, and fiber misalignment distributions with respect to experi­
mental compressive strength magnitudes.

3. Since the compressive strength is dependent upon the shear response of the composite,
accurate methods to measure the nonlinear response are required.

4. Constitutive models of the nonlinear shear response are also required. If a simpler
equation may be used to model the nonlinear shear behavior, the use of Eq 3 may be
eliminated and a closed form solution of the imperfection sensitivity may be possible.

5. Interaction among the fibers and the effects of nonuniform spacing is not included.
6. The point at which plastic instabilitylkinks occur with respect to the loading process is

unknown.
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