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An analytical solution for predicting delamination buckling and growth of a
thin fiber reinforced-plastic (FRP) layer in laminated wood beams under
bending is presented. Based on a strength-of-materials approach,
displacement functions for a delaminated beam under four-point bending
are derived. Using force and displacement compatibility conditions, an
explicit form relating the applied transverse load with the delamination
buckling load is established. An explicit form of the strain-energy release
rate is presented to study the delamination growth in beams under bending.
The analytical solution is evaluated using experimental data for glued­
laminated timber (glulam) beams reinforced with a thin fiber-reinforced
plastic composite on the compression face. The delamination growth in
bending is shown to behave differently to that of the in-plane loading case.
© 1997 Elsevier Science Ltd.
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NOTATION

The notation used in this paper is listed below.

Displacement at the loading point
Prescribed rotation at the end of a dela­
minated sublaminate

*Author to whom correspondence should be addressed.
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Axial stiffness of segment i
Beam width
Bending stiffness of segment i
Strain-energy release rate
Critical strain-energy release rate
Thickness of delaminated layer
Beam span length
Delamination length
Loading span length
Moment acting on segment i
Internal axial force acting on segment 3
Applied transverse load
Beam thickness
Transverse deflection for segment i
Displacement at mid-span
Strain of a delaminated layer
Experimental C3

Prescribed displacement at the end of a
delaminated layer
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INTRODUCTION

Delamination in composite laminates causes
separation of an adjoining layer from the main
laminate structure. Delamination .growth may
significantly influence the strength, stiffness and
stability of a laminate. The initiation of delami­
nation results from many sources, such as
manufacturing defects, deterioration of bonding
materials, or local impact damage. The delami­
nation behavior in laminated structures has
received the attention of several investigators.

One of the first analytical delamination
models was developed by Chai [1]. He charac­
terized the delamination in homogeneous,
isotropic plates using a thin-film model, and
extended this approach to a general bending
case which included the bending of a thick base
laminate. Including bending-extension coup-
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ling, Yin [2] derived general formulae for
thin-film strips and mid-plane symmetric dela­
minations in composite laminates. Kardomateas
and Schmueser [3] analyzed the deformation of
delaminated composite under axial loading with
a one-dimensional beam-plate model including
transverse shear effects. Chen [4] developed a
shear deformation theory for compressive dela­
mination buckling and growth with a variational
energy principle.

The nonlinear behavior of a composite dela­
minated beam under axial loading was analyzed
by Sheinman and Soffer [5]. Tracy and Pardoen
[6] studied the effect of delamination on the
flexural stiffness of laminated beams, but their
analytical solution did not include bending­
extension coupling or delamination buckling.
They tested specimens manufactured with a
delamination at the mid-plane, and they con­
cluded that the delamination did not degrade
much the stiffness of the laminates. However, as
observed in glulam-FRP beam tests [7], if the
delamination was placed near the top surface of
a beam, delamination buckling is likely to occur.
Consequently, the stiffness of the beam would
be affected substantially.

Reddy et ale [8] developed a generalized lami­
nate plate theory (GLPT), and used this theory
to account for multiple delaminations between
layers.· The associated finite-element. model was
developed by Barbero [9] and Barbero and
Reddy [10]. Based on GLPT, Lee et ale [11]
developed a displacement-based, one-dimen­
sional finite-element model to predict critical
loads and corresponding buckling modes for a
multiply delaminated composite with arbitrary
boundary conditions. Sankar [12] developed an
offset-node beam finite element to model dela­
minations in composite beams. The modeling of
delaminations in a composite beam, however,
was limited to the case of two sublaminates with
the same thickness, one above and one below
the delamination plane. The offset-node ele­
ment was extended to the study of dynamic
delamination propagation in composite beams
[13]. Most of the existing studies focused on the
response of a delaminated thin laminate (thin­
film delamination) which does not affect the
strength and stability of a thick-base laminate.
Recently, Kutlu & Chang [14] investigated the
compressive response of laminated composites
with multiple delaminations, including the inter­
action between the delamination growth and
the response of laminates.

In a hybrid system, such as glued-laminated
timber beams (gIuIam) reinforced with fiber­
reinforced plastic (FRP) strips, different
materials are bonded with an adhesive and,
therefore, loss of face-to-face local adhesion is
the main cause of delamination at the interfaces
of two distinct layers. Reinforcing glulam beams
with FRP strips on the compression and/or ten­
sion side is an efficient way to increase the
stiffness and strength of laminated wood beams
and to decrease the depth of the member [7].
Usually, the thickness of a FRP strip is very
small compared to that of a glulam beam. For
beams reinforced with FRP on the compression
face, the debonding and subsequent local buck­
ling of the FRP layer can result in a premature
failure of a glulam-FRP beam. To predict the
ultimate strength of glulam-FRP beams rein­
forced on the compression face, it is necessary
to investigate the delamination behavior of a
thin compression layer in a delaminated beam
under bending.

In this paper, an analytical model to predict
delamination buckling of a FRP strip in a re­
inforced laminated beam under bending is pre­
sented. The investigation of the critical loads
and delamination behavior are the major con­
cerns of this study. In the analytical model an
initial delamination length at the interface of
the top layer and the base laminate is assumed.
Beyond the delamination length, the rest of the
top layer remains bonded to the compression
face of a relatively thick laminate. The delami­
nated beam is subjected to four-point bending
and the initial delamination is symmetric about
the mid-span. The displacement, rotation and
the axial force acting at the delaminated layer
are computed, based on the assumed displace­
ment functions which are derived using
boundary conditions and compatibility condi­
tions. Also, explicit expressions for critical
buckling load and strain-energy release rate are
provided. Using the test data of a full-size lami­
nated beam, the displacement and critical loads
predicted by this study are compared with
experimental values. A parametric study is
carried out to investigate the effect of laminate
stiffness on the critical loads. The strain-energy
release rate for various initial delamination
lengths are computed to find out the trend of
delamination growth in laminated beams under
bending. Finally, findings of this study are
summarized and recommendations for future
research are suggested.
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Then, we have

From the support to the loading point~ segment
1 (0 <Xl <L/2 - Lj2)

(3)

(2)

(1)

The coefficient c will be determined in Section
2.2 using compatibility conditions.

As the bending moment varies linearly in this
region, the displacement function can be
assumed as

The boundary condition at the support and -con­
stitutive equation are

derived next, and the notation. used is given in
Appendix Bo

In this paper the entire beam is involved in the
derivation of the analytical solution. Consider
the beam shown in Fig. 1 subjected to four­
point symmetric loading, where one half of the
beam is modeled using a shear-release at mid­
span. The beam is divided into three segments:
segment 1 contains no delamination; segment 2
is the base laminate, or thicker lower portion of
the delaminated region; and segment 3 is the
thin upper lamina that has undergone delami­
nation. The subscripts used in the derivation of
the theory correspond to these three segments.

The coordinate system and beam parameters
are shown in Fig. 2. To simplify the problem of
interest, we assume that ·a single symmetric
delamination is present at mid-span before
loading. Also we assume that mode I (opening
mode) fracture is the primary -mechanism. for
delamination growth, because the delaminated
segment is in the shear-free zone, and that the
thickness of a delaminated lamina is small com­
pared to that of the laminated beam. The
displacement functions in all three segments are

DISPLACEMENT FUNCTIONS
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Figo 10 Delaminated beam configuration.
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From the loading point to the delamination tip:
segment 1 (L/2-Lo/2<x1 <LI2-Ld /2)

The constitutive relation and the prescribed
boundary conditions at the delamination tip are

W = (!::-. - ~) =b w' (!::-. - ~) =f}
la 2 2 'lb 2 2 '

(11)

Delaminated region: segment 2 ( - L d /2 <X2 < 0)

Delaminated region: segment 3 ( -Ld /2 <X3 <0)

Assuming a constant bending moment in this
region, the displacement function is given by

W2(X2)=hx~+ix2+ j (10)

Using the prescribed boundary conditions at the
delamination tip, we have(4)W1b(X 1) = exi+fx}+g

As the bending moment is constant in this
region, the displacement function can be writ­
ten as

(5)

Then, we obtain

The post-buckling deflection shape of a beam­
column is given as (Chen & Lui [15, p. 177])

W 3(X3 ) =K 1 sin(exx3)+K2 cos(ax3 )+K3 X 3

(12)

(13)

The continuity condition of rotation at Xl =LI2
-Lo/2 gives

As the deformed shape is symmetric, we have
K I =K3 = O. Using the compatibility of displace­
ment b and rotation fJ at the interface between
segments 1 and 3, eqn (12) becomes

cos(ax3)-cos f3
W3(X3 ) , • _ fJ+b

ex SIn f3

where

(7) (14)

Then eqn (3) becomes

Q 3
W1a(X1) =- -- Xl

6D1

The displacement functions expressed in terms
of beam parameters and the prescribed bound­
ary conditions are used to compute strain
energy and strain-energy release rate in a beam,
as discussed next.

From the displacement continuity condition at
Xl = L/2 - L o/2, we have

Q(L - Lo)(L - Ld ) Q(L - Lo)3
f}=- +-----

8D} 24D j (L-Ld )

(8)

(9)

CRITICAL BUCKLING LOAD AND
DELAMINATION GROWTH

Beam bending induces a strain distribution that
is linear through the thickness of the beam. The
linear strain distribution can be represented by
resultant moments for segments 1 and 2 and
resultant axial forces acting at segments 2 and
3, as shown in Fig. 3. From the moment equili­
brium condition at the delamination tip, we can
write
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Segment 1

p....-.--. Segment 3

Strain Distribution Resultant Forces

Fig. 3. Resultant forces at the delamination front.

puted as follows. First, the bending energy for
segment 1 is(15)

The moment-curvature relations for M 1 .and Mz
are

1 L/2-Ld /2 (d2
W 1 ) 2

U =-D f -- dx
1 2 1 0 dx2

(21)

(16) =

Using eqns (15) and (16), f) can be expressed as

The bending energy for segment 2 is

1 L d /2 (dZW2)2
U=-D f -- dx

2 2 z0 dx2
(22)

Ld .
f)= - [Q(L-L )-Pt]

4D
2

0
(17)

The compatibility condition of axial shortening
of segments 2 and 3 is and the membrane and bending energy for seg­

ment 3 is

P 1 Lj/2 (dW2)2 P
-A L d = -2 _ /2 -- dx2+tf) - - L d (18)

3 ~ dX2 A2

Then, we obtain

Using the displacement functions given in eqns
(6), (8), (11) and (13), the strain energy along
the post-buckling path for each segment is com-

Equating eqns (17) and (19), the relation
between P and Q is established as

Pt 4D2Q= . -----
(L-Lo ) Ld(L-Lo )

As the thickness of a delaminated layer is very
thin compared to that of the beam, Euler's
column buckling formula for a fixed--fixed
boundary condition can be used for Per [1].
Then, substituting Per from the Euler's column
buckling formula into eqn (20), a critical trans­
verse load Qer can be· computed from eqn (20)
which is valid up to the critical stage. An alter­
native procedure to find Per from the total
potential energy is described in Appendix A.
Note that in eqn (23), the load in the delami­
nated segment is assumed to remain constant
and equal to Per. This is because of the virtually
flat post-buckling path, similar to that of an
Euler column.

(19)

(20)9t
2 (1 1)]-. +6P -+-

L~ A 2 A 3

9t
2 (1 1)-+6 -+- P

L~ A2 A3

3t
(}=--+

L d
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(24)

The strain-energy release rate (G) is defined
as

a(U I+U2+U3 )
G=------

aLd

and using eqns (16)-(23), the explicit expres­
sion of G per unit width is

and Euler's column buckling formula. The
critical experimental load, Q~~P = 47.2 kN, was
recorded when buckling of the delaminated
layer was observed during the experiment (see
Fig. 5). Using LBT, the stress in the delami­
nated layer at buckling can be computed using
the known critical load Q~~P as follows

NUMERICAL EXAMPLE

PerL~[Q(L - ~o) - p ert ]2

64bD~ sin Per

(27)

Using eqns (19) and (20), P and e can be com­
puted for a given Q. Then, the maximum
mid-span deflection w2max is given by eqn (11)
as

(Jer=

(26)

Assuming that the delaminated layer behaves '
like a fixed-fixed column, the approximate dela­
mination length is computed from Euler's
formula as

(25)

[Q(L - Lo ) - Pert]2

8bD2

(L-Lo )2Q2
G~ ----­

8bD I

(
~ Ld )

X 2-.y D
3

tan Per

The accuracy of the model developed in this
section is evaluated by correlating the analytical
solutions with experimental results, as presented
next.

The test data for glulam beams reinforced with
GFRP [7] are used to validate the analytical
solution presented previously. The beam con­
figuration and average layer material properties
are shown in Fig. 4, and the beam parameters
are listed in Table 1. The delaminated length
(L d ), which is unk,nown at the time of the test,
is a parameter needed to carry out the compu­
tations with the equations derived in Section 3.
The delaminated length is estimated using lam­
ination beam theory (LBT, Barbero [16])

(28)

The internal axial force Per in the delaminated
lamina and' the critical transverse load Qer are
related by eqn (20). It is our interest to predict
Qer which causes local buckling of a delami­
nated sublaminate. In Fig. 6, Per and Qer are
plotted for various delamination lengths, where
Per is computed from eqn (AS) and also Euler's
formula, and Qer is obtained from eqn (20).
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lFigo 4L Beam configuration and elastic modulus of each layer.
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(29)

where Rw =Re = 1.0 corresponds to the test
beam parameters given in Table 1 and Fig. 4.
As seen in Fig. 7, the response of Qer is linearly
proportional to the value of the multipliers. As
expected, increasing the elastic modulus of
wood layers affect Qer more significantly than
increasing the modulus of the top composite
layer. The corresponding internal axial force Per
is shown in Fig. 8. Unlike the curves for Qer, the
value of Per is not affected by the bending stiff­
ness of segment 2, and it depends only on the
stiffness of segment 3. Therefore, only the
material properties of the delaminated sublami­
nate affect· the stress level in the delaminated
layer. As in the case of Fig. 6, the value
obtained by using eqn (AS) is almost identical
to that computed with Euler's formula. To
investigate the effect of delamination length on
beam stiffness, the response of a delaminated
beam is compared with that of a perfect beam,
and the effect of wood properties is also
explored for different values of Rw • As shown in
Fig. 9, the degradation of the delaminated
beam stiffness is not affected by the delamina­
tion length. However, the delamination length
can significantly influence the state of stress in
the delaminated sublaminate, and the ultimate
strength and failure mode of the beam. After
the buckling of a delaminated sublaminate
occurs, it is of interest to investigate the growth
of the delamination length; i.e. whether or not
the delamination will grow or be arrested as
function of the applied load. For this purpose,
the strain-energy release rate given in eqn (25)
is plotted for various initial delamination
lengths in Figo 10. To interpret the physical
meaning of the curves, a critical strain-energy

E:omposite = ReEeomposite

this difference is that the material properties of
the wood layers vary along the length of the
beam. Compared with test results, the critical
load Qer predicted by this study is within 2.6%
of the experimental value, and the predicted Per
is within 1% of the experimental Per. The
experimental Per is computed using the experi~

mental strain at the top surface measured with
strain gages.

To investigate the effect of the beam stiffness
on Qer and Per the elastic moduli of the GFRP
layer and wood layers are modified using multi­
pliers as follows
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Figo 50 Experimental load-displacement curve of the
glulam-GFRP beam.
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Euler's formula and the results of eqn (AS) pro­
vide nearly identical values for Per. However,
Euler's formula can not by itself provide any
information on the magnitude of the transverse
load (Q). Therefore, eqn (20) must be used.
The experimental load-displacement path of
the. glulam-GFRP beam is given in Fig. 5, and
the experimental values and analytical solutions
are compared in Table 2. The mid-span maxi­
mum displacement relative to the point loads is
underpredicted by 7.5%. One of the .reasons for
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Table 2. Comparison of critical load, force and displacement

Per (kN)

Test This study Test This study Test l . Euler eqn (AS)

8.37 7.74 47.2 48.5 61.9 61.5 61.4

6.3~------------------,

/
release rate (G1c) is assumed as 87.6 N/m. This
value of G1c .is representative of graphite-epoxy
T300/976 (see [14]). When the transverse load
reaches a critical value (Qcr = 48.5 kN for the
example considered in this study), the delami­
nation becomes unstable, and it grows from the
initial delamination length (L d = 0.16 m) to a
stable condition (L d = 0.3 m). Increasing the
load by a factor of 10% of Qcr the delamination
length decreases slightly, which means that no
further delamination growth occurs; i.e. the
delamination growth is arrested.

E 5.6
Z
~
.<;

.~

E

~o 4.9

This point corresponds
to example

............. Perfect beam

- Delaminated beam

65 --------------------.

58.5-ro----------------......
252117

R w=O.6
.....................................................................................................................................................................................................................

4.2
13

Ld (em)

Fig. 9. Effect of delamination on beam stiffness (at
Q =22.2 kN).

For an initial delamination length of ·0.25 m
the flat zone of the curve moves down, but the
curve is still above the assumed G1c value, which
indicates an unstable delamination growth in
the beam leading to a stable condition at the
delamination length of around 0.48 m. How­
ever, in this case, Qcr decreases by 60% to a
value of 18.3 kN, when compared to the pre­
vious case for L d =0.16 m. For a further
increase of delamination length to 0.38 m, the
.flat zone of the curve moves below the assumed
G1c value and, therefore, there is no delamina­
tion growth.

Compared to the initial case (L d = 0.16 m),
Qcr in this case decreases by 80% to a value of
8.1 kN. From this observation, we may infer
that delamination growth in a thin layer on the
compression face of a beam is arrested, while in
laminates under axial load the delamination
growth can grow indefinitely. Additional experi­
mental data are needed to corroborate this
observation. Usually delamination buckling con­
tributes to premature failure of glulam-GFRP
beams reinforced on the compression face
because the reinforcement ceases to be effect­
ive. After delamination, the wood laminate
alone must carry any additional load. Test
results of 5.79-m long beams, similar to the one

1.21.0

- This study (Eq. (A.S»

-_.. Euler's formula

0.8
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Fig. 7. Effect of elastic moduli on Qer'

This point corresponds to
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Fig. 8. Effect of.elastic moduli on Per.
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755025
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Fig. 10. Strain-energy release rate curves.
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used in this example, indicated a significant
decrease in the expected ultimate load due
primarily to delamination of the top GFRP
layer [7].

detect the onset of delamination buckling and
measure delamination growth.
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APPENDIX A

an
-=0
oQ

(A3)

(A4)

The total potential energy can be written as

II= U 1+U2+U3 -QL\ (AI)

where Ll, the displacement at a loading point
computed using eqn (8), is

~= O(L-Lo ) + Q(L-Lo)2(L+2Lo -3Ld )

2 241)1

(A2)

The total potential energy along the post-buck­
ling path can be expressed in terms of a single
parameter (Q) as

1 Ld[Q(L - La) - Pert]2
ll=- .

16 D2

1 PerL~[Q(L-Lo)-Pert]2
+ - ---------

64 D~[1-cos(2Per)]

or

3 PerL~[Q(L-Lo)-Pert]

8 D~ sin2 Per(L - Lo)

(A5)

At the bifurcation point, the load Q in eqn (20)
can be substituted into eqn (AS). Then, Per is
found by an iterative numerical method using
eqn (A5).


