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ABSTRACT : A progressive failure model for laminated composite beams is formulated -
using a beam finite element with layer-wise constant shear (BLCS), which permits ac-
curate computation of stresses on each layer. This is the first study to incorporate
stress-prediction accuracy of a layer-wise element for failure prediction of laminates unde
bending loads. In the present formulation, based on material degradation factors and exist
ing failure criteria, a linear elastic behavior is assumed, and a damaged layer in an elems
is substituted by a degraded homogeneous layer. Maximum Stress and Tsai-Wu failure ¢
teria are used to assess failure at the Gauss points. The effect of damage accumulation
accounted for by degrading the stiffness properties of failed element-layers in the equ
rium iterations. After equilibrium is satisfied, the load is increased by a constant perce:
age of first-play-failure load in a load-controlled failure prediction. A displaceme
controlled scheme is also implemented. The predictions of the model correlate well wi
experimental results for two distinct laminated composite beams: graphite-epoxy a
glulam reinforced with GFRP. The study provides guidelines, through parametric stu
for the appropriate selection of material-degradation factors, load increments, and fin
element mesh. - '

KEY WORDS: progressive failure analysis, laminated beam, layer-wise formulati
damage accumulation, stiffness degradation, load-displacement path.

1. INTRODUCTION

UMEROUS THEORIES FOR the analysis of laminated composite plates
beams have been developed and evaluated. To design efficient compos!
structures, accurate computation of stresses and reliable predictions of ultim:
strengths are necessary. The conventional strength analysis, called total-p!
discount [1], underestimates laminate strength, because it does not recognize th:
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ply-failure is localized, and that the remaining stiffness of a failed ply is not
necessarily zero. First-ply-failure (FPF) can be predicted easily as long as
stresses in a ply are computed accurately. Due to the complexity of composite
laminate behavior, a certain degree -of discrepancy is expected between failure
prediction and actual response of laminates. Also, material 1nhomogene1ty,
caused by micro-failures and defects in a laminate, brings additional difficulty in
failure modeling, which usually assumes some ideal conditions, such as perfect
bonding. Current research is focused on increasing the accuracy for predicting
the post FPF behavior of composite laminates. In the post FPF analysis, there are
two macroscopic approaches to include damage: modifying the reduced stiffness
matrix [2,3,5,6] and degrading the material properties [7-9]. In the former,
stiffnesses of failed elements may not be included, whereas, in the latter,
degradation level or degradation factor cannot be determined without testing lam-
inates of a material system.

Using the stiffness modification approach, Lee [2] analyzed damage accumula-
tion in composite laminates containing circular holes and subjected to in-plane
biaxial loading. He used a failure criterion of his own to define three types of fail-
ure mode (fiber breakage, matrix failure, and delamination), in which failure was

~ assessed by using only normal stresses or only shear stresses computed with an

8-node brick element; the representative stresses of an element were computed at
the center of the element for fiber and matrix failure, and at the center of an inter-
face for delamination. Upon satisfying equilibrium, or when no further failures
were detected in a load step, load was increased to cause the next element to fail.
Due to mesh coarseness at the edge of the hole, Lee’s program failed to detect
delamination and further mesh refinement was impossible because of computa-
tional limitations. Ochoa and Engblom [3] used a higher-order plate element and
computed transverse stresses from equilibrium equations. The failure analysis
procedure was similar to that used by Lee [2], but the stresses for failure predic-
tion were computed at the Gauss points; the reduced stiffness coefficients were
modified differently for fiber-breakage. failure mode, and a constant load incre-
ment was used. Leichti and Tang [4] tried to predict the ultimate load capacity of
wood composite I-beams using Tsai-Wu failure criterion and an eight-node plane
stress element in ADINA. Because they used a commercial program, the
stiffnesses of partially or totally failed elements could not be reduced at the next
load step, and the analysis was unable to include cumulative damage effects.
Hwang and Sun [5] developed an iterative 3-D finite element analysis with
modified Newton-Raphson scheme for the failure prediction of laminates. Tolson
and Zabaras [6] followed a similar procedure to that used by Ochoa and Engblom
[3], using a higher-order plate element.

Using the material-degradation approach, Tan [7] investigated the progressive
failure of laminates with cut-out holes under in-plane tensile loading. A symmet-
ric laminate assumption was used to neglect bending-extension coupling effects,
and damage in a lamina was accounted for by using ply-degradation factors. Dif-
ferent degradation factors were used for longitudinal modulus, due to fiber break-
age, and for transverse and shear moduli, due to matrix failure. The degradation
factors of a material system were adjusted through a parametric study and were
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assumed to be independent of lamination sequence. The same approach was
~ extended to a compressive-loading case by Tan and Perez [8]. Reddy and Reddy

. [9] studied the failure of laminates under axial extension with a finite element im-
plementation of a layer-wise plate theory. They applied a prescribed displace-
ment, for which the load was found by integrating stresses through the thickness.
Two different types of stiffness reduction methods were tried: degradation of

elastic modulus and Poisson’s ratios only; and simultaneous degradation of elas-

tic, shear moduli, and Poisson’s ratios. However, material properties were
degraded by the same factor regardless of failure modes. They concluded that
further investigation was required to apply their approach to laminates under
compressive or bending load. Using CLT and total-ply-discount failure analy-
sis, Greif and Chapon [10] conducted three-point bending tests of laminated
composite beams and attempted to predict successive failures. After a ply-
failure, the analysis was repeated for a new laminate, in which the stiffness
of a failed ply was set to zero; this analysis was continued up to five ply-
failures. However, their analytical predictions did not match the expenmental
results.

In previous research [1-3,5- 9], mathematical models of varying complex1ty
have been used to investigate failures of laminated composite plates subjected pri-
marily to in-plane loadings. At present, only a few studies have attempted to pre-
dict failures of laminated beams under bending [4,10], without providing ade-

~ quate results.

In the present study, the stress-prediction accuracy of a Beam finite element
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with Layer-wise Constant Shear (BLCS) is used to formulate a model for pro- o

gressive failure of laminated composite beams in bending. The BLCS element

can accurately compute normal and shear stresses on each layer. We discusss the )
finite element implementation of a material-degradation approach for the ac-

curate prediction of failure in laminated composite beams, and we provide guide-
lines, through parametric studies, for the appropriate selection of degradation

~ factors, load increments, and finite element mesh. Both load- and displacement-
controlled schemes are used to trace load-displacement paths to failure. The ac-
curacy of the finite element model is verified with experimental results for two

distinct laminates: graphite-epoxy beams [10] and glued-laminated timber beams

(glulam) reinforced with pultruded glass-fiber-reinforced plastic (GFRP) [11]. A ;

brief description of the BLCS formulation and failure criteria are presented as a
basic background for a detailed description of a progressive failure analysis, il-
lustrated by numerical examples.

2. LAYER-WISE CONSTANT SHEAR BEAM THEORY

The fundamental concepts of layer-wise constant shear beam theory are de-
scribed briefly, and the details of the finite element formulation can be found in
References [12] and [13]. The kinematic assumptions used in BLCS are transverse
incompressibility and linear variation of in-plane displacements through the
thickness on each layer. Then, the displacements of a point (x-z plane) in a lami-
nated beam are expressed as
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~where, u and w are, respectively, the longitudinal and transverse displacements
~of a point on the reference axis of the laminate, and U’ (x) represent layer-wise in-
plane displacements approximated by linear Lagrange interpolation functions
'¢’(2). The transformed stress-strain relation of an orthotropic lamina under the
‘assumption of plane stress in the x-y plane and without the transverse normal
‘stress component can be written as '

Os 0 01],e
Os O 0 ||e '
-Q_66 0 0 Y=y 0))
0 644 Q4s 7,»: :
0 645 -Q—SS- Yz

where Q,; = the transformed reduced stiffnesses. To represent the state of stress
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n each lamina, the following approximations are used: o, = 0,, = 0,, = 0.
The validation and limitation of this approximation are discussed by Lopez-Anido
et al. [14]. Imposing these conditions in Equation (2), we obtain

O,z = xz’sz : (3 )

+ Qlﬁ g12g26 - gngZZ
Q22Q66 - Q26Q26

In the finite element formulation, a 3-node elemeni with two Gauss integration
points is used. Compared with various experimental and analytical examples, the
stress and displacement predictions of the BLCS element are remarkably ac-

curate, particularly for soft-core laminated beams [12]. In this study, the stress-
prediction accuracy of BLCS is exploited to formulate a progressive failure anal-
ysis in conjunction with existing failure criteria.

3. FAILURE CRITERIA

Various failure criteria for isotropic or composite materials have been pro-
posed. It is generally acknowledged that one failure criterion cannot satisfactorily
predict failures for all types of laminates. In general, the failure criteria are cate-
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Figure 1. Stress components in the material coordinates.

gorized into two: independent and interactive (or quadratic polynomial) crite-

rion. An independent criterion, such as Maxium Stress or Maximum Strain, is

simple to apply and, more significantly, tells the mode of failure, but it neglects

the effect of stress interactions in the failure mechanism. An interactive criterion,

such as Tsai-Wu, Hoffman, or Hill, includes stress interactions in the failure
mechanism, but it does not tell the mode of failure, and it requires some efforts
to determine parameters such as F;, in the Tsai-Wu criterion. In the present study,
two criteria are used: Maximum Stress and Tsai-Wu. All stress components de-
scribed in Sections 3.1 and 3.2 are with reference to material coordinates, using

the contracted notation as shown in Figure 1.

3.1 Maximum Stress Criterion

Failure in a material is assumed if its stress components satisfy one of the fol-
lowing conditions:

g, > XT (01 > 0), o, > Xc (01 < O)

g, > Y (0'2 > 0, o, > Yc (02 < O)

gs > Sus, 0s > S23 4

where X; and X are, respectively, the tensile and compressive strengths in the
longitudinal direction; similarly, ¥r and Yc are the strengths in the transverse
direction, and S,s and S, are the shear strengths in 1-3 and 2-3 planes. The mode
of failure in a lamina is determined by the specific condition satisfied in Equation
(4); for example, if 0, > Xr, it is assumed that the lamina failed due to tensile
fiber breakage.
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3.2 Tsai-Wu Criterion

The most general quadratic polynomial criterion is given by Tsai-Wu and writ-
ten as

f(o) = Fio; + Fyaa;  ij =12,...6 )

where o; are stress tensor components in material coordinates, and F; and F; are
strength tensors. For a transversely isotropic lamina in the 2-3 plane, the crite-
rion is expanded as follows: .

Flal + FzO’z + Fua% + FzzU% + 2F120'10'2 + F440'% + F65(U§‘+ U%) =

©)
where
> 11 11 1 | 1
Fl —XT _XC’ FZ - YT - YC, Fll _XTXC F22 - YTYC
‘ 1 1 1
Fo=——F7——, Fu=4g, F PN
12 2 Fllez 44 S%_‘; 66 S%

Since the Tsai-Wu criterion does not describe failure modes, these are deter-
mined by the strength tensors associated with normal stresses or shear stresses,
whichever provide the most contribution to a failure. The first five terms of Equa-
tion (6) are related to normal stress failure and denoted as Cy, and the last two
terms are associated with shear stress failure and denoted by Cs. Then, in a fail-
ure analysis, if Cy > Gy, it is assumed that the failure is due to normal stresses
either in the longitudinal (fiber failure related to o,) or transverse (matrix failure
related to o,) direction. To further decide whether the failure is dominated by the
longitudinal or transverse normal stress, the sum of the terms corresponding to
F, and F,,, referred to as C%, is compared to the sum of the terms related to F,
and F,,, referred to as C%. If C% > C%, it is assumed that failure occurs in the

_ transverse direction; a matrix-dominated failure. Both Maximum Stress and

Tsai-Wu criteria are used in this study for progressive fallure analysis of lami-
nated beams.

4. PROGRESSIVE FAILURE ANALYSIS

The progressive failure analysis presented in this paper is based on the assump-
tion that a material is linear elastic up to ultimate failure. The stiffness of a
damaged layer over a discrete length is replaced by a homogeneous degraded
layer whose material properties are a constant multiple of original properties.
Material degradation factors (DFs) are used to define a percentage of the stiffness
retained in a ply after micro-damage has occurred. DFs are widely used in
macroscopic damage modeling, but unfortunately there are no explicit formula-
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tions to predict them, and only a few studies have presented parametric studies
to evaluate the effect of DFs in failure analyses [7-9]. A degradation factor is
used to globally adjust the local stiffness degradation of a ply over a finite region.-
Distinct degradation factors are used for fiber failure and matrix failure, and
when combined with failure criteria, the normal stress components are asso-
ciated with fiber breakage and the transverse normal and shear stresses are
related to matrix failure. Since a degradation level depends among other factors
on crack density and lamination sequence, as observed in an experimental evalu-
ation of cross-ply laminates under uniaxial tension [15], an accurate evaluation of
DFs is a difficult task, which complicates the implementation of numerical
methods in macroscopic damage modeling. In this paper, we illustrate with ex-
amples a procedure for selecting DFs for specific material systems, by conduct-
ing parametric studies and correlatmg the predicted ultimate loads with ex-
perimental values. This procedure is applied to two types of laminated beams:

graphite-epoxy and laminated wood reinforced with pultruded glass/vinylester -

strips. Once specific DFs for a material system are selected by establishing ac-
ceptable correlations with experimental data, they are used consistently through-
out the analyses to trace load-displacement paths to failure. Degradation factors
for fiber (DF,) and matrix (DF,,) are used to define degraded material properties,
denoted by a superscript d, in terms of original properties, denoted by a super-
script o, as:

e for failure related to normal stress in the fiber direction (i.e., fiber breakage)
= (DF;)E3, 4, = (DF))G%2, v, = (DFp)ri.

e for failure related to normal stress in the transverse direction (i.e., matrix fail-
- ure)

= (DF.)ES3, 12 = (DF.)G$,
G23 = (DF )G23’ 5 = (DF 5

e for failure related to shear stresses (a matrix dominated fallure)
'fz = (DFm)G'gZ’ 23 = (DF )G

Consider for example the effect of DFs on the failure prediction of a laminated
beam under bending. If most fibers are oriented at 0°, the failure prediction will
be more sensitive to the DF for fiber than for matrix; in contrast, if most fibers
are oriented at 90°, the DF for matrix will be significant in failure prediction;
finally, for crossply and angleply combinations, the relative values of both factors
will affect the failure prediction.

In the present study, the progressive failure analysis with a load-controlled
scheme proceeds with the following algorithm:
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1. Compute stresses for an initial prescribed loadmg at the reduced Gauss points
and check failure with a selected failure criterion.

2. Find the minimum ratio between the ultimate material strength and applied

stress; i.e., the strength ratio, R,.., for the initial loading. If R,.., < 1, then,

decrease the initial loading to a small enough value not to cause failure. If

R.... > 1, then, increase the load by R,.;, and find ﬁrst-ply-fallure load.

Input a set of degradation factors: DF; and DF.,,.

Degrade material properties at Gauss points according to failure modes,

which are established by determining the dominant stress components in the

failure criteria, as explained before. Then, compute stresses at the current

load.

5. Check for subsequent failures. If failures are detected, go to step 4. Other-
wise, increase the load by a given constant percentage of FPF load.

6. Repeat steps 4 to 5 until ultimate failure is reached, which is defined as the
occurrence of failures through the thickness of a laminate at a given point.

W

In the displacement-controlled scheme, displacements are prescribed at the

~ loading points, and using the equilibrium of vertical forces, the corresponding

applied loads are computed from the reaction forces at the supports. After first-
ply-failure, prescribed dlsplacements are increased by a constant percentage of
FPF displacement. The progressive failure algorithm is incorporated into a
3-node beam finite element with layer-wise constant shear (BLCS), and the com-
putational procedure to modify the stiffness coefficients is described in the Ap-

- pendix. The experimental results for two types of laminates are used next to illus-

trate the selection of load/displacement increments and DFs and computational
schemes to trace load-displacement paths to failure with the present formulation.

5. NUMERICAL EXAMPLES

Since a failure assessment is based on the magnitude of stresses at a point, the
accuracy of the computed stresses is a determining factor for failure prediction
with a given failure criterion. In this study, the capability of BLCS for stress
computation and subsequent failure prediction is demonstrated by analyzing the
experimental results of laminated compos1te beams of two types: (1) graphite-
epoxy and (2) GFRP-glulam.

5.1 Graphite-Epoxy Beams

Greif and Chapon [10] conducted three-point bending tests of composite beams
made of AS4/3502 graphite-epoxy pre-preg tape; the material properties and
strength parameters of the test-specimens are listed in Table 1. Five different lam-
inate types were tested, with two specimens for each type, and the test beam
specifications are given in Table 2. The progressive failure analysis of the test
specimens is based on appropriate selections of finite element mesh, load incre-
ment, and degradation factors, and on appropriate 1mplementat10n of schemes to
trace the load-displacement responses to failure.
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Table 1. Material properties and
strength parameters.

Strength Parameters

 Material Properties (GPa)
E, = 1412 GPa - Xr=2343
E, = 11.5 GPa Xc = 1.723
G,; = 6.0 GPa Yr = 0.051
U, = 0.3 Yc = 0.223
S1z = 0-009

Note: in BLCS, S;; = S,; = S;. is used.

Table 2. Beam specifications.

No. of Length Width

Laminate Lay-Up Plies (mm) (mm)
A1l [90:/05]s 32 139.7 24.84
A2 [90./0¢]s 32 152.4 25.65
B1 [06/90,]s 32 127.0 24.13
B2 [0s/90,]s 32 152.4 24.69
C1 [(0/90)s]s 32 152.4 25.65
c2 [(0/90)s]s 32 152.4 24.33
D1 [(45/0/ — 45)s]s 30 152.4 24.26
D2 [(45/0/ - 45)s)s v 30 152.4 24.46
E1 [(0/45/0/ — 45),/90/0/0, ,,]s 29 152.4 24.49
E2 [(0/45/0/ — 45),/90/0/0 ,,]s 29 152.4 25.30
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Thickness
(mm)

4.648
4.547
4.597
4.674
4.470
4.470
4.166
4.166
4.039
4.039
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5.1.1 FE MESH AND LOAD INCREMENT .

In the finite element analysis, it is well established that mesh refinement is re-
quired until displacements or stresses converge within a desired accuracy. Figure
2 obtained with the Tsai-Wu failure criterion and a load-controlled scheme shows
convergence trends of ultimate failure load for typical graphite-epoxy test-

samples. A mesh refinement for ultimate failure loads show stable trends at four-
~ teen elements, and hereafter, all analyses are carried out using 14 elements and
the number of layers for each laminate as listed in Table 2.

In a test, the load and displacement increase continuously, but in a numerical
simulation, discrete load or displacement increments are used in a load- or
- displacement-controlled failure prediction scheme. Thus, the load or displace-
- ment increments, defined in this study as a constant percentage of first-ply-failure
load or first-ply-failure displacement, will affect the damage evolution in a lami-
nate. A large load increment may not represent damage progression well, and a
very small load increment may require a significant computational effort. After
first-ply-failure (FPF) is reached and equilbrium is satisfied in a load-controlled
scheme, the load is increased by a constant percentage of FPF load, but since
FPF loads of laminates vary considerably, a judicious choice of load increment
must be used in the analysis, and the appropriate load percentage to be used
should be determined parametrically, as shown in Figure 3 for the Tsai-Wu crite-
rion. In Figure 3, laminate B2 is more sensitive to load increment than laminates
A2, C2, D2, and E2, because the FPF load of laminate B2 is within 5% of its
ultimate failure load. The FPF and ultimate failure loads can be used to define the
oad increments to be used in the analysis; when the difference between FPF load
- and ultimate load is small, the laminate failure mode is usually brittle and sud-
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l Figure 2. Convergence of ultimate failure load.
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Figure 3. Effect of load increment on ultimate failure load.

den, which is the case for laminates B, and in this case a small load incremen
should be used. The results shown in Figure 3 are used to select the following
load increments: 10% for laminate A, 1% for laminate B, and 5% for lamina
C, D, and E for the load-controlled scheme. A similar study is conducted
define the displacement increments as 5% of FPF displacement for all the lami
nates. The results in Figures 2 and 3 are obtained with DF; = 0.25 and DF,, =
5 x 1073, which are selected through a parametric study as explained next.

5.1.2 DEGRADATION FACTORS :

As damages evolve in laminates, degradation factors play a key role in redis:
tributing stresses and finally determining ultimate strength. In Table 3, the de
pendency of ultimate strength on degradation factors for fiber (DF;) and matri»
(DF,,) is illustrated using the Tsai-Wu criterion; each set of degradation factors
is represented in the form (DF,,DF,,). For laminates B and C, an increase of
matrix degradation factor results in higher ultimate strengths, because in both -
laminates failure starts and propagates in the 90° layers. For laminate A, failure
initiates in the 90° layers, but the 0° layers provide most of the flexural resis
tance, and therefore, the laminate strength depends on-both degradation factors..
The same trend can be observed for the angleply laminates D and E. As men-
tioned in the introduction, the other macroscopic approach of damage modeling
is to modify the reduced stiffness matrix, which is similar to using very small
degradation factors. Compared to experimental values, the ultimate loads ob
tained with the set (1076,107°) are mostly underestimated, leading to a maximum
error of 24.4% for laminate C1 (Table 3). According to Reddy and Reddy [9], the
set (1071,10™) provided very good prediction for laminates under uniaxial tension.

'f)
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However, as seen in Table 3, the present predictions with the set (107,10™!) are not
- satisfactory. The discrepancy with the results of Reference [9] is probably due to
differences in materials and loading conditions. The set (0.25,0005) gives very
good predictions with a maximum error of 21.4% for laminate Bl (Table 4). This
maximum error may be due to the unreliable experimental value reported for
laminate B1; since laminate Bl is 20% shorter than B2 (Table 1), the ultimate load
for laminate Bl should be approximately 20% higher than that of laminate B2, or
about 3420 N as predicted by the analysis.

In the study of laminates containing holes under in-plane tension [7] and com-
pression [8], good predictions were obtained with the sets (0.07,0.2) for tensile
loading and (0.14,0.4) for compressive loading. Even though direct comparison of

those results with the present study is not adequate, because of differences in

materials and loading, the use of different factors for fiber and matrix seems to
provide better results in macroscopic damage modeling. In Table 5, FPF load
predictions with BLCS are compared with these of Reference [10], in which CLT
coupled with total-ply-discount (TPD) is used. FPF predictions by Tsai-Wu and
Maximum Stress criteria with BLCS are consistently close to each other, on the

other hand, the prediction by Maximum Stress criterion with TPD is very high

for laminate D2. Similarly, the comparisons of ultimate failure loads with the
results of Reference [10] (TPD) are given in Table 4. The TPD predictions were
obtained through 5 successive failures, and as expected, these predictions are

unreliable and usually too conservative. The predictions with BLCS and Maxi-
mum Stress criterion are consistently higher than those with Tsai-Wu criterion;
this is probably due to the increased contribution of shear stresses to failure in the
Tsai-Wu criterion at higher load levels. These differences, however, are not sig-
nificant for the FPF predictions (see Table 5). A discussion of the prediction of

the load-displacement path to failure is presented next.

Table 4. Ultimate failure load (N): load-controlled.

Maximum
Tsai-Wu Criterion Stress Criterion
- Experiment \
Laminate [10] Ref. [10] - BLCS Ref. [10] BLCS
Al 1310 380 1290 380 1480
A2 1250 — 1360 — 1460
B1 2800 5310 3400 4230 4490
B2 2850 J— 3010 . - 3880
Ci ' 2540 1940 2440 1970 2490
- C2 2400 —_ 2310 —_ 2360
D1 , 1600 - 1490 — 1530
D2 1560 850 1500 1150 1540
E1 2050 — 1990 —_ 2270

E2 2000 - 2060 — 2350
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Table 5. FPF load (N): ioad-controlied.

Maximum Stress Criterion

‘Tsai-Wu Criterion

Laminate Ref. [10] BLCS Ref. [10] BLCS
329 307 334 307

— 316 — | 316

3248 3039 3315 3115

— 2688 — 2732

921 872 925 872

— 828 — 828

— 676 g . 672

D2 845 685 1005 672
’ - 1050 | — 1032
— 1090 S 1068

1.3 LOAD-DISPLACEMENT PATH
As the progressive failure analysis algorithm approaches ultimate load, the dis-
-ement can become significantly large for a small increase in load, until the
timate load is reached, and therefore, it may be difficult to predict the maxi-
um displacement at ultimate load. However, the displacement plateau near ulti-
te load can be used to terminate the analysis and predict ultimate load within
ngineering accuracy. Based on this observation, the displacements listed in
able 6 are those corresponding to ultimate load or near-ultimate-load. These
displacements were used to check the admissibility of a final load increase, where
a load increment causing a displacement far beyond the experimental displace-

Table 6. Ultimate displacement (mm):

load-controlled.
BLCS
Experiment
Laminate [10] TW® MS®
A1l 20.1 17.8 27.2
A2 30.5 21.6 27.7
B1 6.4 6.1 9.9
B2 10.4 9.3 17.4
C1 15.2 18.9 15.0
c2 15.0 18.9 15.0
D1 ' 16.0 15.6 17.3
D2 15.8 15.6 17.3
E1 15.8 18.1 19.1
E2 15.0 18.1 19.1

aTW = Tsai-Wu criterion.
bMS = Maximum Stress criterion.

|
|
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ment at ultimate load was considered artificial and physically unacceptable. The
predicted and experimental ultimate loads and displacements are compared
- graphically in Figures 4 and 5, respectively, where the predicted values by the
present analysis and Reference [10] are obtained with the Tsai-Wu criterion. The
data points below the 45° diagonal line underpredict the response and those

above overpredict the response. For the ultimate load comparisons (Figure 4), the

BLCS data points are clustered around the diagonal line, but the analytical values

of Greif and Chapon [10] are farther away from the diagonal line. The data points 5

for ultimate displacement show a larger scatter than those for ultimate load
(Figure 5), particularly for laminate A2, which exhibited significant nonlinearity

in the experimental testing. In general, the load- and displacement-controlled -

schemes predicted similar results.
The predicted load-displacement diagrams for all the graphite-epoxy laminates

are given in Reference [16], and typical curves for laminates Al, B2, and D2 are

shown in Figures 6, 7, and 8. In these figures, the displacement plateau at ultimate
load of the load-controlled scheme has been omitted, and the predicted ultimate
failure points for both schemes are specifically shown. These figures illustrate

typical prediction curves for crossply (Figures 6 and 7) and angleply (Figure 8)

laminates in comparison with experimental curves; the prediction curves show

slope changes that result from damage detection and progression in the BLCS

analysis. In general, BLCS predicts stiffer responses, but the slopes of the BLCS
prediction curves near ultimate failure are close to those of the- experimental
curves, which indicate that the damage progression in BLCS is properly repre-

6
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Predicted ultimate displacement (mm)
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Experimental ultimate displacement (mm)

Figure 5. Comparison of ultimate displacement,

1.5
- Laminate : A1 ) }
4 ~ p
1.0 /
05
—— Experiment (Greif and Chapon)
i —— BLCS (load-controlled)
7 —-  BLCS (dispi.-controlled)
T v Predicted ultimate failure point
0.0 T T L] T ¥ T T L] L L L] L] ] L] [] L4 Ll 1] L
0 8 12 24 36
Displacement (mm)

Figure 6. Load-displacement path: laminate A1.
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20
4 ——  Experiment (Greif and Chapon)
b Laminate : D2 ——— BLCS (load-controlled)
minate - ——  BLCS (displ.-controlled)
15 : \ Predicted ultimate failure point
4 »
1 /‘/
1.0 1
0.5 4
0-0 L] L) ¥ 1 L] L] L) L) ¥ L] Ll Ll T T L)
0 8 16 24 32
Displacement (mm)
Figure 7. Load-displacement path: laminate D2.
4
4 Laminate : B2
3 A
2 4
-4
1- ~——  Experiment (Greif and Chapon)
4 —— BLCS (load-controlled)
1 —— BLCS (displ.-controlled)
1 ¥ Predicted ultimate failure point
0 T T T LI T T T ™ T T - T
0 3 6 9 12
Displacement (mm)

Figure 8. Load-displacement path: laminate B2.
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sented. The discrepancy with the experimental behavior is due in part to the ag-
ing of the test-specimens, which were fabricated at NASA two or more years
before they were tested. As the authors stated, the deterioration of the epoxy
matrix probably resulted in stiffness reduction of the laminates, particularly for
samples A and B which exhibited a response-sensitivity to matrix degradation
factors (Table 3). Considering both ultimate failure load and displacement pre-
dictions for this example, the Tsai-Wu failure criterion predicts better results than
the Maximum Stress criterion. The present model correlates well with the ex-
perimental results. -

5.2 Glulam-GFRP Beams

Glued-laminated timber beams (glulam) are used for large-span bridges,
arches, frames, and reticulated domes. Due to the relatively low bending stiffness
and strength of glulam, long-span structures require members of larger depths, -
resulting in member-weight increase and bracing requirement to prevent lateral
buckling. One way to increase stiffness and strength of glulam is to reinforce
members with glass fiber-reinforced plastic (GFRP) composites. Davalos et al.
[11] conducted four-point bending tests of 122-cm long and 5.6-cm wide glulam

- beams reinforced with GFRP strips at the bottom. The beams were composed of

six wood layers and one GFRP bottom layer, with material properties and thick-
nesses as given in Table 7, where layer number one corresponds to the top wood
layer. As the laminates are unidirectionally reinforced, the required strength pa-
rameters given in MPA are: for GFRP, X; = 248.2 and S,; = 70.3; for wood,
Xr = 548, Xc = 586, and S,; = 12.4. Parametric studies similar to those dis-
cussed in the previous section were undertaken. Throughout the analysis of the
beams, a fourteen-layered 30 element mesh was used in conjunction with a 1%
load increment or a 10% displacement increment of the corresponding FPF
values. In the experiment and also in the BLCS prediction, the GFRP reinforcing
strip remained intact at ultimate load. In Table 8, the prediction of loads and dis-
placements are compared with experimental results. The predictions are obtained
with the set (107,10™"). To find out the effect of degradation factors on the re-
sponse, the set (107,107) is also used, and interestingly, the predicted ultimate
loads were identical to the FPF loads listed in Table 8 for the set (10~*,10"!). Thus,
the ultimate loads with (107,107°) were underpredicted by approximately 25%.
The predictions with the Maximum Stress criterion in the displacement-
controlled formulation match closely the experimental results, with a maximum
difference of 6% for beam 3. The experimental load-displacement curve for beam
2 is shown in Figure 9, and it exhibits a nonlinear behavior near 35 KN due
to compression failure of the upper wood lamina. The prediction of load-
displacement paths with the displacement-controlled scheme showed a small load
increase after a large displacement increase, which is physically inadmissible.
Therefore, the ultimate failure point is assumed to correspond to the beginning of
the displacement plateau. Since linear behavior is assumed in BLCS, the predic-
tion curve for this beam cannot trace precisely the experimental path. For these
laminates, the predictions with Maximum Stress criterion are relatively close to



Table 7. Material properties for GFRP-glulam.

E, (GPa) Gi3 (GPa) Thickness (mm)
Layer v

No. Beam 1 Beam 2 Beam 3. Beam 1 Beam 2 Beam 3 Beam 1 Beam 2 Beam 3
1 17.66 14.93 15.63 1.021 0.620 0.668 19.33 19.38 19.41
2 14.02 13.39 13.21 0.634 0.641 0.700 19.43 19.43 19.43
3 14.33 14.83 13.82 0.628 0.653 0.641 19.46 19.33 19.46
4 11.88 13.02 12.44 0.915 0.647 0.796 19.33 19.35 19.48
5 17.96 14.20 14.10 0.871 0.588 0.666 19.33 19.35 19.43
6 - 14.83 16.71 17.13 0.621 1.048 0.630 19.43 19.48 19.43
7 19.69 19.69 19.69 3.803 3.803 3.803 9.398 9.398 9.398
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Table 8. Comparison of loads and displacement for
glulam-GFRP (units: KN, mm).

Load- Displacement-
Controlled Controlled
Loads and
Displacement ™ MS T™W MS Experiment
FPF Load 32.69 32.83 32.65 32.83 -
Failure Load 42.48 45.68 45.19 44.48 44 .48
Displacement 10.74 12.60 ‘ 11.38 11.43 18.16
FPF Load 37.05 37.14 ' 37.05 37.14 =
Failure Load 45.19 42.35 46.17 46.84 48.93
Displacement 12.62 10.72 12.78 12.83 17.78
FPF Load 35.85 35.94 35.90 36.00 —
Failure Load 44.79 44,93 45.91 46.08 48.93

Displacement 11.96 11.91 12.01 12.07 11.73

i
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Beam 2
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i Lt 1t 1231 21 1. 1 L2 t1.1
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——  Experiment o
——  BLCS (load-controlled) . o
——— BLCS (displ.-controlled) o

i L 1 J 1 i 1. 1 L 1.1l

-
7 Predicted ultimate failure point _ St
O.C L] i} L4 T L] L] L Bl v Ll L] L] A ¥ L] | ] L] L L]
0 4 8 12 16 20 ‘
Displacement (mm)
Figure 9. Load-displacement path: glulam-GFRP beam 2.
t

those with Tsai-Wu criterion. Once again, the present formulation with BLCS ac-
curately predicts the ultimate failure load of the glulam-GRFP samples. :

6. CONCLUSION

The present progressive failure model for laminated composite beams under
bending is the first study that successfully integrates the stress-accuracy of a
layer-wise formulation with a material-degradation scheme to accurately predict -
bending failures. A 3-node beam element with layer-wise constant shear (BLCS)
is used, and the element stresses at each layer are computed at the Gauss points.
Different degradation factors for fiber amd matrix are used, and these are defined
through parametric studies and experimental results for specific material sys-
tems. The following specific conclusions are presented:

1. The present formulation, based on material-degradation and existing failure
criteria, can accurately predict the progressive failure and ultimate load of
laminated composite beams, as verified by experimental results of graphite-

~epoxy and GFRP-glulam samples. '

2. The main advantage of the layer-wise formulation is the possibility of modify-
ing material properties either at top or bottom of each element-layer, since
degrees of freedom are defined at these locations. This results in a much more
efficient modeling of failure-degradation than in single-layer formulations.

3. Degradation factors, load increments, and mesh refinement should be estab-
lished for a specific material system through parametric studies and using ex-
perimental data.
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4. When a load-controlled formulation is used, the large displacement-plateau at
or near ultimate load can be used to terminate the analysis, since such a large
deflection under constant load is physically inadmissible. -

5. The present failure analysis with BLCS of the graphite-epoxy [10] and
glulam-GFRP [11] samples indicate the following:

The Tsai-Wu criterion provides more reliable results than the Maximum
Stress criterion, but for the glulam-GFRP beams, both criteria combined
with the displacement-controlled scheme produced consistent results.
In general, distinct degradation factors for fiber and matrix should be
used. o . '
While the ultimate loads can be predicted with sufficient accuracy, the
ultimate maximum displacements can vary as much as 30% from the ex-
perimental results.

Finally, the experimental data considered in this study is not sufficient to
make more general conclusions, and more extensive correlations are
desirable. '

6. The present study offers great potential for further improvement of failure-
prediction of laminated beams under combined loading, by considering

nonlinear material and/or geometric effects.

APPENDIX

Computation of Stiffness Coefficients

To illustrate the scheme for incorporating a damage formulation in BLCS the
expressions for the stiffness coefficients are presented. In BLCS, the N simulta-
neous equations for the element model are written as follows:

[4] [B] [BJ] --- [B~]] ((AY) {F}
[BF [Dul [Dul D] ey _ 1| Fy
. . . . . ~— b)) .
[Bx]™ [Dwi]l [Dx:] [Dxv]] (A"} {FY}

The submatrices are

oL

[4:] = | [B.]"[A][BL]dx
Jo
pL

[B:] = [BL]T[Bi][EL]dx
Jo
oL

[D;] = [EL]T [Dij][FL]dx
v0
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“where

a, o] L. b O o ldi 0

B, and B, are compatibility matrices. The stiffness coefficients are computed as

N N
a, = Y, EXh*, a;, =), GEA*
k=1 k=1

where A is the thickness of a layer.

Fori = j:
ht
{=EZ, b=-Gi (=1
. hi1 hi '
bi = E"— +E{LE, bi =G'—GL QR<j<N-1
hN
Y=E'%, B =GL (=N
’ h' G. .
dt =B, dt =77 (=D
s BT W GE Gl |
dl—Ex 3+E,3, dz—hj-l+h" (2<J<N—'1)
hY Gy .
di" =EX7, d"=35y (=N
Fori # j:
_h' - Gi,

di=di=0 (j#ixl)

When failure is detected at a Gauss point by a given failure criterion, stiffness
properties are adjusted by degradation factors according to the failure mode (see
Section 3), and subsequently the equivalent moduli in Equation (3), E, and G..,
are modified. Using these modified equivalent moduli, which are computed at

J Progressive
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the top and bottom of each layer, the stiffness coefficients are eXpressed as fol-
lows:

. N
[E’l:(top) + El;(bottom)]hk, a2 —_ E %[G:z(top) + G’l:z(bottom)]hk
) k=1
1 3 A 1
b{ — [_4_ E:(top) + ZE:(bottom)]_z_ s b; — E[G’l‘z(mp) + Gjlu(bortom)]
G=1
bl = [‘}E{;'l(wp) + %E{;‘l(bomm)] h;_l + [‘i‘ Eitor) 4 %E{‘bmom) .}_121
.; — _;_[Gi;l(top) + G_i;l(bottom)] — ._;_[G_iitop) + G_];;boﬂom)]
Q<j<N-=1
3 1 h~ 1
bllV — [Z Ei\'(top) + ZE‘i\f(bottom)]_i_ , blzv —_ - E[Gi\;(rop) + Gi\'z(bottom)]
G=N
dil —_ [El(top) + 7El(bottom)]£l_1_ dil —_ [Gl(fop) + Gl(bottom)]_l_
x x 24 s xz xz 2h1
G=1
d¥ = [TEitvor 4 EJt tboreom) ] h™" + [Eltor) 4 TEitborom)] L4
1 x x 24 x x 24
1 _ . 1
di =[G + GLttem]mm + [GE™ + GEP"™ 55
Q<j<N-1
dIIVN _-— [7EN(top) + EN(bottom)]E DIZVN —_ [GN(top) + GN(bottom)] _l_
x x 24 9 xz xz 2hN
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For i # j:

S S _ h’ ; 1 . 1
d'l.l — E[E‘]t(top) + E:]r(bottom)].g_ , ;I —_ -E[Giz(mp) + Giz(bottom)].il_;

G=ix1l
Y=di=0 (j#ixl
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