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Abstract—A compression strength model based on damage mechanics and a Gaussian distribution
of fiber misalignment is presented. The model uses only three material parameters that can be
measured by well established methodologies. The compression strength and all the parameters that
enter in the model were measured for the same materials. Predicted values are compared to
experimental data for eleven different E-glass reinforced pultruded composites. Theoretical argu-
ments are provided to support the use of damage mechanics and very good correlation is found
between theory and experiments. Copyright © 1996 Elsevier Science Ltd.

INTRODUCTION

Many models have been proposed trying to improve the prediction of compression strength
of composites by Rosen (1965). The literature is divided into two schools of thought : fiber
micro-buckling models (Rosen, 1965; Wang, 1978), and kink band formation models
(Budiansky, 1983; Budiansky and Fleck, 1993; Lagoudas and Saleh, 1993), etc. Two
comprehensive reviews (Shuart, 1985; Camponeschi, 1990) cover much of the literature.
To the best of our knowledge, none of the existing models can be correlated with exper-
imental data without introducing a semi-empirical parameter or empirical judgment about
the value of fiber misalignment to be used (Yurgartis, 1992 ; Haberle and Matthews, 1994).
Usually, the fiber misalignment is-taken as the semi-empirical parameter and it is set to a
reasonable value so that the model predictions match the experimental data (Wang, 1978 ;
Piggott, 1981 ; Hahn and Williams, 1986 ; Mrse and Piggott, 1990), etc. By performing tests
at different temperatures, effectively changing the shear response, Wang showed that after
the fiber misalignment is found empirically (by fitting measured strength data) it can be
considered constant for a material.

However, it is well known that there is not a unique value for fiber misalignment for
all the fibers (Yurgartis, 1987) but rather a Gaussian distribution of misalignment (Tomblin,
1994). The standard deviation of the normal distribution has been used (Haberle and
Matthews, 1994 ; Kiriakides ef al., 1995), as a single misalignment value in the theoretical
models. The standard deviation of the half normal distribution has been used also (Haberle
and Matthews, 1994) for the same purpose. From a probabilistic point of view, the standard
deviation is a measure of the dispersion of the distribution but it is not a measure rep-
resentative of the misalignment of all the fibers (population). Instead, the expected value
of a distribution is a representative measure of the population.

In this paper, continuous damage mechanics (Kachanov, 1990) is used to combine the
Gaussian distribution of misalignment with a simple model for compression strength. Data
and theoretical arguments are shown to support the assumption of progressive failure via
fiber microbuckling. The resulting model has no semi-empirical parameters. All the physical
parameters included in the model were measured for eleven different materials. The cor-
relation with compression strength data is very good.
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In fiber micro-buckling models, it is assumed that buckling of the fibers initiates a
process that leads to the collapse of the material (Rosen, 1965). Rosen’s model has been
refined with the addition of initial fiber misalignment and non-linear shear stiffness (Wang,
1978 ; Hahn and Williams, 1986 ; Yeh and Teply, 1988 ; Wisnom, 1990), etc. The detrimental
influence of fiber misalignment has been experimentally demonstrated (Yurgartis, 1992;
Mrse and Piggott, 1990). The assumption of recent models is that fiber micro-buckling of
perfectly aligned fibers. (Rosen’s model) is an imperfection sensitive problem. Therefore,
small amounts of imperfection (misalignment) could cause large reductions in the buckling
load, and thus the reduction of the compression strength with respect to Rosen’s prediction.
Using a linear shear response for the composite, Maewal (1981) concluded that fiber micro-
buckling is not imperfection sensitive. The authors have shown (Tomblin, 1994) that
imperfection sensitivity occurs only for composites with non-linear shear response. The
effect of initial shear stiffness on the compression strength has been studied experimentally
(Yurgartis, 1992; Crasto and Kim, 1990, 1992a,b), concluding that higher initial shear
stiffness correlates with higher compression strength.

A new approach to micro-buckling in which the composite is treated as an inhomo-
geneous two-dimensional continuum with spatial variation of material properties
(Lagoudas et al., 1991), results in a knock down factor that improves Rosen’s formula to
results generally closer to experimental observations. Rosen’s, as well as most other models
in the literature, treat the composite as a two-dimensional arrangement of square fibers
separated by a matrix. The fiber-matrix flat arrangement is implicitly assumed to be in a state
of plane stress because the constitutive equations used are the one-dimensional Hooke’s law
for extension as well as shear. The non-uniform spacing among fibers has been incorporated
following a more realistic approach (Chung and Weitsman, 1994, 1995). While the literature
on compression strength is extensive, there is no model in the literature that has been
validated by measuring all the parameters involved from the same specimen. Usually,
the shear response is obtained from +45° samples and the compression strength from
unidirectional samples, which may have slightly different misalignment, volume fraction,
etc. Furthermore, samples are not subjected to a pure state of shear but to non-uniform
shear. Therefore, one of the objectives of the work presented here is to develop and validate
a model using material data from the same sample that is tested in compression. We
found that the damage mechanics formulation yields an elegant and accurate model for
compression strength that incorporates the statistical data of fiber misalignment in a well
defined fashion.

MATERIALS AND SAMPLE PREPARATION

Cylindrical rods (9.Xgmm nominal diameter) were pultruded by Creative Pultrusions,
Inc. using three different resins, three different fiber types, and three fiber volume fractions.
Each resin, fiber, and volume fraction was labeled, so that each resulting material is uniquely
~ identified with a three-letter code. The first letter indicates the fiber volume fraction, the
second letter the resin type, and the third letter the fiber type. The resins used were (A)
Ashland 2036C Polyester, (B) D-1419 Vinyl Ester, and (C) 2036C with added styrene to
increase the shrinkage and brittleness. The fibers were (A) 13 micron diameter OC 102-
AA-56 yield [yard/lb], (B) 23 micron OC 366-AD-113 yield, and (C) 17 micron OC 366-
AC-250 yield E-glass, all supplied by Owens Corning. Three values of fiber volume fraction
were obtained for each fiber-matrix combination simply by starting the pultrusion with the
highest volume fraction and subsequently cutting some roving ends to lower the volume
fraction. The highest volume fraction (labeled A) corresponds to the maximum that could
be pultruded. The fiber volume fraction cannot be kept constant when changing fiber type
(each having a different yield) because an integer number of roving ends must be used in
pultrusion. The number roving, yield, and resulting fiber volume fractions are shown in
Table 1.

A rod geometry was chosen because it is the simplest shape that can be pultruded. To
limit the amount of testing, and the number of variables active in the investigation, only
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Table 1. Characteristics of the fiber reinforcement for all materials produced

Material Fiber

Reference Volume Number Yield diameter
code fraction (%) of roving [yard/Ib] [microns]
CAA 40.2 8 56 13
CAB 43.0 17 113 23
CAC 439 39 256 27
CBA 40.2 8 56 13
CBB 43.0 17 113 23
CBC 43.9 39 256 27
CCA 40.2 8 56 13
CCB 43.0 17 113 23
CCC 439 39 256 27
ACA 55.2 11 56 13
BCA 50.2 10 56 13
CBB* 43.0 — 113 23

* Rectangular sample.

eleven material combinations were used of the twenty-seven produced. The eleven materials
were chosen as follows. Keeping the volume fraction constant and using three fibers and
three resins yields nine materials. Then, holding the fiber and resin unchanged while varying
the volume fraction gives two additional materials for a total of eleven. The void content
for each material was checked optically using a video analysis system and found to be less
than 2% in all cases. Previous experimental evidence (Tang, 1987) indicates that the
compression strength is not affected by void contents below 3%. The fiber coating was
compatible with the resins used. Contradictions arise with respect to the role in which fiber-
matrix adhesion affects compression strength. Using different fiber surface treatments,
‘Madhukar and Drzal (1992) show that the compression strength is very sensitive to fiber-
matrix adhesion. This result appears to be directly in contradiction to the experimental
findings of Hahn and Williams (1986) in which the bond strength was characterized by
acoustic emissions and by Yurgartis (1992) who used different fiber surface treatments.
Although the role of fiber-matrix adhesion with respect to compression strength needs
additional investigation, it appears that, as long as the fiber surface treatment is compatible
with the matrix, fiber-matrix adhesion should not affect the compression strength. Hence,
for this work, fiber-matrix failure was assumed negligible since the fiber-matrix systems
were compatible and the appropriate surface treatment for the fibers was used.

Although this study concentrates on pultruded E-glass composites, the materials used
covered a wide range of materials commonly used by the pultrusion industry. The 113 yield
and 250 yield were direct-draw roving ends with low micro-catenary while the 56 yield was
a multi-end roving with higher micro-catenary. The polyester and vinyl ester resins have
different shrinkage and shear stiffness. The third resin, polyester with double amount of
added styrene, showed increased shrinkage and brittleness. The fiber volume fractions used
represent typical values of commercially pultruded composites. Material production was
performed with standard equipment at a commercial plant.

SHEAR STIFFNESS MEASUREMENTS

The torsion test was chosen for determination of shear behavior because of the circular
geometry of the specimens. The torsion test has been used successfully for pultruded
composites in the past (Sonti and Barbero, 1995). The rod samples were twisted at a rate
of 4-8 deg. per minute, which was found to be fast enough to prevent any viscoelastic
effects, yet slow enough to prevent high modulus readings resulting from a high rate of
loading. The shear stress-strain response was found to be non-linear elastic as shown in
Fig. 1. The following equation is proposed to represent the stress-strain response
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Fig. 1. Hyperbolic tangent fit of the experimental shear stress-strain response. Four independent
tests shown.

(G
T=1, tanh( T”y) 1)

where G, is the initial shear stiffness and 7, is the asymptotic value of the shear stress in
Fig. 1. Both G;; and 7, are computed from the measured torque vs angle of twist exper-
imental data, modeling the stress strain curve with eqn (1). The initial shear stiffness G, is
obtained from a linear regression of the linear portion of the curve. Then, eqn (1) is
integrated over the cross section of the sample to obtain the predicted torque vs angle of
twist function. The asymptotic value of the shear stress t, is obtained by comparing the
predicted and experimental asymptotic values of torque.

Although the polynomial expansions (Sun and Jun, 1993) fit the experimental data,
they do not represent the material correctly for negative shear strains (see Fig. 2), as they
should since the shear stiffness is independent of the sign. Then, in the stability analysis,
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Fig. 2. Polynomial equations representing the shear stress-strain response.
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Table 2. Experimental and predicted shear response

G 7{GPa] G.{GPa]
Material Inverse Periodic
reference G,{GPa] rule of microstruct. 7,[GPa]
code Experimental mixtures formula Experimental
CAA 3.462(+0.536) 2.645 3.384 40.57(+2.66)
CAB 3.043(+0.182) 2.775 3.589 37.86(+4.49)
CAC 3.383(+0.112) - 2.820 3.658 38.53(42.08)
CBA 4.223(4+0.213) 2.771 3.487 43.09(£3.07)
CBB 4.224(40.119) 2.907 3.697 43.09(£1.30)
CBC 4.268(+0.251) 2.954 3.768 42.75(+0.49)
CCA 3.487(+0.359) 2.470 3.178 43.33(+5.08)
CCB 3.628(+0.329) 2.591 3.372 42.06(+2.10)
CCC 3.487(+0.354) 2.633 3.438 39.86(42.27)
ACA 4.914(10.432) 3.304 4.467 43.63(+2.62)
BCA 4.703(+0.133) 2.966 3.957 42.10(+2.00)

CBB 4.223(+0.386)* 2.907 3.697 54.77(+5.57)*

*Josipescu shear test.

a polynomial expansion produces an asymmetric bifurcation point, which is physically
unrealistic. Although a polynomial expansion in terms of the absolute value of the shear
strain could be used, this would make the problem analytically intractable.

The experimental values of G, and 7, are shown in Table 2. For the micromechanical
predictions, the fiber shear modulus used was G, = 29.47 GPa. The resin shear modulus
was measured from 9.2 mm resin rods produced with resin taken out of the puitrusion
resin-bath during production of the composite rods. Resin was poured into 9.2 mm quartz
tubes and cured in an oven at approximately the same temperature recorded by ther-
mocouples in the pultrusion die.

As expected, the predictions of G ; by the inverse rule of mixtures are well below the
experimental values. The periodic micro-structure formula (Luciano and Barbero, 1994),
still a lower bound, provides a better approximation of the initial shear stiffness. However,
the model predictions developed in Section 8 use the experimental values. The discrepancy
between the experimental data and the periodic micro-structure formula can be partially
explained taking into account that neat resin properties are different of in-situ resin proper-
ties. This is because of the different polymer morphology obtained while curing the resin in
the presence of the surface of the fibers and the effect of the fiber coating on the poly-
merization reaction.

MISALIGNMENT MEASUREMENTS

An optical technique proposed by Yurgartis (1987) was used to measure the mis-
alignment angle of each fiber in the cross section. The technique consists of cutting the
composite at an angle and measuring the major axis of the ellipse formed by the intersection
of a cylindrical fiber with the cutting plane. The misalignment angle is computed from the
major axis length, the fiber diameter (which can be measured as the minor axis of the
ellipse), and the angle of the cutting plane.

Yurgartis determined the cutting angle by assuming that the distribution of fiber
misalignment was symmetric. In this investigation, we were able to accurately measure the
angle of cut by measuring the major and minor axes of the ellipse formed by the rod
specimen (the angle of cut varied from sample to sample around 10°). As a consequence, it
was possible to prove Yurgartis’ assumption of normality of the fiber distribution by using
two statistical tests, the cumulative function distribution (Fig. 3) and the transformed
frequency data on a probability plot (Fig. 4). The normal distribution of misalignment is
given by

232

f(x) = ); —0 <Xx< 2)

(
b3 2nGXp\

where X is the standard deviation and x is the continuous random variable, in this case
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Fig. 3. Cumulative frequency plot of the experimental misalignment data and the normal distribution
model.
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Fig. 4. Probability scale plot of the experimental misalignment data and the normal distribution
model.

being equal to the misalignment angle. The Cumulative Distribution Function (CDF) F(¥)
gives the probability of obtaining a value smaller than or equal to some value ¢. In terms
of the normal distribution, the CDF is given by

F) = j " fdx 3

where f(x) is the density of the normal distribution (eqn 2). Figure 3 shows the CDF for a
normal distribution in comparison with the measured distribution of fiber misalignment. If
the data is normally distributed, the resulting collection of plotted points will match
the cumulative normal distribution, a sigmoid-shaped curve. As seen from Fig. 3, the
experimental fiber misalignment measurements using the cumulative distribution function
match the proposed normal distribution model almost exactly.

Probability plotting is a subjective method in which the determination of whether or
not the data contradict the assumed model is based on visual examination, rather than
statistical calculation (Hahn and Shapiro, 1967). The technique provides a graphical rep-
resentation of the data as well as an evaluation of the reasonableness of the assumed
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Table 3. Standard deviation, expected value, and number of measurements

Normal distribution Half normal

Material fiber misalignment distribution

reference standard deviation expected value Number of
code (degrees) (degrees) measurements
CAA 3.4567 2.758 1271
CAB 3.3875 2.7028 1349
CAC 3.3012 2.634 1280
CBA 3.5308 2.8172 1312
CBB 33 2.6331 1224
CBC 3.2795 2.6167 1201
CCA 3.3957 2.7094 1300
CCB 3.0542 2.4369 1170
CCC 3.1796 2.537 1282
ACA 3.5954 2.8688 1359
BCA 3.3651 2.685 1224
CBB 33 2.6331 1224

probability model. Basically, if the assumed model is correct, the plotted points will fall in
a straight line. If the model is inadequate, the plot will not be linear and the extent and
type of departures will be seen. '

As seen from Fig 4, the normal distribution appears to be a sufficient model for the
fiber misalignment due to the linearity of the plot. Note also the variance of the points in
the tails (extreme high or low plotted values) was higher than that of the points at the
center of the distribution as expected. As pointed out by Hahn and Shapiro (1967), this
variance in the tails of the distribution should not be viewed as a basis on which to reject
an assumed model. The standard deviation for all materials considered in this investigation
is reported in Table 3 along with the number of measurements taken from each specimen.
The number of measurements of individual fiber misalignment was determined so that the
expected value of the half normal distribution has a 95% confidence interval of +0.2°.
These measurements were obtained using a video acquisition system. Therefore, a limited
number of fields of view were used in the measurements. With a magnification of 200C,
approximately 30 to 40 measurements were taken from each field of view. The fields of
view were selected randomly.

Fiber micro-buckling occurs at the same load for positive or negative misalignment
angle. Therefore, for application of the normal distribution to the problem of compression
strength, it was necessary to convert the symmetric normal distribution to a half normal
which is a special case of the more general folded normal distribution (Leone et al., 1961 ;
Elandt, 1961). In the half normal distribution, the random variable a is given as a = abs(x),
where x is the random variable of the regular normal distribution. In other words, the half
normal distribution represents the normal distribution without the algebraic sign (negative
side gets folded onto the positive side). Using the new random variable o, the density of the
half normal distribution is derived as (Leone e al., 1961):

1 /2 —a?
f(d)=§\/;€xp<2;2>; %30 @

Equation 4 has two distinct meanings in the context of fiber reinforced composites (Barbero
and Kelly, 1993 ; Kelly and Barbero, 1993). First, eqn (4) represents the probability that a
fiber picked at random in the cross section has a misalignment of value a. But more
importantly, assuming that the number of fibers in the cross section is large, eqn (4) gives
the ratio of the number of fibers that have a misalignment « over the total number of fibers.
By having a large number of fibers in the cross section, there is certainty that a number of
fibers with misalignment o will be found. From the statistical representation, it is not
possible to say which fibers have that particular value of misalignment but it is possible to
assert that a number of them, proportional to f(«), are present in the cross section.
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From a probabilistic point of view, the response of the composite may be represented
by a model in which all the fibers are assumed to be misaligned the same amount. The
single value of misalignment that represents the population (fibers) is the expected value
E(a) of the half normal distribution. The standard deviation Z of the normal distribution
should not be used as a representative value of the population because X represents a
measure of the dispersion, not a representative value of the population. The expected value
of a half normal distribution is

®1 (2 —o? 2
E(ac)=J0 E\/%exp<2;2>cxdfx=\[;2 )

The expected value E(«) for the materials tested in this study range from 2.4° to 2.9°
depending on the particular material (Table 3). However, using the expected value did not
lead to a good correlation with experimental data.

IMPERFECTION SENSITIVITY EQUATION

Buckling of perfectly aligned fibers was assumed by Rosen (1965). Since experimental
data gives lower values of compression strength, many authors have assumed that the
buckling load of the fibers is lower than that of the perfect system (Rosen’s model) because
of fiber misalignment. From stability theory, such behaviour is typical of an imperfection
sensitive system. Using stability theory, the authors (Tomblin, 1994) have demonstrated
that fiber micro-buckling is imperfection sensitive if the shear stress-strain behavior of the
composite is non-linear.

The relationship between the buckling stress (compression strength) and the imper-
fection magnitude (misalignment) is known in stability theory as the imperfection sensitivity
curve. Several models from the literature were used by the authors to develop this type of
curve (Tomblin, 1994) but none of the existing models uses the hyperbolic tangent equation
(eqn 1) to represent the non-linear shear response. The authors have shown (Tomblin,
1994) that the predictions are very sensitive to the shear equation used to represent the data.
Even truncating eqn (1) with a third-order polynomial leads to significant discrepancies with
the shear stress-strain data (Fig. 1) for values of shear strain that are expected before
compression failure. The discrepancy induced by inadequate representation of the shear
response becomes evident in the prediction of compression strength. Since eqn (1) was
found to be the best representation of the shear data for the materials under investigation,
the development of a new model based on stability theory is justified. Also, existing
equations could not be used in the stability analysis because they produced an unsymmetric
bifurcation point. Unsymmetric bifurcation means that, because of the shear equation used,
a straight fiber would have a preference for buckling with lateral deflections to one side and
not to the other, which is physically unrealistic.

A new model, based on the representative volume element of Fig. 5, and similar to the
model presented by Wang (1978) is developed here but using the representation of the shear
response given by eqn (1). Unlike Wisnom’s model (Wisnom, 1990), the model developed
in this work incorporates a realistic representation of the sinusoidal fiber pattern, by using
a representative volume element (RVE), as shown in Fig. 5, and an energy formulation.
Unlike equilibrium-based models that compute the shear strain only at the inflection points
(Fig. 5), the shear energy of the entire RVE is represented in the energy formulation used
in this section. The assumption of same misalignment for all the fibers is implicitly accepted
in all models existing in the literature that use a representative volume element (RVE). The
half normal distribution of misalignment will be incorporated later by using damage
mechanics concepts.

The model presented in this section is based on the principle of total potential energy
and, for simplicity, axial effects are assumed negligible. The in-extensional assumption is
widely accepted in stability theory. The shear strain caused by a shear mode of micro-
buckling is y,, = dw/dx. The constitutive equation is given by eqn (1). The total potential
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energy is discretized by writing the lateral deflection as w = Q, cos(x//) in terms of one
degree of freedom Q,, which represents the amplitude of the lateral deflection. The total
potential energy integral is approximated with sufficient accuracy using a four-interval
trapezoidal rule. The equilibrium of the system is found by setting to zero the first derivative
of the total potential energy with respect to the generalized coordinate @, and solving for
the applied stress. In this way, an explicit relationship for the applied stress in terms of the
misalignment angle « and the shear strain y is obtained as,

o ( ﬁ —1)(eV?Ourls. _eGurlry 4 ( ﬁ +1)(e@+V1Gutn _ 1)
20+’ 1 - e26urlts 4 e\/2Gurlts 4 @@+ /IGushr,
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Typical results are shown in Fig. 6 for two types of shear stress-strain behavior. Note
that, if the shear behavior is linear, (constant shear stiffness) the model predicts no critical
value (maximum) of stress. On the contrary, by using the hyperbolic tangent representation
of shear (eqn 1), a maximum is shown that corresponds to the compression strength for
that particular angle of misalignment. The maxima of the curve for all misalignment angles
can be found by taking a derivative of eqn (6) with respect to the shear strain, setting it to
zero, and solving for the critical shear strain. Putting the critical shear strain back into eqn
(6) gives the maxima of the applied stress, which is the compression strength, as a function
of misalignment. This process was performed using a symbolic manipulator (Maple V).
Because of the complexity of the expressions involved, an implicit solution of the form

Az > &y

— - Linear
— Nonlinear

Compressive Stress o

Shear Strain vy

Fig. 6. Equilibrium path showing the applied compression stress as a function of shear strain for
three values of the misalignment angle and considering linear shear response (dashed line) and
nonlinear shear response (solid line).
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F(0cr,) = 0 was found. Since an explicit solution oz = f(«) is desired, the implicit solution
was fitted with

cr(@) =(Grr—ky) exp (koy/@) +k; exp (ks /) (7

where k,, k,, and k;, are constants determined by curve fit of the implicit solution. Equation
(7) displays the following characteristics : as « — 0, ¢z — Gy, Which is Rosen’s prediction,
and taking into account actual values of k, and ks, as & — 7/2, ¢z — 0. The fit is obtained
minimizing the chi-square test statistic with aid of the conjugate gradient technique (Press,
1990) (Quattro Pro). A comparison between the implicit and explicit equations is shown in
Fig. 7. The plot in Fig. 7 is known as the imperfection sensitivity curve and eqn (7) is
known as the imperfection sensitivity equation.

DAMAGE MODEL

In a previous work (Tomblin, 1994), the authors have demonstrated that a fiber that
buckles has no post-buckling strength. The proof does not imply or assume that a buckled
fiber is permanently damaged, nor that the process is irreversible. It just indicates that load
carrying capacity of a buckled fiber is much lower than the applied load. The fiber may
break in a bending mode (Steif, 1990) when the lateral deformation is large. However, the
one-dimensional damage model (Kachanov, 1990) presented in this section does not require
that the fiber be permanently damaged. It is sufficient to assume that every fiber that has
buckled carries no more load because it has no post-buckling strength.

According to the imperfection sensitivity curve in Fig. 7, those fibers that have a large
misalignment angle will buckle under relatively low applied stress. Once a fiber buckles, it
carries no more load because it does not have post-buckling strength. The applied stress is
redistributed onto the remaining fibers that have not buckled. which carry a higher effective
stress. At any time during loading of the specimen, the applied load (applied stress times
initial fiber area) is equal to the effective stress times the area of fibers that remain unbuckled,

Oapp = Ocr(@)[1 — ()] )

where 0 < w(x) < 1 is the area of the buckled fibers per unit of initial fiber area. For any
value of effective stress, all fibers having more than the corresponding value of misalignment
given in Fig. 7 have buckled. The area of buckled fibers w(a) is proportional to the area
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under the half normal distribution (Fig. 8) located beyond the misalignment angle o
corresponding to the current effective stress. The total area under the probability density
curve (Fig. 8) is equal to one. The area under the curve between « = 0 and « is the cumulative
probabilityF(«) corresponding to the probability density of the half normal distribution
given in eqn 4. Therefore, w() is given by

o) =1—F(o) = I—Jaf(cx) do = wa(oc) do ©)

Equation (8) has a maximum that corresponds to the maximum stress that can be
applied to the composite. The compression strength of the composite is found by setting to
zero the derivative of eqn (8) with respect to the fiber misalignment, solving for the critical
value of «, and putting it back into eqn (8). These computations were carried out analytically
with the aid of a symbolic manipulator (Maple V). The maximum of eqn (8) is a unique
value for the compression strength of the composite that incorporates both the imperfection
sensitivity curve (Fig. 7) and the distribution of fiber misalignment (Fig. 8).

EXPERIMENTAL COMPRESSION STRENGTH AND CORRELATION WITH THE DAMAGE
MODEL

Because of the inherent variability of expérimental compression strength data, eight
replicates per material were used. Furthermore, eleven different materials had to be tested,
which makes the total number of samples to be tested quite large. Therefore, a simple test
method was desired. The simple cylindrical geometry of the samples facilitated machining
of flat ends that were perpendicular to the axis of the sample. Therefore, experimental
compression strength data of rod samples was obtained using a modified ASTM D-695 test
fixture (Sonti, 1992). The new fixture is an end-loading fixture like the ASTM D-695 but it
uses a special end-constraint grip that prevents bearing failure (end brooming) while
avoiding the stress concentration typical of shear loaded fixtures.

Using short samples (38 mm) avoided the need for lateral support. The estimated
length for specimen buckling under a fixed end-condition is eight times the length used in
the test. The gage section spans the entire length of the specimen. Alignment of the specimens
was checked with back-to-back strain gages on half of the samples. A further modification
of the D-695 is the alignment system that helps align each sample automatically.

Compression failures were obtained at the center of the gage section, in approximately
75% of the samples. The samples that failed near the ends had compression strength values
within the scatter of the remaining tests. The compression strength data compares well with
data for glass composites available in the literature (Lo and Chim, 1992). The mean value
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Table 4. Comparison of theoretical and experimental
compressive strength

Material

reference Otheory Gexper.
code (MPa) (MPa)
CAA 369.29 477.74(136.6)
CAB 341.49 462.65(+16.6)
CAC 364.91 489.74(426.4)
CBA 410.89 481.04(+25.7)
CBB 432.65 521.56(+16.2)
CBC 433.97 540.34(+20.0)
CCA 393.51 523.74(% 16.1)
CCB 422.81 546.28(+10.7)
CccC 388.79 494.88(+15.3)
ACA 434.16 560.90(+35.1)
BCA 439.60 537.05(+39.3)
CBB 490.76* 521.56(+16.2)

* Rectangular sample.

and the 95% confidence interval for each of the eleven materials are shown in Table 4.
Eight specimens were tested for each material combination. Also known in Table 4 are the
theoretical values computed with the damage model. When G,r and 7, are measured
from torsion data, the predicted compression strength values are 14-25% lower than the
experimental strength. The values of 7, measured with the Iosipescu shear test (Iosipescu,
1967) are higher (Table 2), leading to a predicted strength only 6% lower than the exper-
imental strength (last row of Table 4). The experimental determination of the shear proper-
ties needs further investigation.

It must be emphasized that the predicted results are based on measured values for all
the parameters that enter into the damage model. The parameters are: the initial shear
stiffness G, the shear strength 7,, and the standard deviation of fiber misalignment X. All
- these parameters were measured near the same location on a pultruded rod that showed
very consistent properties along its length.

The following conclusion can be drawn from the experimental data. A clear correlation
can be seen in Fig. 9 between initial shear stiffness and compression strength, as it was the
case in the work of Crasto. However, it is still possible that inter-laminar shear strength
may also correlate with initial shear stiffness and compression strength. Further study needs
to be done in this direction.

Compression strength as a function of the standard deviation X of fiber misalignment
is shown in Fig. 10. Clearly, the compression strength decreases with increasing fiber
misalignment as shown in Fig. 10. The multi-tow roving with 56 yield obviously induces
larger misalignment because of its inherent micro-catenary. The decrease in compression

Compression Strength (MPa)
560

Resin B:
540 | D-1419
520 |
| Resin A:

500 I 2036 ——m

480 Fiber B: OCR 113
+

460 | Fiber C: OCR 250
——

440 : L L

28 3 32 34 36 38 4 42 44
Initial Shear Modulus (GPa)

Fig. 9. Influence of initial shear stiffness G, on compression strength.
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490 [ cac 5‘2;"4':\
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Fig. 10. Influence of fiber misalignment on compression strength.
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Fig. 11. Influence of fiber volume fraction V', on compression strength.

strength for the polyester matrix composite with 56 yield fiber is partially compensated by
an increase in the initial shear stiffness, as it can be seen in Fig. 10 and Tables 1-4.

Compression strength as function of fiber volume fraction is shown in Fig. 11 for a
polyester matrix composite with 56 yield fibers. The plot S+ Vrepresents a linear function
of the fiber volume fraction with reference to the strength of the composite with 40.2%
fiber volume fraction. The linear plot is included to show that compression strength does
not increase linearly with fiber volume fraction. Note that, while the initial shear stiffness
of all the composites shown in Fig. 11 are very similar, the fiber misalignment values are
quite different. The expected increment in compression strength for higher fiber volume
fraction is not realized because of the higher misalignment observed in the materials with
higher fiber volume fraction.

CONCLUSIONS

A compression strength model without any semi-empirical parameters has been
presented. The model uses only three material parameters that can be measured by well
established methodology. The compression strength and all the parameters that enter into
the model were measured for the same material. Correlation between predicted values and
experimental data for eleven different E-glass reinforced pultruded composites was very
good. The effect on inter-laminar shear strength could not be evaluated in this investigation
because resins commonly used in pultrusion have similar values of inter-laminar shear
strength. Further work needs to be done in this area. Also, the relationship between
misalignment in the composites and its causes, including fiber micro-catenary, was not
quantified. Further work in this direction is needed because there is significant potential
for increasing compression strength by reducing fiber misalignment. Since the compression
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strength is sensitive to both shear stiffness and strength, further work is needed on the
analytical prediction and experimental determination of shear properties.
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