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Abstract-A three-dimensional element with two-dimensional kinematic constraints is developed for the
geometric nonlinear analysis of laminated composite plates. The Newton-Raphson iterative method is
adopted to trace the nonlinear equilibrium path. Maximum accuracy in the computation of stresses is
achieved by postprocessing the stress results from constitutive equations with the aid of the equilibrium
equations. Some numerical examples are presented to demonstrate the efficiency and the validity of the
proposed element. A total Lagrangian description and the principle of virtual displacements is used to
formulate the equilibrium equations.
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t. INTRODUCTION

i Ihcr reinforced composite materials are being widely
.\cd in different branches of engineering because of
'~ictr excellent mechanical properties [1]. These ma­
,:'rt;lls are formed by fibers of various kind (glass,
,:ccl. graphite, boron, etc.) surrounded by a matrix,
",uallya resin. Multidirectional (or laminated) com­
;'O\ltcs are formed by several laminae, each contain-
:~g a t~lmily of parallel fibers, but differently oriented
:\)ttl lamina to lamina.

()nc of the' weakest links in laminated composites
", (he interlaminar strength and so the estimation of
::c tntcrlaminar stresses is important in ensuring the
:fcgrity of the laminates. The single layer classical

~:1d ~hear deformation theories [2-4] based on a
,.,nltnuous displacement field through the thickness
~:c adequate for predicting global response charac­
:n\IICS~ such as maximum deflections and funda­

.-..:-nlal natural frequencies. The first-order and
,~~her.order shear deformation theories yield im-
~U\ed global response over the classical laminate
.cOf'\· be.. . cause the former account for transverse

'~.t".ir strains [5]. Both classical and refined plate
,~nnes b d
~~ h ase on a single continuous displacement
•• I> II r~ugh' the thickness give poor estimation of
··..r ami

""1 nar stresses. The fact that some important
'~..e-s of f: '1

'::'t\ses ~I ure are related to the interlaminar
~"\ motivated research on refined theories that

" model the I . k" . I..~.: predi . ayer-wlse Inematlcs appropnate y
ct Interlaminar stresses accurately [6-10].

Unfortunately, the finite element implementation of
these theories is not simple because they imply a
large number of degrees of freedom per node. In a
previous paper, Barbero [11] developed a new three­
dimensional element for the linear analysis of multi­
directional composite plates, using the formulation
of Ahmad et ale [12] and applying the kinematic
constraints of layer-wise constant shear theories
(LCWS). The new element overcomes the problems
linked with the two-dimensional LCWS theories,
retains the precise calculation of stresses and
has a physical interpretation of the degrees of
freedom (OOF), the boundary conditions and stress
resultants. This element [11] was validated by the
patch test [13] and, for linear analysis, was extended
to the analysis of general anisotropic shell-type
structures [14].

The laminated composites are characterized by
high values of strength/stiffness ratio and then they
can be highly stressed and deformed to 'fully exploit
the capability of these materials. Therefore, it is
very important to consider change of configuration
during deformation by geometrically nonlinear
theories [15, 16]. The present study is an extension of
the previous analyses, to include geometric non­
linearity, to develop its nonlinear finite element model
and to investigate the effects of geometric nonlinear­
ities on stresses and load-deflection behavior of
laminated composite plates. To define the geometric
nonlinear behavior, a total Lagrangian formulation
is adopted, in which displacements are referred to

to.
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2.1. Principle of virtual displacements

The equilibrium of the plate is expressed u .
. . If. SIng tLpnnclp e 0 virtual work: \4J:

Here and in the following the left subscripts ". . a~
superscnpts on a quantity are used to l'nd'•. ,Ieate
respectively, the configuration in which the quanf .

d h fi
.. lh

occurs an t e con guratlon In which the quantit ' '\
measured. In particular d indicates the defo~~
geometry and 0 the undeformed configuration.

In eqn (1):
dr;j are the Cartesian components of the Cauch\

stress tensor on the deformed geometry; (
deU are the Cartesian components of the infinitesl.

mal strain tensor associated with the displacement
from the undeformed to the deformed geometry'
db''f; are the components of the externally applied

body force vector; _
'Y~ are the components of the externally SUrfal1"

force vector;
Vd is the volume measured on the deformed geome·

try;
Sd is the surface area measured on the deformed

geometry;
~ indicates the variation, Le.:

where dXj (i = 1,2,3 Xl = X, X2 = y, X3 = z) are the
Cartesian coordinates of a point in the deformed
configuration and Uj (i = 1, 2, 3 UI =U, U2 =v, U3 =H I

are the displacements from the undeformed to the
deformed geometry (uj = dX ; - Ox;) and ~Uj is the ith
component of the virtual displacement.

X

9

the original cQnfiguration [17, 18]. The principle of
virtual displacements is used to obtain the equi­
librium equations.

To ,overcome the problem of the ill-conditioned
equations shown by Ahmad et ale [12] and to reduce
the number of the DOF, the assumption of incom­
pressibility along the thickness is made. This assump­
tion is quite valid for a broad class of problems of
moderately thick multidirectional composites. A
method is developed to apply the incompressibility
using a constraint matrix, thus producing a symmet­
ric, non-singular, banded global stiffness matrix.

The distribution of interlaminar stresses obtained
directly by using the proposed element is layer-wise
constant when the Von Karman assumptions are
made. Quadratic interlaminar stresses that satisfy the
shear boundary conditions at the top and bottom
surfaces of the plate are here obtained by postpro­
cessing [19]. All components of stresses obtained at
the Gauss integration points are extrapolated to the
nodes using the procedure described by Cook [20].

Using the proposed element, it is possible to model
problems with variable number of layers and variable
thickness. Here some examples are presented to show
the efficiency and the validity of the proposed element
for nonlinear analysis.

z

y

2

2. FORMULATION

Let (x, y, z) be a stationary Cartesian coordinate
system. Consider a laminated composite plate com­
posed of n orthotropic laminae (Fig. 1). In each
lamina the fibers are parallel and arbitrarily oriented
with respect to the coordinate system. Assume that
the plate can experience large displacements and
rotations. We wish to analyse the equilibrium of the
plate, taking into account the geometric nonlineari­
ties.

In the Lagrangian description all variables are
referred to a reference configuration, which can be
the initial configuration or any other convenient
configuration. The description in which all the vari­
ables are referred to the current configuration is
called updated Lagrangian description and the one in
which all variables are referred to the initial configur­
ation is called total Lagrangian formulation, the

I- a -I
X

Fig. 1. Plate model, global and material coordinate systems.
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3. FINITE ELEMENT DISCRETIZATION

The equilibrium eqn (1) at the (m + I)th iteration,
by using eqns (3)-(11) and noting that

J. cJ....
oSij = 0 Cijrs O£rs (12)

becomes ldrorfi~~ ~fer~rirt d.)

The right-hand side of eqn (15) represents the
"out-of-balance virtual work" after the solution,
produced by the previous linearizations. Using the
Newton-Raphson iterative method the steps are re­
peated until the difference between the external and
the internal virtual work is negligible within a certain
convergence measure (here fixed at 1 x 10-3

).

3.1. Three-dimensional elements

Each layer of the plate is discretized by three-di­
mensional elements. The displacements can be writ­
ten as follows:

obtaining the following approximate equilibrium
equation:

where

where we used the relation c>0' + l£ij = t5 of.ij •

Equation (13) cannot be solved directly and then a
linearization is needed by using the approximations
(j~ f1nv\te~i~L-~' ~t\"4-i~)

oSij = 0 Cijrs oers ; c> O£~i = t5 oeu, (14)

The Green-Lagrange strain tensor O£;j can be divided
into its linear and nonlinear part as:

(8)

(7)

(5)

Total Lagrangian formulation for laminated composite plates

l ~ ..

~. analogously for the strain tensor:

.• here
~j. are the Cartesian components of the -second
PHlliV-Kirchhoff stress tensor;
~tj( are the Ca~tesian components of the

~ Ire!n -Lagrange strain tensor.
1\"th these quantities correspond to the deformed
,lOtiguration, but are measured on the undeformed
~:-ornctry. The components of the Green-Lagrange
.'.re'" tensor are defined as

\ hCf~ the left subscript on the differentiation indi­
~tC\ the following:

Tht: right-hand side of eqn (I), becomes:

f ~.t.::c5u: dSo+f gfrt5ur dVo= dR; (6)
S.l .. Vo

l "~~re J R is the external virtual work.
.:(). obtain the deformed geometry an iterative
,.hod must be adopted. With reference to the
~._~ ,I )th iteration we can write the following incre­

.. ·· •.11 decomposition of the stress tensor:

\Ve remind that the Cauchy st~ess tens~r is alwa~s

~ierred to deformedhco~fifigu~atl~n land I~ energetl­
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: ). tion (1) can be solved directly if the deformed
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.Jll . .• .
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..~'~e the second Piola-Kirchhoff stress tensor and
~.: t:nergetically conjugate Green-Lagrange strain

':nSQr.

::. Total Lagrangian formulation

A way to solve the geometrically nonlinear prob­
:m is to write an approximate solution referring all
'-:c variables to the undeformed geometry and lin­
.Jnzing the resulting equation. This equation can be
:.)jn:d iteratively using a suitable iterative method,
,'xh as Newton-Raphson, Riks, etc.

The left-hand side of eqn (1) can be transformed

;~ {17. 18]:

_;b~<~~."~
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Fig. 2. Three-dimensional layer-wise element and its inter-polation functions.
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o(BL] = O[BLO] + O[BLI]'

oN;,z 0 0

0 oN;,y 0

0 0 0
O[BLO] =

0 oN;,z oN;,z

oN;,z 0 N;,z

oN;,zy oN;,z 0

Gauss points

where

f oSijc5 of/;jdVo
Vo

= (to O'lBNLf O'[S] O'lBNd dVo} l5 }

= o[KNL]{c5}, (J II i

f
oSijc5oeijdVo=f o(BL]To{S}dVo=O'{F}, (2(l!

Vo Vo

where
o(BL] is the linear strain-displacement tranSfOrfll

ation matrix;
o(BNL] is the nonlinear strain-displacement tran\

formation matrix;
o[S] is the second Piola-Kirchhoff stress matn),.
o{S} is the second Piola-Kirchhoff stress vector
{c5} is the collection of the nodal {~;}.

The order of oeT is {oexx , Oeyy , oezz , 2oey:, 2ot',.
2oexy }. The matrix O[BL] can be divided into:

(18) and

(17)
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o 200F

• 300F

{
X} N [N; 0 0]
y =.~ 0 N; 0 {x;},
Z I-I 0 0 N;

f 0 C;jrs oersboe;j dVo
Vo .

where {x;} = {x;, y;, Z;}T are the nodal coordinate
vectors (isoparametric elements). .

The order of the interpolation functions N; along
the two coordinates of the surface of the plate can be
chosen independently from the order through the
thickness. Here quadratic interpolation functions are
used for both. (u, v) and (x, y), while linear variation
is used in the thickness direction. The quadratic
element has 18 nodes. Nodes 1-9 have 3 DOF
(u, v, w), nodes 10-18 have 2 DOF (u, v), as shown in
Fig. 2. The transverse deflection w is constant
through the thickness.

The terms in eqn (15) can be rewritten as fol­
lows [18]:

where {c5;} = {u;, V;, wilT, N is the number of the
nodes and N; = N;(e, f/, C) are the interpolation
functions equal for u, V and w. In the same way
the coordinates of a point of the plate can be written
as:
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OU,xoN;,x

OU,y oN;,y

o

oV,xoN;,x

OV,y oN;,y

o

oW,xoN;.x

oW,yoN;,y

o

.........._------

OU,y oN;.z + oU,z oN;,y

oU,x oN;,z + oU,z oN;.x

oU,x oN;,)' + OU,y oN;,x

OV,y 0 N;,z + o'v,z 0 N;,y

oV,x oN;,z + oV,z oN;.x

oV,x oN;,y + OV,y oN;.x

OW,y oN;,z + oW,z oN;,)'

oW,x oN;,z + oW,z oN;,x

oW,XON;,y + oW,yoN;,x
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. eqns (22) afld (23) the third row represents the
':coIl1pressibility condition (oezz = 0) that is an as­
:~ption valid for a broad class of problems of
~ .,derately thick laminated plates. The derivatives of
.~~~ displacements with respect to the global axes
~~y, z) are obtained in the standard way as:

~rn mv mw ] [m
u

m
v

m
w

]oU,:c 0 ,x 0 ,x ,~,~,~

~u,y oV,y OW,y = O[J]-l mu,,, mv,,, mw,,,' (24)
'" mv mw mu mv mwI)U,= 0 ,z 0 ,z ,C ,C "

where

and

[
00 0]

[0] = 0 O. O.
000

(29)

.here the Jacobian matrix is defined as The second Piola-Kirchhoff stress vector is

(32)

OS~1

OS~2

o
OS~3

OS~3

OS~2

o
o
o
o
o

OR~6

3.2. Constitutive equations

For each layer, the second Piola-Kirchhoff stress
tensor components (oSij) and the Green-Lagrange
strain tensor components (o£ij) are related by eqn (12)
and approximated by eqn (14). Equation (12) can be
written for each layer in the multidirectional com­
posite plate. Using the property ost =ost and re­
ordering the terms of the 0[8] and o[E] as vectors, for
each layer in the plate, we can rewrite eqn (12) with
respect to the material directions (1,2,3) as follows
[21]:

In eqns (29) and (30), 0Szz is replaced by zero and
the other stress components are obtained by the
constitutive relation (31)-(38) because of the incom­
pressibility conditions and of the assumptions intro­
duced in the following section.

(28)

(27)

(26)

(25)

OR~2 0 0 0

OR~2 0 0 0

000 0

o 0 oR~ 0

o 0 0 oR~s

000 0

OC~1 OC~2 OC~3 0 0 0 O£~l

OC~2 OC~2 OC~3 0 0 0 0£~2

OC~3 OC~3 OC~3 0 0 0 0£~3

0 0 0 oC~ 0 0 20£~3
(31)

0 0 0 0 oC~s 0 20£~3

0 0 0 0 0 oC~ 20£~2

[0] ]
[0] ,

o[S]

O£~l

O£~2

o
20£~3

20£~3

20£~2

-OS~1

OS~2

OS~3

OS~3

OS~3

OS~2

[

o[S] [0]
0[8] = [0] o[S]

[0] [0]

{O} = {~}-

The second Piola-Kirchhoff stress matrix is defined
For a large range of problems we can suppose that

the axial deformation of segments normal to the
middle surface is zero during the deformation. Then
we have that 0£~3 = 0 and the normal stress OS~3 is
negligible (0 S~3 =0).

Therefore we can write the strain-stress relation for
an orthotropic layer using the compliance matrix

____ o[Rt] as follows:

------------------

.here

Pie nonlinear strain-displacement matrix o[BNL] is

(21)

la-Kirchhoff stress ma~
>la-:-Kirchhoff stress· vect~
rthe nodal {bile
{oexx , Oeyy , oe::, 2oeyu20'u'
can be divided into:

l.]T o{S} dVo= o{F}, (20)

,n-displacement transform-

N;,: 0

0 oN;,y

0 0

0 oN;,z

)N;,z 0

IN;,zy oN;,z

(19)

strain-displacement traMa

OW,xoN;.x

oW,yoN;,y

o

nctions.

~oN;.z +ow,zoN;J'

(oN;.z+

O
N. +mOwyoN;oX

~ I.y ,
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Using the rotation matrix [Tk]:

(33)
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k 1
OR 66 =-Gk '

12

k _ 1 .
oR SS --Gk '

13

1
oR44 =-Gk ;

23

cos28k sin2 8k 0 0 0 2 sin 8 k cos 8k

sin2 8k cos28 k 0 0 0 -2 sin 8k cos 8k

0 0 1 0 0 0
[Tk] =

0 0 0 cos 8 k -sin 8 k 0

0 0 0 sin 8k cos 8k 0

-sin 8k cos 8 k sin 8 k cos 8k 0 0 0 cos2 8 k
- sin2 8k

Inverting the expression (32) we obtain:

Q~I oQ~2 0 0 0 0

OQ12 oQ~2 0 0 0 0

0 0 0 0 0 0
o[C123] = 0 0 0 k20C~ 0 0

0 0 0 0 k 2
oC~s 0

0 0 0 0 0 OQ~6

where the third row and column are deleted for the..
previous assumptions.

The terms of [R] can be written in terms of
engine~ring constants:
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The coefficients of [CI23 ]k can be written in function
of the engineering constants as

v~IE~ .

1 - V~2V~I'

we can obtain the expression of 0 [C~l'=] written WilL
respect to the global system of reference:

Thus the relationship between stresses and strain­
with reference to the global coordinate system. tx··
comes:

{
{hI:

{15} = {15 2

The dimensions of t~

because all the DOF 0

dement have to be COl1

DOF. The constraint m

o{S} = o[CXy:]o {l}.

where Et, E~ are the Young's moduli along the
directions 1, 2; G~3' G13' G12 are the shear moduli and
V12 and V~l are the Poisson's coefficients, respectively.

The shear correction coefficient k is included as
required by FSDT (k 2 = 5/6) [11]. Using this ex­
pression for O[C I23 ] and fixing for O£~3 the value zero,
we can overcome large stiffness coefficients for rela­
tive displacements along an edge corresponding to
the plate thickness and then overcome the numerical
problem that can produce ill-conditioned equations
when the shell thickness becomes small compared to
the other dimensions in the element.

3.3. Application of the incompressibility constraint

The incompressibility condition (0£;; =0) rer­
resented by eqns (22) and (23) leads to a uniq.u.~

transverse deflection w on each vertical to the miC'

plane of the plate (Fig. 3).
The stiffness matrices o[KL] and O[KNL] are or­

tained performing the integrations (18) and (19) as':
standard I8-node element with 3 DOF per nod,:
where the interpolation functions N~ in eqns (16) an~

(17) follow the considerations pre~iously describec

The global stiffness matrix obtained from the pre­
vious matrices is singular because w is constan:
through the thickness. Therefore it is necessary tl'

reduce all the w-DOF on each vertical to a singl~
DOF.
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At element level we have, from eqns (15), (18), (19)
and (20):

To obtain a symmetric coefficient matrix, we pre­
multiply both sides of eqn (42) with [A]T:

The overlines indicate that the two matrices O'[KL]
and O'[KNL ] are reordered, interchanging the rows and
the columns of the original O'[KL] and O'[KNL] to follow
the new order in {~}. The vectors on the right hand
side of eqn (41) also have to be reordered following
the new order of {b} °

Using the transformation (39), it is possible to
write:

T
o
II

N

1

z.wt .JY.V

~
x,U

I !t WI

W
• 3 DOF

o 2DOF

~:2. 3. Incompressibil!ty condition and position of the
.. master nodes.

(36)

lals remain perpendicu•
. deformation has been
lission allows the plate
cions. Moreover, if we
ina (or cluster of lcuni.
nent that the n0rtnals
er deformation, obtain­
~re the rotation of each
, the other ones.
[Tk]:

~k cos 8k

.9k cos 9k

o
o
o

"- sin2 8k

UI

0 VI

0

0

U9

V9

0

0

1 (40)

Ul8

VI8

WI

0

0

1

W9

..

100

010

000

000

000

001

[A]T[on[KL]+O'[KNLll [A]{~ I}

= [A]T{m+I{R} -O'{F}}, (43)

000

000

000

or

where the element stiffness matrix has now the dimen­
sions 45 x 45 and the "out of balance virtual work"
vector has 45 independent components.

If more than one layer is present in the laminate,
another condensation procedure must be done for
each vertical, connecting all the w-displacements to
only one master node (e.g. w-master node at the
bottom of the laminate). This has been easily

o 0

o 0

o 0

o 0

o 0

o 0

1 0

o 1

o 0

(39)

1 0

o 1

o 0

o 0

o 0

o 0

o 0

o 0
o 0

{
{b 1

}}
{t5} = {t5 2} = [A]{t5 I

}.

The dimensions of the matrix [A] are 54 x 45
~ausc all the DOF of the 18 nodes into each
::d1lcnt have to be connected to 45 independent
DOF. The constraint matrix [A] is constructed as

At element level we choose the master nodes at the
"'Qttomofthe element as displayed in Fig. 3. Making
'hIS choice, it is possible to divide the nodal displace­
;:ent vector into two parts. The first {b I} collects the
~dependent OOF (u and v of all the nodes and w of
'~e master nodes), while the second {b 2} collects the
-rmaining dependent nodal displacements. The con­
,;:t1on of incompressibility can be introduced as con­
.traint equations using a suitable matrix [A] as
:11lows [22]:

~~-~~G* (38l
;;ni}:;;~'~H,

lon ofo[C~yz] written' with
m of reference:

O[C~23][T1-1.

~ween stresses and straim
,al coordinate system. I»

compressibility constra/llf

condition (0£:: =0) !"
nd (23) leads to a~
n each vertical to~-
n· ,']\;,.

m[K ] and ~[KNL, •
OLd(19).

tegrations (18) an ....
nt with 3 OoF pcf6)' ,.,
, . N On MlDS (1
unctions s.l ~,~

ations preVIouslY .the" .
trix obtained fro~~
liar because W~.
Therefore it is. n ,,;' ~

. I to ......
on each verUca J;":/;{i~{/,,

:CXy:]O{l}.
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6. NUMEI

In this section the f
~is used for the lin
beaniS and rectangula:
dIiclency and the vali
dimensional element. ~

material properties con
I tist ~f the boundary
section.

6.1~ Transverse deflect

6.1.1. Clamped isotJ
clamped isotropic pla1
of side a =1000 mm,
jected to a unifon
<Po-I x 10-4Nmm­
(material I). Owing to
the plate was analyzec
elements and the rest
function of the load

In the following SOlT.

resUltS obtained using tl1
IdSOr and its reduction
tioftS are reported.

d{-} d°S ,z =°[Cxyz]o{e },z;

2g€xy = U,y+ v,x + W,xW,y.

d + 1( )2. d + 1( )2.
O£.u = U,x 2: w,x , o€yy = V,y 2: W,y ,

s. VON KARMAN PLATE THEORY

The previous relationships are formulated in J

general way to be useful for the extension to shell

analysis. However, for the analysis of composltc

laminated plate the Von Karman theory can be

adopted to approximate the Green-Lagrange stram

tensor. In fact when the transverse deflection is no!

small (but comparable to the thickness of the plate i

and inplane displacement gradients are small, it t~

possible to assume that the products and squares (Ii

the slopes of inplane displacements are small com·

pared to unity and can be neglected.
The Green-Lagrange strain tensor reduces to:

The incompressibility condition leads to w,= == 0 an~

g€:: = o.

with the other components obtained by Suitabk

permutations. In particular the derivatives of ~(:; ar(

equal to zero.
Using the first and second-order derivatives of the

interpolation functions, it is possible to calculate th,

second-order derivatives of the nodal displaccmcnh

and by the previous eqns (45) reach the values of th,

jumps needed to trace the parabolic distributions o!

the shear stresses.

(45)
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4. REFINED COMPUTATION OF THE STRESS

The derivatives of the Green-Lagrange strain

sor components, applying the Von Karman ass ~
. urn~ ...

bons appear as:

achieved through the usual element assembly pro­

cedure by assigning the same global node number of

the'master node to all the w-DOF located on its

normal [11, 13].
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To use the method proposed in Ref. [19] the shear

stresses gSl': and gsx: must be constant through the

layer thickness. Thus,. to obtain the refined compu­

tations of the shear stresses, the Von Karman as­

sumptions are made (see also Sections 5 and 6).

The computation of the second derivatives of the

interpolation functions with respect to the global

coordinate was explained in detail in Refs

[8, I I, 13, 14]. The derivatives of the second Pi­

ola-Kirchhoff stress tensor components with respect

to Ox and 0y can be obtained from the constitutive

eqns (38) using the derivatives with respect to Ox and

0y of the Green-Lagrange strain tensor components:

Using the constitutive eqns (12) and (14), it is

possible to calculate the stresses at the Gauss points

from the displacement field solution of the problem.

These stresses can be easily extrapolated to the nodes

by the procedure explained in Ref. [20]. The distri­

bution of gsx, gsv and gsxv is linear through the

thickness while gs~= and gsv~ are layer-wise. linear if

the full Green-Lagrange strain tensor is adopted and

layer-wise constant if the Von Karman approxi­

mations are made. Selective reduced integration is

used on the shear-related terms.
Quadratic interlaminar shear stresses that satisfy

the boundary conditions at the top and at the bottom

surfaces of the plate are obtained in this work for

laminated plates modeled with three-dimensional­

layer-wise (3DLW) elements. A procedure to obtain

an approximation of the shear distribution through

each layer with quadratic functions was proposed in

Ref. [19]. All the details about the method developed

for the linear analysis of plates can be found in Refs

[8, 11, 13]. Here we point out the procedure in nonlin­

ear analysis adopted to calculate the jumps in gsxx.=
and gsv=.= at each interface using the following equi­

librium equations:

Table I. Material properties
o

Material I (isotropic): E = 20,000 N mm-2; v = 0.3;

Material II: EI = 25.0 X 104 N mm- 2; E2 = 2.0 X 104 N mm-2 G23 = 4 X 103 N mm-2;

GI2 = G13 = 1.0 X 104 N mm-2; Vl2 = 0.25. .
Fig. S. Clamped squa

C4
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adimensionalized by (S;j
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the S:c: stress is measure
S1= is measured at x =
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results are smaller than

For the shear stresses,
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constitutive equations ~
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note that, when the full (
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boundary conditions is between the 3DLW resulh
obtained using the BC1 and the BC2 conditions. In
particular, with theBC2 conditions we have a plate
practically clamped, obtaining the stiffest structure
In the linear case the two-dimensional solution ap­
pears the less stiff.

6.2. Stresses distribution

6.2.1. Normal stress Sxz for a clamped isotropic
plate. Figure 8 shows the variation of Sxz1p through
the thickness of the isotropic plate described in
Section 6.1.1. The stresses are measured in the Gaus~

point with coordinates x = 0.44717a, y = 0.052831£1
and are adimensionalized with the relation
(Sxxlp) x 10-4

•

The effect of the nonlinearities is to reduce the
value of the stress at the top and bottom surfaces and
to increase it at the middle surface of the plate.

30
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BC 1

20

Quarter of plate 0/90

--- 2DGLPT
o 3DLW

10o

2.0

1.5

0.5

coce 1.0

Uo = Wo = t/Jy = 0 at x = ±aI2.

Vo = Wo = t/Jx = 0 at y = ±a12;

We (mm) Normal stress (xx)

Fig. 6. Simply supported square cross-ply plate: linear and Fig. 8. Isotropic square plate: through the thickness nO~l
nonlinear central deflections. stress distribution.
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2D-GLPT results and the 3DLW ones, we consider
a 4 x 4 x 2 mesh to model a simply supported angle­
ply plate subjected toa uniformly distributed trans~

verse load, as in the previous examples.
The material properties are the same as in the

previous example. The boundary conditions necess­
ary to obtain the 2D-GLPT solution are the following
(BC3):

These boundary conditions cannot be modeled· with
the 3DLW elements because fixing u = 0 through the
thickness, for example, will automatically fix to zero
the rotations along x (or around y) that are the t/Jx in
the 2D-GLPT model. Observing Fig. 7, it is clear
that the 2D-GLPT solution obtained with the BC3

o 5 10 15 20

We (mm)

Fig. 7. Simply supported square angle-ply plate: linear and
nonlinear central deflections.

o 1....-_-.....__"--_-.&..__.1..-_----
-30 -20 -10 0 10 20 30

90

-- At = 0.1 Linear

- - At =0.1 Nonlinear

• - - At =2.0 Nonlinear

1.0

0.8

0.2

0.4

0.6

Normal stress (xx)

Fig. 9. Simply supported square cross-ply plate: through
the thickne'ss normal stress distribution.
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rreen-Lagrange strain ten.
the Von Karman assUJnp.
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y

w=v=o

o
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~
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e
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::I

X

v=o
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w=u=o

e
II
~

II
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y

e
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::I
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e
II
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~
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(47)

(46)xyz] g{e },y •

BCC BCI
Fig. 4. Boundary conditions.

BC2

ow a2w ow
o0y + 0 Ox 0 0y aox' (48)

:nts obtained by suitable
.r the derivatives of g£:: are

In the following some comparisons between the
results obtained using the full Green-Lagrange strain
tensor and its reduction by the Von Karman assump­
tions are reported.

6. NUMERICAL RESULTS

made with the analogous results obtained using the
two-dimensional Generalized Laminated Plate The­
ory (2D-GLPT) [8, 15], where the boundary con­
ditions were the following:

Uo = Vo = Wo = t/Jx = t/Jy = 0

...

t/J:c(X, y) and t/J)'(x, y) being the rotations about the y
and the x axes, respectively, and Uo, Vo, Wo the
middle-plane displacements. The central transverse
deflections obtained by the proposed element com­
pare well with those of Refs [8, 15].

In particular, it is possible to note that the two-di­
mensional solution was obtained using the Von Kar­
man approximations and it is the same of the 3DLW
obtained using the full Green-Lagrange strain tensor.

Uo = t/Jx = 0 at x = 0; Vo = t/J)' = 0 at y = 0;

at x = a/2 and y = a/2;

Vo = Wo = t/Jy = 0 at x = a /2;

Uo = Wo = t/J:c = 0 at y = a/2;

Vo = t/Jy = 0 at y = o.

Uo = t/J:c = 0 at x = 0;

'6.1.2. Cross-ply [0°/90°] simply supported plate. A
simply supported square cross-ply plate under uni­
formly transverse load is analyzed. The geometry is
the same of case 6.1.1, and the load is expressed in
terms of the load parameter l using again
Po = 1 x 10-4Nmm-2•

The structure is composed of material II and the
BCI boundary conditions are used on one quarter of
the plate with 2 x 2 x 2 mesh of 3DLW. The com­
parisons, reported in Fig. 6 are made with the
2D-GLPT solution where the boundary conditions
were:

Note that the use of the 3DLW (full
Green-Lagrange) elements or the 2D-GLPT (Von
Karman) elements predicts practically identical val­
ues for the central transverse deflection.

6.1.3. Simply supported angle-ply [45°/ -45°]
plate. In order to make comparisons between the

86

-2DGLPT

c 3DLW

Isotropic plate

2o

0.2

0.6

~ 0.4

4

We (mm)

;. 5. Qamped square isotropic plate: linear and nonlinear
central deflections.

0.8

In this section the formulation previously devel­
\1ped is used for the linear and nonlinear analysis of
reams and rectangular plates, to demonstrate the
efficiency and the validity of the proposed three­
dimensional element. Table 1 contains a list of the
material properties considered here. Figure 4 contains
,1 list of the boundary conditions considered in this
\CCtion.

h I. Transverse deflections

6.1.1. Clamped isotropic plate. Consider a square
damped isotropic plate (BCC boundary conditions)
of side a = 1000 mm, thickness h = 2 mm, and sub­
1«tcd .to a uniformly transverse load p = lpo
'Po;: I x 10-4 N mm- 2

)., The material is isotropic
fmuterial I). Owing to the symmetry only a quarter of
the plate was analyzed by a 2 x 2 x 1 mesh of 3DLW
dements and the results are reported in Fig. 5, as a
function of the load parameter. Comparisons are

W,y.

+W,y;

ndition leads to

d _ +!(w )2.
O£yy - V v' ' 2 ,J"

nd-order derivatives of the
is possible to calculate the
)f the nodal displacements
(45) reach the values of the
~ parabolic distributions ti
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t gradients· are·· small~ Jt l
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~train tensor reduces to:
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Fig. 10. Simply supported square cross-ply plate: through the thickness shear stress distribution (1 = 1.0).

4

90

32

- Nonlinear (VK)

- - Linear
• - - Nonlinear (Green)

Shear stress (yz)

1 \
1 I
1 I

/(
/1

'"
o432

Shear stress (xz)

o

0.1 Linear
I

1.0I 1.0 I0.1 Nonlinear I 90

0.8 Nonlinear
I ~ I
',/ " -- Nonlinear (VK)

'~ 0~8 - - Linear
0.8

~ I \ • - - Nonlinear (Green)

/.1 I \

/ "
0.6 I 0.6

~
.c=/ , ..-.....

~ N

/ I

/ I 0.4 0.4

I
I

I
I, Isotropic 0.2 0.2

I
I

, I I .J
-1 3 S

'ormal stress (xx)
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s distribution.
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is adopted, the presence of the derivatives of the u and
v displacements with respect to the x and y coordi­
nates, produces a linear variation of the shear stresses
through the thickness ofeach layer. Instead, using the
Von Karman approximations these stresses are layer­
wise constant. In any case the difference between the
two results is very small. Then, the constant distri­
bution of the shear stresses is used to be able to use
the method proposed in Ref. [19] and obtain their
parabolic distribution through the thickness.

6.3. Beam ply drop-off problem

To show the capability of the proposed element, an
example of a cantilever beam with or without ply
drop-off has been analyzed (Fig. 11). The ply drop-off
is an important problem in the structures made of
composite materials. The middle-surface is at differ­
ent locations through the thickness in the thick and

u=v=w=o

1/6 P

t+-l mm----t

Fig. 11. Cantilever beam with ply drop-off: scheme and labels.

6.2.2. Stresses for a cross-ply [0°/90°] simply sup­
;,orted plate. The plate of Section 6.1.2 is now con­
'\Idered to show the distribution of the normal and
,hear stresses through the thickness of the layers in
the laminate. In particular the stresses are extra­
polated to the nodal points. The shear stresses are
'ldimensionalized by (Sij/P) x 10-2 and the normal
,tresses by (Sij/p) x 10-4

• The normal stress S:Co'( is
measured at the center of the plate (x = y = 0), while
the S'(: stress is measured at x = a /2; y = 0 and the
'".: is measured at x = 0; y = a /2. The results are
\hown in Figs 9 and 10. In all the cases the nonlinear
~tsults are smaller than the linear ones.

For the shear stresses, the Von Karman and the full
(jrccn-Lagrange nonlinear results obtained from
.:onstitutive equations are reported along with the
~u;ldratic shear stresses for equilibrium. It is easy to
note that, when the full Green-Lagrange strain tensor

is between the 3DLW~'~~1S
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in the thin part of the beam. Thus, obtaining an exact

solutio~ or a finite element approximated solution for

these irregular structures is a major problem. The use

of the 3DLW elements overcomes this problem be­

cause, in comparison to the two-dimensional plate

analysis, the position of the middle surface is irrele­

vant for the use of this element.

We start considering a beam without ply drop-off

to check the results obtained using the proposed

element by comparison between the analytical and

the finite element solutions. The cantilever beam,

made in material I (isotropic), is subjected to a

compressive load P = 100 N applied in the transverse

direction. In the linear case the Timoshenko beam

theory was used to obtain the analytical solution [14].

The maximum deflection obtained analytically is

equal to 2.5780 mm, while the finite element approxi­

mated solution is equal to 2.5336 mm. The nonlinear

maximum deflection obtained with the 3DLW el­

ements is equal to 1.8463 mm, showing that the

nonlinearities produce a reduction of the deflections.

To model the ply drop-off beam, one element

(number 2) was removed" as displayed in Fig. 11.

Again the Timoshenko results are compared with the

finite element ones. The analytical maximum deflec­

tion is equal to 4.8045 mm, while the finite element

result is equal to 5.0455 mm. It can be noted that the

3DLW result is larger than the analytical solution.

This is because the analytical solution assumes the

two middle surfaces coincident, which is not the case

in this example. With the 3DLW element we are also

able to obtain the nonlinear maximum deflection,

which is equal to 2.2006 mm showing a strong re­

duction with respect to the linear solution.

7. CONCLUSIONS

A previously developed element [11] has been ex­

tended for the geometrically nonlinear analysis of

composite laminated plates. Furthermore, the incom­

pressibility condition is imposed by a new method

that preserves the symmetry of the stiffness matrix.

Both the full Green-Lagrange strains and the Von

Karman strains have been considered. Post-compu­

tation of interlaminar stresses has been developed in

terms of second Piola-Kirchhoff stresses and Von

Karman strains along the lines of the procedure

presented in Refs [8, 13] for linear analysis. The

procedure can be used only with Von Karman strains

and fails if Green-Lagrange stra'ins are used. The

element has been validated by comparisons with

results from the literature and its versatility has been

shown by modeling a ply drop-off problem.
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