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Abstract—A three-dimensional element with two-dimensional kinematic constraints is developed for the
L geometric nonlinear analysis of laminated composite plates. The Newton-Raphson iterative method is
RS adopted to trace the nonlinear equilibrium path. Maximum accuracy in the computation of stresses is

Sy achieved by postprocessing the stress results from constitutive equations with the aid of the equilibrium
' equations. Some numerical examples are presented to demonstrate the efficiency and the validity of the
proposed element. A total Lagrangian description and the principle of virtual displacements is used to
formulate the equilibrium equations.

.

1. INTRODUCTION Unfortunately, the finite element implementation of
these theories is not simple because they imply a
iber reinforced composite materials are being widely  large number of degrees of freedom per node. In a
d in different branches of engineering because of  previous paper, Barbero [11] developed a new three-
*ar excellent mechanical properties [1]. These ma-  dimensional element for the linear analysis of multi-
:mals are formed by fibers of various kind (glass, directional composite plates, using the formulation
<wel, graphite, boron, etc.) surrounded by a matrix, of Ahmad er al.[12] and applying the kinematic
-ually a resin. Multidirectional (or laminated) com- constraints of layer-wise constant shear theories
~osites are formed by several laminae, each contain- (LCWS). The new element overcomes the problems
s¢a family of parallel fibers, but differently oriented linked with the two-dimensional LCWS theories,
om lamina to lamina. retains the precise calculation of stresses and
( )ncA of the weakest links in laminated composites has a physical interpretation of the degrees of
the interlaminar strength and so the estimation of freedom (DOF), the boundary conditions and stress
‘e nterlaminar stresses is important in ensuring the resultants. This element[11] was validated by the
‘_‘°¥”ly of the laminates. The single layer classical patch test[13] and, for linear analysis, was extended
“d shear deformation theories [2-4] based on a to the analysis of general anisotropic shell-type
':‘f“_'nuous displacement field through the thickness structures [14].
';:]:l‘d‘equate for predi‘cting global response charac- The laminated compo§ites are f:haracterized by
":mi:ls‘ such as max1mu.m deflections and funda- high vah.les of strength/stiffness ratio and then they
b r:iatural frequenmes.' The ﬁr§t-orc_ler z}nd can be hxg}x}y stressed and defqrmed to fully eXPIO}t
‘f:*ncd fl e; shear deformation theoqes yleld. im- the c.apablhty of thesc. materials. Therefore, 1t' is
eony t%e obal response over the classical laminate very important to consider change ‘of conﬁgurgtxon
ay Suagause the former ?.ccount for transverse dunng deformation by geometr'lcally non.lmear
“eomes b;“5d[5]- BOt%l classxca! and re'ﬁned plate theories [.15, 16]. The present study is an extension of
4 throy 3;‘ on a.smgle cqntmuous dlgplac.ement t'he previous analyges, to ‘mclude. geometric non-
“erlamin i the thickness give poor estlmatlon of lmearlt)", to d‘evelop its nonlinear finite elgment model
“des of f§ltresses. The fact that some 1mpor§ant ?u.ld to investigate the effects of georpetnc non?mear-
“ases mo:l ure are related to the mterl.ammar mes. on stresses gnd load—deflection behavior c?f
 mode] :Zateid resea}rch on reﬁl:led theoneg that ]amlpated comp951te plates. To deﬁqe the geomev..rlc
“ pregi e ayer-wise kinematics appropriately nonlinear behavnor', a tgtal Lagrangian formulation
Ct interlaminar stresses accurately [6-10]. is adopted, in which displacements are referred to

-
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the original cqnfiguration [17, 18]. The principle of
virtual displacements is used to obtain the equi-
librium equations.

To .overcome the problem of the ill-conditioned
equations shown by Ahmad et al. [12] and to reduce
the number of the DOF, the assumption of incom-
pressibility along the thickness is made. This assump-
tion is quite valid for a broad class of problems of
moderately thick multidirectional composites. A
method is developed to apply the incompressibility
using a constraint matrix, thus producing a symmet-
ric, non-singular, banded global stiffness matrix.

The distribution of interlaminar stresses obtained
directly by using the proposed element is layer-wise
constant when the Von Karman assumptions are
made. Quadratic interlaminar stresses that satisfy the
shear boundary conditions at the top and bottom
surfaces of the plate are here obtained by postpro-
cessing [19]. All components of stresses obtained at
the Gauss integration points are extrapolated to the
nodes using the procedure described by Cook [20].

Using the proposed element, it is possible to model
problems with variable number of layers and variable
thickness. Here some examples are presented to show
the efficiency and the validity of the proposed element
for nonlinear analysis.

2. FORMULATION

Let (x,y, z) be a stationary Cartesian coordinate
system. Consider a laminated composite plate com-
posed of n orthotropic laminae (Fig. 1). In each
lamina the fibers are parallel and arbitrarily oriented
with respect to the coordinate system. Assume that
the plate can experience large displacements and
rotations. We wish to analyse the equilibrium of the
plate, taking into account the geometric nonlineari-
ties.

In the Lagrangian description all variables are
referred to a reference configuration, which can be
the initial configuration or any other convenient
configuration. The description in which all the vari-
ables are referred to the current configuration is
called updated Lagrangian description and the one in
which all variables are referred to the initial configur-
ation is called total Lagrangian formulation, the

o
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latter one being used in this work. For th
completeness, the most important €quatio;
description are summarized below.

€ sake
ns of lh.‘l

2.1. Principle of virtual displacements

The equilibrium of the plate is expresséd u

"
principle of virtual work: M8 te

J d‘t,,(sde,jdVd=J‘ df?&u?dVd
Va Va

+f fiouids,. |,
Sq

Here and in the following the left subscripts ane
superscripts on a quantity are used to indicate
respectively, the configuration in which the quanyy,
occurs and the configuration in which the quantity
measured. In particular d indicates the deformeg
geometry and 0 the undeformed configuration,

In eqn (1):

47, are the Cartesian components of the Cauch,
stress tensor on the deformed geometry; '

a¢;; are the Cartesian components of the infinites:
mal strain tensor associated with the displacement
from the undeformed to the deformed geometry;

9 are the components of the externally applicd
body force vector; )

dfs are the components of the externally surface
force vector;

V4 is the volume measured on the deformed geome-
try;

Sy is the surface area measured on the deformed
geometry;

¢ indicates the variation, i.e.:

5o sl 6u,+6uj 1 @_{_%)
TVTT2\0% " 0%,) 2\0%; 0%/

(2

where ‘x; (i=1,2,3 x,=x, x,=y,x,=2z) are the
Cartesian coordinates of a point in the deformed
configuration and u; (i = 1,2,3 uy = u, u, =0, u3=")
are the displacements from the undeformed to the
deformed geometry (u, = x,— %) and du; is the ith
component of the virtual displacement.

o 2DOF

= 3 DOF

\§=—l

Fig. 1. Plate model, global and material coordinate systems.
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We remind that the Cauchy stress tensor is alwaxs
jarred 1O deformed coqﬁgu.ratl.on and is energeti-
_jly conjugate to the mﬁm’tesmal. strain tensor.
7 sation (1) can be solved directly if the deformed
Tixmetry is known. This is possible in linear analysis
i-cause we can assume that the deformed and unde-
“ymed geometry aré coincident. In large defor-
;mon analysis this is nf)t tltue.. To express eqn (1)
e @ known configuration it is necessary to intro-
e the second Piola-Kirchhoff stress tensor and
“ cnergetically conjugate Green-Lagrange strain

-mns0r.
- Total Lagrangian formulation

A way to solve the geometrically nonlinear prob-
-m is to write an approximate solution referring all
¢ variables to the undeformed geometry and lin-
. ,nzing the resulting equation. This equation can be
“ived iteratively using a suitable iterative method,
.«ch as Newton—-Raphson, Riks, etc.

The left-hand side of eqn (1) can be transformed
{17, 18]

f dTij6 deijdVd = j gsij5 geij dvy; 3
Va Vo

ANCre

gs[-‘ure the Cartesian components of the second
?‘,nl;i;-Kirchhoﬁ’ stress tensor;

gt,? are the Cartesian components
oicén-Lagrange strain tensor.

soth these quantities correspond to the deformed
onfiguration, but are measured on the undeformed
zometry. The components of the Green-Lagrange
«iess tensor are defined as

of the

d, _1
86 = 3ot j + oy + ok is ok 1) ©)

shiere the left subscript on the differentiation indi-
stes the following:

Ou;
U= m~ )
j

The right-hand side of eqn (1), becomes:

Jﬂ{:su;dso+J drvsubdV,=9R;  (6)
0 VO

"¢ “R is the external virtual work.

T4 .

~: 0:;btam the deformed geometry an iterative

. o0 must be adopted. With reference to the

‘f‘!allndh 1Ieratiop ‘e can write the following incre-
¢composition of the stress tensor:

oISy =78,+ oS- O]
Vs
* nalogously for the strain tensor:

m+1 —_
0 € =0€;+ o€ ®)
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The Green—Lagrange strain tensor 4¢; can be divided
into its linear and nonlinear part as:

0€ij = o€yt oMy 6))
where
1 .
o€y =300t + othi + S e ot T oUi 0 ;);  (10)

0'7ij=%0uk.i0uk.j' aan

The equilibrium eqn (1) at the (m + 1)th iteration,

by using eqns (3)—(11) and noting that
d d

OSij= Ocijrs Oerx (12)

becomes (ciro(’fiug 73 Qupar::riﬁ A-)

J 0 Cijrs 0€rs0 OeijdVO + j :l”Sij‘S o AV,
Vo Vo

=m+lR_j 0S50 0e;;dVy;  (13)
Vo

where we used the relation 8§ *'e; =8 (€.
Equation (13) cannot be solved directly and then a
linearization is needed by using the approximations
(v %‘H'\%@‘? el stCaiv)
OSii=0CierOers; 60£ij=6oe[ia (14)
obtaining the following approximate equilibrium
equation:

J 0 Cijrs 0€rs0 OeijdVO + J g's,.,é o4V
Vo ] .

="'+‘R—f mS,60e,dV,. (15
Vo

The right-hand side of eqn (15) represents the
“out-of-balance virtual work™ after the solution,
produced by the previous linearizations. Using the
Newton—Raphson iterative method the steps are re-
peated until the difference between the external and
the internal virtual work is negligible within a certain
convergence measure (here fixed at 1 x 107%).

3. FINITE ELEMENT DISCRETIZATION

3.1. Three-dimensional elements

Each layer of the plate is discretized by three-di-
mensional elements. The displacements can be writ-
ten as follows:

N N;

u 0 0
vr=210 N 0[{a} (16)
w 0 0 )

N;
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.2. ......
'01

®6
o5
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Fig. 2. Three-dimensional layer-wise element and its inter-polation functions.

where {6} = {4;,v;, w;}T, N is the number of the
nodes and N,= N,(,5,{) are the interpolation
functions equal for u, v and w. In the same way
the coordinates of a point of the plate can be written
as:

x) x[N 0 0
ye=2X|0 N o0 |[x} an
z) "'lo o N,

where {x;} ={x;, y;,z}T are the nodal coordmate
vectors (isoparametric elements).

The order of the interpolation functions N; along
the two coordinates of the surface of the plate can be
chosen independently from the order through the
thickness. Here quadratic interpolation functions are
used for both (u,v) and (x, y), while linear variation
is used in the thickness direction. The quadratic
element has 18 nodes. Nodes 1-9 have 3 DOF
(u, v, w), nodes 10-18 have 2 DOF (u, v), as shown in
Fig. 2. The transverse deflection w is constant
through the thickness.

The terms in eqn (15) can be rewritten as fol-
lows [18]:

I [} Cijrs 0€rs 60 eij d VO
"

= (L SBLIT o [CI5TB.] dVo>{5}

=K ){o}, (18)

J 6"Sij5 oty d¥s
Vo

= (JV sBy. 17 5] ¢[Bn.] dVo){é}
= :)"[KNL]{é}’ (19:

J. 080 0eydVy= I oI :)n{S} dvy=¢{F}, (u
Vo Vo

where

"[B_] is the linear strain—displacement transform
ation matrix;

7[By.] is the nonlinear strain—displacement trans
formation matrix;

7S] is the second Piola—Kirchhoff stress matnx.

m{S} is the second Piola—Kirchhoff stress vector

{8} is the collection of the nodal {J;}.

The order of geT is {o€yy,0€y»0€zs 208y 2ot..
2¢€,,}. The matrix §[B, ] can be divided into:

¢[BL] =Bl +Bul @

m.
04 x oNix
m,
u,y ONi.y
0
m.
Uy oNi.+5u, 0Ny,

m m
0t x 0Nz + 50Uz 0Nix

oBu]=

m m
Ou,x ONi,y + Ou,y ONi.x

Z)nv,y ON + Ov,zON
00,0 Niz + G0 . 0 Nix
Ov,x0N1y+ Ov,yON

where
[ ON iz 0 0 W
0 ON iy 0
0 0 0 11,
Bl=1 o N, oM
oN: 0 N
ON izy OM,z 0 A
and
00,0 Nix oW, xoNix
OU,yONi,y oW, 0Ny,
0 0

m
W, oNi; + 0w, 0 Niy
m
0 w,x ONi.z + Ow,z ONi.x
m m
oW coNy, +5w,, o Nix

22) and (23) th
bility conditic
¥l valid for a br
dw&y thick laminate

#cslacements with |
; 'm obtalned in

m nonlmear strain—dis

;1B
{U‘

[ =]

o

L(

—

The second Piola-Ki
.

o3

f1sl =




B

nctions.

515 [Bxe dVo>{5}

(19

T3S} aVo=3(F), @)

n-displacement transform-
strain—displacethgnt trans:
la—Kirchhoff stréés matrix;
yla-Kirchhoff stress vector,
f the nodal {3;}. ..o
{oexx, 0€yys 0€225 2, Qe
can be divided into:
B,,] + 5Bl “ ; ‘2"

N
0
0
0

Ni

iN izy

'.?'W,x oNl.x

W,y oNiy

0 o [

vONLZ +:)"w,zON’J'
Nz + 7w, oNix
oniJ’ +'6'W,yoNi,x
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., eqns (22) ahd (23) the third row represents the where
';compressibility condition (ye,, =0) that is an as-

mption valid for

a broad class of problems of

ioderately thick laminated plates. The derivatives of
-, displacements with respect to the global axes
", z) are obtained in the standard way as:

- m, m 7
g'u, x 0 v,x 0 w,x
m, m,
3'11 8 0 v,y 0 w,y
m
S'u’, :)"v,z oW, |

m, m, m
Uy "V "Wy

=0[J]—l mu," mv,ﬂ mW,,' , (24)
me

9

m, m,
ug "oy

.here the Jacobian matrix is defined as

=

0 -0 0
Xe Vi g
0 0 0,
X Yo Zal 25)
0 0 0,
L X0 Yo g

- nonlinear strain—displacement matrix {[By,] is
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8'Sxx :)”Sxy :)nsz
§IS1=| os,. &S, oS,
:)nszx :)”Szy :)nSzz
and
0 00
01=|0 o ol (29)
0 0O

The second Piola—Kirchhoff stress vector is
8} = {08k, 05,5 58225 55,2 085> 0.5y } T (30)

In eqns (29) and (30), 7'S,, is replaced by zero and
the other stress components are obtained by the
constitutive relation (31)—(38) because of the incom-
pressibility conditions and of the assumptions intro-

§Bx] {0} {0} duced in the following section.
¢Bn] = "B (26)
B . UL m {-U} 3.2. Constitutive equations
O O B o
For each layer, the second Piola-Kirchhoff stress
shere tensor components (,S;) and the Green—Lagrange
N 0 0 N, oNu.s strain tensoF components (y¢;;) are rela'ted by eqn (12)
MBul=|,N, 0 0 (N N and approximated by eqn (14). Equ‘at.lon §l2) can be
OLENLIT 07 Ly 0°"2y 07 Ny written for each layer in the multidirectional com-
oNiz 00 oN,, oV posite plate. Using the property (5% =,S% and re-
d ordering the terms of the ([S] and ,[e] as vectors, for
0 each layer in the plate, we can rewrite eqn (12) with
{0y ={0}. (27) respect to the material directions (1, 2, 3) as follows
0 [21}:
() [ k k ] [ )
18T oCh oClz oCl3 0 0 0 o€
0S% oCh oCh oCh 0 0 0 €5
p 0S% Lo oCh oCh oCh 0 0 0 P 0€%s L 1)
oS5 [ 0 0 0 ,LC4% O 0 2,€%,
oSt 0 0 0 0 oCls 0 20l
oS5 0 0 0 0 0 LCk 2,65
- J - - . J

The second Piola-Kirchhoff stress matrix is defined

E3

For a large range of problems we can suppose that
the axial deformation of segments normal to the
middle surface is zero during the deformation. Then

581 @ [0 we have that 4e%, =0 and the normal stress ,S%; is
JSl=| 0 =81 [0 | (28)  negligible (,S% =0).
0 O 78] Therefore we can write the strain-stress relation for
an orthotropic layer using the compliance matrix
—_— o[R%] as follows:
( o€ty ) oRY R 0 O 0 0 ( oSt )
0€%2 oRY,; oR;, 0 O 0 0 0S%
0 0 0 0 O 0 0 0

Y2 (=] 0 0 0 RW 0 0 | Yosh [ 32)

2¢fy 0 0 0 0 R 0 oSt

\2051‘2 ) i 0 0 0 0 0 oRés_ \oS'fz
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where the third row and column are deleted for the
previous assumptions.

The terms of [R] can be written in terms of
engineering constants:

R. Zinno and E. J. Barbero

The statement that the normals remain rPeng
lar to the middle surface after deformation ha:%’
deliberately omitted. This omission allows e ..
to experience shear deformations. Moreover i‘;““'
use one element for each lamina (or cluster o‘r la:t

1 vk 1 . :
R =—: Rb=—-2; (Rb=—; nae) we will omit the statement that the p
o= g 0T A remain practically straight after deformation, :;:'f_ '
ing the layer-wise model, where the rotati N
1 1 . . on of eac-
oRu=—=r; oRs==r: oRb=—; (33) lamina can be different from the other ones,
G G Using the rotation matrix [T*]:
cos? §* sin? 9% 0 0 0 2sin 9% cos 9*
sin? 8% cos? §* 0 0 0 —2sin 9% cos 9%
§ 0 0 1 0 0 0
= 0 0 0 cos9* —sin9¥ 0 SN
0 0 0 sin8% cos9* 0
i —sin 9¥cos 9% sin9¥cos9* 0 0 0 cos? 9 — sin? 9%

Inverting the expression (32) we obtain:

o oOh
004 005
o[C'fzal = 2 g
0 0
0 0
L

o O O o o ©

0 0 0 ]
0 0 0
0 0 0
k,C 0 0 (34
0 k2,C 0
0 0 0 Qs

The coefficients of [C,;]¢ can be written in function
of the engineering constants as

k
k — E} .
OQ”_I k Kk °
— ViV
k gk k k
0k = vipE3 vaEl
012 k <k k k°
1—viyy 1—vivy
Ek
k 2 . k — Ok — k.-
09n=T—"r7> 0Cha=Q4=G3;
1 —viwv
1221

oQgs = Q’§5 = G’fs; oQés = G'fz; (35

where EX, E% are the Young’s moduli along the
directions 1, 2; G%,, G%;, G%, are the shear moduli and
vk, and v¥, are the Poisson’s coefficients, respectively.

The shear correction coefficient k is included as
required by FSDT (k*=5/6)[11]. Using this ex-
pression for ¢[C,;] and fixing for €%, the value zero,
we can overcome large stiffness coefficients for rela-
tive displacements along an edge corresponding to
the plate thickness and then overcome the numerical
problem that can produce ill-conditioned equations
when the shell thickness becomes small compared to
the other dimensions in the element.

we can obtain the expression of o[C%,.] written witk
respect to the global system of reference:

o[Ch] = [T ,4[Clail [rq-". (3

Thus the relationship between stresses and stram
with reference to the global coordinate system. b
comes:

(3

o{S} = 0[Cis:1o {e}.

3.3. Application of the incompressibility constrain!

The incompressibility condition (o€-=0) &
resented by eqns (22) and (23) leads to a uniqu
transverse deflection w on each vertical to the M¢
plane of the plate (Fig. 3).

The stiffness matrices J[K.] and §[Ky.] ar ot
tained performing the integrations (18) and (19) :
standard 18-node element with 3 DOF per “Od“_'
where the interpolation functions N, in eqns (16) 2™
(17) follow the considerations previously describee
The global stiffness matrix obtained from the pre
vious matrices is singular because w is consé™
through the thickness. Therefore it is necessary '
reduce all the w-DOF on each vertical to 2 sings
DOF.
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. z,wW
Y.V

Y ¥,

ll?w
1

W|=W2=W3=W4=W
s 3 DOF
o 2 DOF

7y 3. Incompressibility condition and position of the
: master nodes.

At element level we choose the master nodes at the
~ottom of the element as displayed in Fig. 3. Making
‘s choice, it is possible to divide the nodal displace-
~ent vector into two parts. The first {5'} collects the
~dependent DOF (u and v of all the nodes and w of
‘¢ master nodes), while the second {62} collects the
<maining dependent nodal displacements. The con-
:uon of incompressibility can be introduced as con-
wraint equations using a suitable matrix [A] as

Sllows [22]:
6} ={{3a} = w1654,

The dimensions of the matrix [A] are 54 x 45
ecause all the DOF of the 18 nodes into each
“ment have to be connected to 45 independent
J0F. The constraint matrix [A] is constructed as

(39)

u, l 0 e 0
v o1 --- 00
w, 00 --- 0
Uy 00 0
09 0 0 s 0
Wy =100 00
Ug 00 00
Uig 00 00
Wig 00 00
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At element level we have, from eqns (15), (18), (19)
and (20):

_ _ 8!
oK ]+ :)"[KNL]]{§5 2;

The overlines indicate that the two matrices 7K, ]
and J[Ky, ] are reordered, interchanging the rows and
the columns of the original §[K,; ] and §[Ky.] to follow
the new order in {§}. The vectors on the right hand
side of eqn (41) also have to be reordered following
the new order of {4}.

Using the transformation (39), it is possible to
write:

}={m“{ﬁ} —pF)). @

S[KL] + Ky JI[AKS ) = (R} — §{F}}. @2

To obtain a symmetric coefficient matrix, we pre-
multiply both sides of eqn (42) with [A]":

AT, ]+ TRy D[A6 ")
=[AT{""{R}-{{F}}, 43)
or
B+ 5Ky {8} = {"* (R} ~§{F}}), (44)

where the element stiffness matrix has now the dimen-
sions 45 x 45 and the “out of balance virtual work”
vector has 45 independent components.

If more than one layer is present in the laminate,
another condensation procedure must be done for
each vertical connecting all the w-displacements to
only one master node (e.g. w-master node at the
bottom of the laminate). This has been easily

] ful\
00 0 v,
000 0
0 e 0
Uy
Uy
0 0 0 0
00 0
000 L) ( (40)
Uig
Uig
wy
00 0
010 0
000
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achieved through the usual element assembly pro-
cedure by assigning the same global node number of
the ‘master node to all the w-DOF located on its
normal [11, 13].

4. REFINED COMPUTATION OF THE STRESS

Using the constitutive eqns (12) and (14), it is
possible to calculate the stresses at the Gauss points
from the displacement field solution of the problem.
These stresses can be easily extrapolated to the nodes
by the procedure explained in Ref. [20]. The distri-
bution of &S, 35, and §S,, is linear through the
thickness while 4S.. and §S,. are layer-wise linear if
the full Green—Lagrange strain tensor is adopted and
Jayer-wise constant if the Von Kéarman approxi-
mations are made. Selective reduced integration is
used on the shear-related terms.

Quadratic interlaminar shear stresses that satisfy
the boundary conditions at the top and at the bottom
surfaces of the plate are obtained in this work for
laminated plates modeled with three-dimensional-
layer-wise (3DLW) elements. A procedure to obtain
an approximation of the shear distribution through
each layer with quadratic functions was proposed in
Ref. [19]. All the details about the method developed
for the linear analysis of plates can be found in Refs
[8, 11, 13]. Here we point out the procedure in nonlin-
ear analysis adopted to calculate the jumps in §S,,-
and §S,.. at each interface using the following equi-
librium equations:

0 gS.\‘:_ _ 0 gSr +a gsxy .
0% \a%  o% )
s,  (94S,  88S,
v Xy ¥ . 4
0% <6°x+6°y> “3)

To use the method proposed in Ref. [19] the shear
stresses (S,. and 4S,. must be constant through the
layer thickness. Thus, to obtain the refined compu-
tations of the shear stresses, the Von Karman as-
sumptions are made (see also Sections 5 and 6).

The computation of the second derivatives of the
interpolation functions with respect to the global
coordinate was explained in detail in Refs
[8,11,13,14]. The derivatives of the second Pi-
ola—Kirchhoff stress tensor components with respect
to °x and p can be obtained from the constitutive
eqns (38) using the derivatives with respect to °x and
% of the Green-Lagrange strain tensor components:

E. J. Barbero
g{g},z = O[nyz] g{e}’z;

g{g},y = O[nyz] g{e},y- (&

The derivatives of the Green-Lagrange straip .,
sor components, applying the Von Karman asyy,...
tions appear as: v

o 0w 0w ow
e = 5033 ¥ 503 0 &
o%u 0%
d [ — PR——
206"""—6 % a % +6 0x2
+ o*w ow ®w  ow
%290 oy 9% d oym‘ (4h.

with the other components obtained by suitabic
permutations. In particular the derivatives of .. arc
equal to zero.

Using the first and second-order derivatives of the
interpolation functions, it is possible to calculate the
second-order derivatives of the nodal displacements
and by the previous eqns (45) reach the values of the
jumps needed to trace the parabolic distributions of
the shear stresses.

5. VON KARMAN PLATE THEORY

The previous relationships are formulated in s
general way to be useful for the extension to shel
analysis. However, for the analysis of compositc
laminated plate the Von Karman theory can b
adopted to approximate the Green—Lagrange strain
tensor. In fact when the transverse deflection is no!
small (but comparable to the thickness of the plate:
and inplane displacement gradients are small, it »
possible to assume that the products and squares ¢!
the slopes of inplane displacements are small con
pared to unity and can be neglected.

The Green—Lagrange strain tensor reduces to:

d = 1 2, d. _— 1 2.
Oex.\‘ - u,x + Z(W,x) 3 Oey)' - v,y + Z(W,)') ’
& —0 da, .
o€z = 0’ 2 0€y: - U,: + w,y ’

[ P .
2 0€x: = u,: + w,.\:’

d, _ &
206 =Uy U F W W, (

The incompressibility condition leads to w,. = 0 an-

ge:: = 0'

Table 1. Material properties

Material I (isotropic): E = 20,000 N mm~2% v =0.3;

Material II: E, =25.0 x 10*Nmm™% E,=
G, =G;; =10 x 10'Nmm~% v,, =0.25.

2.0 x 10*°Nmm~2 G,; =4 x 10°Nmm~3%

" o
) 1
[ =
3
[
>
"

s l
#
u=V<=E
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BC1
0.5

Quarter of plate 0/90

l | J
0 10 20 30

W_ (mm)

Fig. 6. Simply supported square cross-ply plate: linear and
nonlinear central deflections.

2D-GLPT results and the 3DLW ones, we consider
a 4 x 4 x 2 mesh to model a simply supported angle-
ply plate subjected to a uniformly distributed trans-
verse load, as in the previous examples.

The material properties are the same as in the
previous example. The boundary conditions necess-
ary to obtain the 2D-GLPT solution are the following
(BC3):

v=w=yY,=0 aty=ta/2;

uy=wy=y¥,=0 atx=+a/2

These boundary conditions cannot be modeled- with
the 3DLW elements because fixing # = 0 through the
thickness, for example, will automatically fix to zero
the rotations along x (or around y) that are the ¥, in
the 2D-GLPT model. Observing Fig. 7, it is clear
that the 2D-GLPT solution obtained with the BC3

2.0 /L
/ ’
/7
1.5 // ’/,
/7
/7 )0
< 10 // P
= BC 2
—— BC1
0.5 - == 2D-GLPT ((BC3)
Full plate
45/-45
] | J
0 10 15 20
W, (mm)

Fig. 7. Simply supported square angle-ply plate: linear and
nonlinear central deflections.

1.0 —
e A = 0.1 Linear ,’
== == A = 0.1 Nonlinear

0.8 — == =A=0.8 Nonlinear

0.6 —

z/h

04 —

’
| ]
-5 -3 -1 1 3 s

Normal stress (xx)

Fig. 8. Isotropic square plate: through the thickness norm;!
stress distribution.

boundary conditions is between the 3DLW resuiis
obtained using the BC1 and the BC2 conditions. In
particular, with the BC2 conditions we have a platc
practically clamped, obtaining the stiffest structurc
In the linear case the two-dimensional solution ap.
pears the less stiff.

6.2. Stresses distribution

6.2.1. Normal stress S,, for a clamped isotropic
plate. Figure 8 shows the variation of S,./p through
the thickness of the isotropic plate described in
Section 6.1.1. The stresses are measured in the Gauss
point with coordinates x = 0.44717a, y = 0.052831a
and are adimensionalized with the relation
(Sw/p) x 1074,

The effect of the nonlinearities is to reduce the
value of the stress at the top and bottom surfaces and
to increase it at the middle surface of the plate.

|
]
, | !
0.8 |- : 90
U e 3 = 0.1 Linear
: w= = } = 0.1 Nonlinesr
0.6 — { = = = A = 2.0 Nonline¥r
<
N
1
04 — \ 1}
)
02 [}
\
\
\
0 | | | ]

30 20 -10 0 10 20 30
Normal stress (xx)

Fig. 9. Simply supported square cross-ply plate: throug
the thickness normal stress distribution.
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Fig. 4. Boundary conditions.

In the following some comparisons between the
results obtained using the full Green-Lagrange strain
«ensor and its reduction by the Von Karman assump-
uons are reported.

6. NUMERICAL RESULTS

In this section the formulation previously devel-
oped is used for the linear and nonlinear analysis of
beams and rectangular plates, to demonstrate the
oficiency and the validity of the proposed three-
Jimensional element. Table 1 contains a list of the
material properties considered here. Figure 4 contains
1 list of the boundary conditions considered in this
«ction.

6.1. Transverse deflections

6.1.1. Clamped isotropic plate. Consider a square
clamped isotropic plate (BCC boundary conditions)
of side a = 1000 mm, thickness A = 2 mm, and sub-
xcled to a uniformly transverse load p = ip,
o =1x10"*Nmm~2). The material is isotropic
{material I). Owing to the symmetry only a quarter of
the plate was analyzed by a 2 x 2 x 1 mesh of 3DLW
clements and the results are reported in Fig. 5, as a
function of the load parameter. Comparisons are

0.8 —

0.6 —

02 Isotropic plate

W, (mm)

s Q
amped square i 1sotropic plate: linear and nonlinear
central deflections.

"y

made with the analogous results obtained using the
two-dimensional Generalized Laminated Plate The-
ory (2D-GLPT) |8, 15], where the boundary con-
ditions were the following:

Up =Vp = Wy = wx '//}=0
at x=a/2 and y=a/2;
uy=y,=0 atx=0; v=y,=0 aty=0;

¥.(x, y) and ¥, (x, y) being the rotations about the y
and the x axes, respectively, and u,, v,, w, the
middle-plane displacements. The central transverse
deflections obtained by the proposed element com-
pare well with those of Refs [8, 15].

In particular, it is possible to note that the two-di-
mensional solution was obtained using the Von Kar-
man approximations and it is the same of the 3DLW
obtained using the full Green—Lagrange strain tensor.

6.1.2. Cross-ply [0°/90°] simply supported plate. A
simply supported square cross-ply plate under uni-
formly transverse load is analyzed. The geometry is
the same of case 6.1.1, and the load is expressed in
terms of the load parameter 1 using again
Po=1x10"*Nmm~-2,

The structure is composed of material II and the
BCI1 boundary conditions are used on one quarter of
the plate with 2 x 2 x 2 mesh of 3DLW. The com-
parisons, reported in Fig. 6 are made with the
2D-GLPT solution where the boundary conditions
were:

V=wo=Y,=0 atx=a/2

uy=wy=y,=0 aty=a/2
=y,=0 atx=0;
vo=l/ly=0 aty=0.

Note that the use of the 3DLW (full
Green—-Lagrange) elements or the 2D-GLPT (Von
Karman) elements predicts practically identical val-
ues for the central transverse deflection.

6.1.3. Simply supported angle-ply [45°]—45°]
plate. In order to make comparisons between the
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Fig. 10. Simply supported square cross-ply plate: through the thickness shear stress distribution (4 = 1.0).

6.2.2. Stresses for a cross-ply [0°/90°] simply sup-
worted plate. The plate of Section 6.1.2 is now con-
adered to show the distribution of the normal and
sear stresses through the thickness of the layers in
the laminate. In particular the stresses are extra-
wlated to the nodal points. The shear stresses are
«imensionalized by (S;/p) x 1072 and the normal
sresses by (S;/p) x 107%. The normal stress S, is
measured at the center of the plate (x =y = 0), while
the S,. stress is measured at x =a/2; y =0 and the
5. is measured at x =0; y =a/2. The results are
shown in Figs 9 and 10. In all the cases the nonlinear
wsults are smaller than the linear ones.

For the shear stresses, the Von Karman and the full
Green-Lagrange nonlinear results obtained from
«onstitutive equations are reported along with the
quadratic shear stresses for equilibrium. It is easy to
wote that, when the full Green—Lagrange strain tensor

is adopted, the presence of the derivatives of the # and
v displacements with respect to the x and y coordi-
nates, produces a linear variation of the shear stresses
through the thickness of each layer. Instead, using the
Von Karman approximations these stresses are layer-
wise constant. In any case the difference between the
two results is very small. Then, the constant distri-
bution of the shear stresses is used to be able to use
the method proposed in Ref. [19] and obtain their
parabolic distribution through the thickness.

6.3. Beam ply drop-off problem

To show the capability of the proposed element, an
example of a cantilever beam with or without ply
drop-off has been analyzed (Fig. 11). The ply drop-off
is an important problem in the structures made of
composite materials. The middle-surface is at differ-
ent locations through the thickness in the thick and

u=v=w=0

2
B
1
- A
6p ¥ l 1/6 p
4/6 p
[e—1 mm —»j

1 mm
4
3 7 /
4
m‘-’Q ly
~
4"&9 /
N
"\:,&&
”
ol

Fig. 11. Cantilever beam with ply drop-off: scheme and labels.
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in the thin part of the beam. Thus, obtaining an exact
solution or a finite element approximated solution for
these irregular structures is a major problem. The use
of the 3DLW elements overcomes this problem be-
cause, in comparison to the two-dimensional plate
analysis, the position of the middle surface is irrele-
vant for the use of this element.

We start considering a beam without ply drop-off
to check the results obtained using the proposed
element by comparison between the analytical and
the finite element solutions. The cantilever beam,
made in material 1 (isotropic), is subjected to a
compressive load P = 100 N applied in the transverse
direction. In the linear case the Timoshenko beam
theory was used to obtain the analytical solution [14].
The maximum deflection obtained analytically is
equal to 2.5780 mm, while the finite element approxi-
mated solution is equal to 2.5336 mm. The nonlinear
maximum deflection obtained with the 3DLW el-
ements is equal to 1.8463 mm, showing that the
nonlinearities produce a reduction of the deflections.

To model the ply drop-off beam, one element
(number 2) was removed, -as displayed in Fig. 11.
Again the Timoshenko results are compared with the
finite element ones. The analytical maximum deflec-
tion is equal to 4.8045 mm, while the finite element
result is equal to 5.0455 mm. It can be noted that the
3DLW result is larger than the analytical solution.
This is because the analytical solution assumes the
two middle surfaces coincident, which is not the case
in this example. With the 3DLW element we are also
able to obtain the nonlinear maximum deflection,
which is equal to 2.2006 mm showing a strong re-
duction with respect to the linear solution.

7. CONCLUSIONS

A previously developed element [11] has been ex-
tended for the geometrically nonlinear analysis of
composite laminated plates. Furthermore, the incom-
pressibility condition is imposed by a new method
that preserves the symmetry of the stiffness matrix.
Both the full Green-Lagrange strains and the Von
Karman strains have been considered. Post-compu-
tation of interlaminar stresses has been developed in
terms of second Piola-Kirchhoff stresses and Von
Karman strains along the lines of the procedure
presented in Refs [8,13] for linear analysis. The
procedure can be used only with Von Karman strains
and fails if Green—Lagrange strains are used. The
element has been validated by comparisons with
results from the literature and its versatility has been
shown by modeling a ply drop-off problem.
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