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Introduction
A large number of micromechanicalmodels have been

developed to estimate the' elastic properties of composite
materials (see Christensen, 1990; Mura, 1987; Nemat Nasser
and -Hori, 1993). However, few theoretical and experimental
results are available in the field of viscoelastic behavior of
heterogeneous media.

The first micromechanical model used to evaluate the
macroscopic viscoelastic properties of fiber-reinforced mate­
rials was the cylinder assemblage model proposed by Hashin
(1965, 1966), where the analogy between the elastic and the
viscoelastic relaxation moduli of heterogeneous materials with
identical phase geometry was presepted. This analogy is
known as the correspondence principle (Christensen, 1979)
and many authors applied it. For example, 'G;hristensen (1969)
proposed an approximate formula for the effective complex
shear modulus in the case of materials with two viscoelastic
phases by using the composite sphere model.
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Analytical Expressions for the
Relaxation Moduli of Linear
Viscoelastic Composites With
Periodic Microstructure
In this paper the viscoelastostatic problem of composite materials with periodic
microstructure is studied. The matrix is assumed linear viscoelastic and the fibers
elastic. The correspondence principle in viscoelasticity is applied and the problem in the
Laplace domain is solved by using the Fourier series technique and assuming the
Laplace transform of the homogenization eigenstrain piecewise constant in the space.
Formulas for the Laplace transform of the relaxation functions of the composite are
obtained in terms of the properties of the matrix and the fibers and in function of nine
triple series which take into account the geometry of the inclusions. The inversion to the
time domain of the relaxation and the creep functions of composites reinforced by long
fibers is carried out analytically when the four-parameter model is used to represent the
viscoelastic behavior of the matrix. Final(v, comparisons with experimental results are
presented.

Laws and McLaughlin (1978) estimated the viscoelastic
creep compliances of several composites by applying the
self-consistent method. They used Stieltjes convolution inte­
grals to formulate the problem in the Carson domain and a
numerical inversion method to obtain the solution in the time
domain. Yancey and Pindera (1990) estimated the creep
response of unidirectional composites with linear viscoelastic
matrices and elastic fibers by applying the micromechanical
model proposed by Aboudi (1991) to obtain the Laplace
transform of the effective viscoelastic moduli. Then, they
used Bellman's numerical method for the inversion to the
time domain. For different geometry of the inclusions, Wang
and Weng (1992) adopted the Eshelby-Mori-Tanaka method
(Mori and Tanaka, 1973) in order. to obtain the overall linear
viscoelastic properties of the corresponding composite mate­
rial.

Finally, it is possible to conclude that many micromechani­
cal models applied for the analysis of the elastic behavior of
composites have been extended to the viscoelastic case. How­
ever, no theory has been developed for linear viscoelastic
solids with periodic microstructure, even though many results
are available for the elastic case (Nemat-Nasser and Taya,
1981, 1986; Nemat-Nasser et aI., 1982; Nemat-Nasser and
Hori, 1993). For this reason, in the present paper, close-form
expressions in the Laplace domain for the coefficients of the
linear viscoelastic relaxation tensor of composite materials
with periodically distributed elastic inclusions and linear vis­
coelastic matrix are proposed. Moreover, the inversion to- the
time domain is carried out analytically for composites rein­
forced by long fibers and when the viscoelastic behavior of
the matrix can be represented by a four-parameter model.
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E*(S, x) = E E*(S, g) exp (i gx ) , (14)

1;-

±oo
ii(s, x) = E D(S, g) exp (igx), (12)

I;

-TransaC1ionsof the ASME

±oo
E( S, x) = sym( Vii( S, x )) = E E(S, g) exp (i gx ) , (13)

I;

Fig. 1 Geometry of the unit cell D

a(s,x) = SL(S)E(S, x) in D - f!, (8)

while the elastic inclusion is represented as

ii ( s, x) = sL' ( s) E( s, x) = L' E ( s, x ) in f!, (9)

and L' is the elastic stiffness tensor of the inclusion. In order
to simulate the inclusions inside the body, the equivalent
eigenstrain method will be used (see Mura, 1987; Nemat
Nasser and Hori, 1993). The idea is to apply an eigenstrain
on the homogeneous solid to obtain the equivalence between
the stress in· the homogeneous material and the heteroge­
neous one. Then, consider the Laplace transform of the
homogenization eigenstrain E* (s, x) which must be periodic
in x for the particular geometry of the problem and different
from zero only in f!. By using this technique, the inclusion
problem is reduced to a viscoelastostatic problem of an
homogeneous solid subject to a suitable periodic eigenstrain
E* (s, x).

Next, by using the correspondence principle for linear
viscoelastic solids (see Christensen, 1979; Aboudi, 1991), the
relation between the eigenstrain and the strain inside f! will
be introduced in the Laplace domain. Since the material is
linear viscoelastic, the Laplace transform of the actual stress
tensor a(s, x) inside the unit cell can be expressed in terms
of E*(S, x) and the Laplace transform of the actual strain
tensor E(S, x) in the following way:

a(s, x) = SL(s)( E(S, x) - E*(S, x)) for xED, (10)

while Eq. (8) is valid in D - f!. Then, assuming the body
forces equal to zero, the tensor a(s, x) must satisfy the
following equilibrium conditions:

diva(s, x) = ofor xED, (11)

where div denotes the divergence of a tensor field.
Since the object of this paper is the analysis of composite

materials with periodic microstruc~ure, the eigenstrain E(S, x)
simulates the presence of the periodic inclusions. Further­
more, in a solid with periodic microstructure, the boundary
conditions of the unit cell D are governed by the periodicity
in x of the microstructure and are satisfied by expanding the
displacements and the eigenstrain or their Laplace trans­
forms (ii(s, x) and E*(S, x)) in the following Fourier series
representation:

(3)

(7)

/(s) = i a
f(t)exp( -st)dt,

o

V TD = A( s) /2( A( s) + ji,( s) ) .

a(s) = sA(s)trE(s)/(2) + 2Sji,(S)E(S) = SL(S)E(S), (4)

E(S) = sO(s)tra(s)/(2) + 2s[(s)a(s) = sM(s)a(s), (5)

where the Laplace transform of the creep compliance M(s)
and the relaxation tensor L(s) satisfy the following relation:

- 1 - 1M(s) = zL(s)- . (6)
s

The Poisson ratio in the transformed domain v TD is
written in terms of A(s) and ji,(s) as

+ 2{ ((t - T)a-(T)dT. (2)
-a

then the Eqs. (1) and (2) can be expressed in the Laplace
domain as

<T(t) = /(2) { A(t - T)tre(T)dT
-a

For simplicity, and cons~stent1y with earlier work (Aboudi,
1991; Wang and Weng, 1992), only the set~:Qf linear viscoelas­
tic materials whose Poisson ratio remains;" constant in the
course of the deformation (i.e., v(t) = v = V TD) will be
considered. However, the. Poisson ratio of the fibers can be
different of that of the matrix.

More complex creep. behaviour of the matrix requires numer­
ical inversion to the time domain (Barbero and Luciano
1995). Finally, comparisons with available experimental data
obtained by Skudra and Auzukalns (1973) are presented.

Viscoelastic Constitutive Equations
The constitutive equations of a linear viscoelastic isotropic

material can be expressed in the time domain in the follow­
ing way:

+ 2{ JL(t - T)e(T)dT, (1)
-a

where a(t) and E(t) are the stress and strain tensor, A(t) and
jL(t) are the two stress-relaxation functions, the dot indicates
the differentiation with respect to time, and /(2) denotes the
identity second-order tensor.

The inverse relations of Eq. (1) can be written in terms of
the creep functions 8(t) and ~(t) as

E(t) = /(2) ft O(t - T)tra- (T )dT
-a

Let us assume that the relaxation and the creep functions
are smooth functions (Gurtin and Sternberg, 1962) and de­
note the Laplace transform of a function t(t) as

Periodic Eigenstrain in the Laplace Domain
Suppose that an infinitely extended linearly vis~oelastic

solid is represented by an assembly of unit cells and let each
cell D be a parallelepiped with dimensions aj in the direc­
tions of the coordinate. axes x j where j = 1, 2, 3 (see Fig. 1)
and let V be its volume. Then, let use denote with f! the
part of D occupied by the inclusions, with D - f! the part of
D occupied by the matrix, and with vf be the volume fraction
of f!. The constitutive equations of the linear. viscoelastic
matrix in the Laplace domain can be written by using Eq. (4)
as



(29)
±oo'

pes) = E t( ~)P'(s, ~),

~

the following expression holds:

E( s) = P( S) :L (S) :E*(S) . (30)

Note that Eq. (30) represents the relation between the vol­
ume average of the strain inside 11(E( S )) and the volume
average of the applied eigenstrain (E*( S )) in the transformed
domain.

the two approaches have been shown to be small in the
elastic case (Nemat-Nasser and Taya, 1981). Then, replacing
E*(S, x) with its volume average E* (s ), Eq. (24) becomes

e(s) = 2. £'PI(s,O:L(s)(gO(g)go(-g))E*(S), (26)
V ~ Vn

and

3

or

and by denoting

t(O = Ut ( gO;:))( gO~O), (28)

ahom(S) = sL(s):(Eo(s) + (p(s):L(s) - [(4)):E*(S)).

(32)

where a het indicates the stress in the heterogeneous mate­
rial. In the equivalent homogeneous solid, the Laplace trans­
form of the average stress a hom is

Overall Linear Viscoelastic Relaxation Tensor
In order to obtain the homogenization· eigenstrain which

simulates the presence of the periodic inclusions inside the
body, let us consider an applied average strain tensor with
Laplace transform EO(S). Under this condition, the Laplace
transform of the average stress in the inclusion is

ahet(S) = s1:(S):(EO(S) + p(s):L(s):E*(s)), (31)

Then, by imposing the equivalence between the stress in
the homogeneous material ahom and the heterogeneous one
ahet (equivalent eigenstrain method), the following average
consistency condition in he Laplace domain is obtained (see
Nemat-Nasser and Hori, 1990, for, the elastic case):

1:(S):(EO(S) + p(s):L(s):E*(s))

= L(s):(Eo(s) + (p(s):L(s) - [(4)):E*(S)), (33)

where L: is the elastic tensor of the inclusion and [(4) is the
identity fourth-order tensor. Observe that the tensor pes)
takes into account the geometry of the inclusion and can be
evaluated once and for all. Then from Eq. (33), the equiva-
lent average volume eigenstrain E* ( s) can be solved in terms
of the tensors 1:(s), L(s), pes), and EO for every S as

E*(S) = [((L(s) -i'(s)r
l
-P(s))L(s)r

l

eo(s).

(34)

Furthermore, using the linear constitutive equation in the
Laplace domain, the Laplace transform of the uniform over-

(25)

In a periodic microstructure, the equivalent eigenstrain is
not constant in 11. However, in order to solve the problem
analytically, an approximation of Eq. (24) is introduced using
a constant E*(S, x). While it is possible to use a polynomial
approximation for the eigenstrain, the differences between

where ~ = {~1' ~2' ~3} with ~j = 27Tnj/a j (n j = 0, ± 1,
±2..... j not summed, j = 1,2,3), i = FT and

_ 1
fi( s, ~) = - I. fi( s, x ) exp ( - i ~x ) dx, (15)

VD

~(S,O=~[gl8lfi(s,x)+fi(s,Ol8lg], (16)

1
E*(S,~) = -I. E*(S, x) exp (-i~x)dx. (17)

VD
Combining Eq. (10) and Eq. (11) gives

div(sL(s)(E(s, x) - E*(S,X))) = OinD. (18)

Then, by Eqs. (13), (16), and (14) in Eq. (18), the following
expressions are obtained:

-~. L(s)( ~ ® u(s, ~)) = i~· L(s)E*(s,~)

for every ~ =1= 0, (19)

where the symbols ® and · represent the outer and _the
inner product, respectively (Spiegel 1959). Thus, since L(s)
represents the Laplace transform of the visco~lastic relax­
ation tensor of the matrix, the coefficients fi (s, ~) are
obtained uniquely in terms of the E* (s,~) in the following
way:

u(s,~) = -i( ~. L(s) . ~)) -1 • ~. L(s)E*(s,~)

for every ~ =1= 0, (20)

and from Eq. (16), the Fourier coefficients of the correspond­
ing strain are

~(s, 0 = sym (g I8l (g. L(s) · g) -I I8l g):L(s)~*(s, 0

for every ~ =1= O. (21)
Finally denoting

pl(S,O = sym ( g I8l U· L(s) • g) -I I8l g), (22)

the actual strain inside the inclusion from Eq. (21) using Eqs.
(13) and (17) is

1 ±oo' _
E(S, x) = - E P'(s, ~):L(s)I. E*(s, x')

V ~ D

X exp ( - i ~ (x' - x ) ) dx' (23)

where a prime on the sum indicates that ~ = 0 is excluded in
the summation.

Since the aim of this work is to obtain the overall vis­
coelastic properties, the exact expression dfthe strain tensor
E(S, x) is not necessary. Only its volume' average on 11
denoted by (E(S)= l/Vn fn E(S, x)dx) is needed,

e(s) = 2. £'PI(S, O:L(s)( go( ~) )1. E*(S, x')
V ~ Vn D

X exp (-i~x')dx', (24)
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where Vn is the volume of the 'inclusion and



ba + b2 )
- jD

4c 2

ab + b2 )
+ 4c 2 jD

_ A( S3 S1 S4 S3 + S6 S1
sLi2(S) = Ao + 2/LLo - vf ~ - A2

!Lo !Log

a(SI + S3) S6 S4 - si a(S4 + S6) + 2bS8---- + + ------
2/LoC /L~g2 2/Logc

_ A (( S9 b)sLi2(S) = Ao + vf -~ + -2A S3
/-Log C!Lo

S9S6 - S8S7 b( S6 - S7) - bS8 - aS9

+ /L~g2 2c /Log

± 00'±oo'
SI = E t( g)gl, 32 = E t( g)gi, S3 = E t( g)g;

~ ~ ~

In particular, if the matrix is isotropic, denoting by g = gj
I g I , the tensor pes) is (Mura, 1987; Nemat-Nasser and
Hori, 1990)

1 ±oo' (
pes) = -:---() E t(g) sym(g®/(2) ® g)

!Lo s ~

- 2(1 ~ vo) ( gQ9 gQ9 gQ9 g)), (37)

where !Lo(s) and vo are the Laplace transform of the shear
modulus and the Poisson ratio of the matrix, respectively.
Hence, when the matrix and the inclusion are both isotropic,
Eg. (36) can be written:

sL*(s) = sAo(s)/(2) ® /(2) + 2S/LO(S)/(4)

-vA (sAo(s) - '\1)1(2) Q9 1(2) + 2{ SJLo(s) - JLI)1(4»)-1

1 ±oo' ((+--_--Et(g) sym(g®/(2)®g)
S!Lo( s) ~

- 2(1 ~ v
o

) UQ9 t Q9 gQ9 g) )rl

, (38)

all stress ao(s) in the unit cell is

sL*(S):EO(S) = sL(S):(EO(S) - vt€*(s)), (35)

where L*(s) is the overall relaxation tensor of the composite
material. By using Eg. (34) ~nd noting that EO(S) is arbitrary,
the following expression of L*(s) is obtained:

siCs) = siCs) - SVt( (i(s) -D(s)r l
- pes)rl

. (36)

where [Lo(s), Ao(s), /-Ll' and Al are the Laplace transform of
the Lame' constants of the matrix and the Lame' constants of
the inclusion, respectively. Then, defining the following series
Sf (with l = 1 to 9) as

± 00'

S4= Et(g)gi,S5= Et(g)gi,S6= Et(g)gi
~ ~ ~

where

(39)

± 00'± 00'

S9 = E t(g)glgi,
~

S7= E t(g)gig;,S8 = E t(g)glg;,
~ ~

the final expressions of the nonzero components of the
tensor L*(s) can be written in the following way:

- A A ( S3 S2 S5 S3 + S6 S2
sLil(S) = Ao + 2!LLo - vf ~ - A2

!Lo !Log

a(S2 + S3) S6 S5 - S? a( S5 + S6) + 2bS7---- + + ------
2/Loc /L~g2 2/Logc
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(46)

(a 3 - 2b3 - 3ab2)

8e 3

(41)

g = (2 - 2vo).

(45)

and

a = ~1 - ~o - 2~lvO + 2~Ov1

b = -~ovo + ~lV1 + 2~OVOV1 - 2~lvOv1

e = (~o - ~1)( - ~o + ~1 - ~ovo - 2~lvO + 2~Ov1

+ ~lV1 + 2~OvOv1 - 2~lVOV1)

where

The series S3' S6' S7 are given by Nemat-Nasser et al.
(1982) for several values of the volume fraction of the inclu­
sions. However, the data can be fitted with the following
parabolic expressions using a least-square method (Luciano
and Barbero 1994):

S3 = 0.49247- 0.47603vf - 0.02748vl

S6 = 0.36844 - 0.14944vf - 0.27152vl

S7 = 0.12346 - 0.32035vf + 0.23517vl. (47)

2S3 /\. -1 4S7 ]-:1
sL~4(s)=Ao-Vf ~ + (JLO-JLl) + A (2-2 )

~o ~o .. Vo

SL~6(S) = Ao - vf [-;: + (Ao -JLl)~lrl, (44)

(42)

a = ~1 - ~o - 2~lvO + 2vOv1

b = - ~ovo + ~lV1 + 2~OvOv1 - 2~lvOv1

e = (~o - ~1)( -~o + ~1 - ~ovo - 2~lvO

+2~OV1 + ~1V1 + 2~OVOV1 - 2~1VOv1)

d = b2j( ~oge2)

g={2- 2vo)

where ~o = SILo(S), Ao = sACs) and the series Sf are given by
Nemat-Nasser et al. (1982) and Iwakuma and Nemat-Nasser
(1983) for several geometries of the inclusions.

d(2(S7 + Ss + S9) - (S4 + Ss + S6))
+ . 4 +

and

S3 S2S1 (S6 S2 + S6 S2 + S6 S2)Sl
D = - -/\.-3- + ---------

~o ~bg

a( Sl S2 + (Sl + S2)S3) (SSS4 - S;)Sl + (S6 S4 + Sl)S2 + (SSS4 + S~)S3
+ /\.2 + /\.3 2

2~Oe . ~og

(aSS + aS6 + 2bS;)Sl + (aS4 + aS6 + 2bSl)S2 + (aS4 + aSs + 2bS~)S3

2~~ge

(b 2 - a2) (SSS6 - S;)S4 - slss - S~S6 - 2SSS9S7
+ /\. 2 (Sl+ S2+ S3)+ /\.33

4~oe ~og

(aSs + aS6 + 2bS7)S4 - (aS7 + 2bSs + 2bS9)S7 + (2bSs - aSs + 2bS9)Ss

+ 2~~g2e

-aS~ + (2bS9 + aSS)S6 a(aS4 + aSs + aS6 + 2(bS7 + bSs + bS9))
+ /\.2 2 + /\. 2

2~og e 4~oge

Undirectional Composite
," For. composite 'material reinforced by long circul~r cylin­
drical fibers, five series are different from. zero and, only
three are independent (Nemet-Nasser etal., 1982). If the
fibers are aligned with the Xl' then

Sl = S4 = Ss = S9 = 0

S2=S3,SS=S6. (43)

Journal of Applied Mechanics

Relaxation Tensor in the Time Domain
The viscoelastic behavior of the matrix material is ob-

-* /\. /\. [aS3 aS6 a2 - b2 ] tained from creep or relaxation tests. A creep test provides
SL 22(S) = Ao + 2~0 - vf - -/\.- + -/\.- + 4e 2 jD the strain as a function of time E(l) for a fixed stress level.

2~oe 2~oge The matrix is said to be linearly viscoelastic if the creep
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denominator is larger than the numerator's for all the coeffi­
cients in the relaxation tensor.

After substitution of the four parameters in Eq. (49) by
numerical values, the expressions of the coefficients can be
easily back-transformed analytically into the time domain by
standard techniques (Ogatha, 1987). Therefore, each of the
coefficients of the relaxation tensor in the time domain is
given by a finite sum of exponential terms with real coeffi­
cients and real-time constants.

Transversely Isotropic Material
Because of the particular geometry of the microstructure

(a square array of cylinders, see Fig. 1) used to obtain Eq.
(47), the relaxation tensor L*(t) for unidirectional composite
represents an orthotropic material with square symmetry. In
the case considered in the previous section, the directions x 2

and x 3 are equivalent and the relaxation tensor is unchanged
by a rotation about Xl of n7T/2 (n = 0, ±1, ±2 ... ). This
implies that only six components are required to describe
completely the tensor.

In order to obtain a transversely isotropic relaxation tensor
C* (t), equivalent in average sense to the relaxation tensor
with square symmetry, the averaging procedure proposed by
Aboudi (1991) is used. Then, the following expressions are
obtained explicitly in terms of the coefficients of the tensor
L*(t) described in the previous section:

Cil(t) = Lil(t)

Ciz(t) = Liz(t)

311
Ciz(t) = - L*zz(t) + - L*z3(t) + - L~(t)

4 4 2 44
131

Ci3 ( t) = - L*zz( t) + - L*z3 ( t) - ~L:J.. t )
4 4 2 4't-

CUt) = I4r(t)
b6 f&

GJt) = 2(~~z(t) -~~3(t)). (52)

T~\.s -t-;~Vl5fe{' \Vl a.*iO"1 c..altt \?.e ar.r
'

\E:'cL
a,( Sv IYl t~e. LQ<(? (<a.C e... do\v(~ \V) ·
Comparisons With Expe~imentalResults

Comparisons with experimental results are presented in
this section. Skudra and Auzukalns (1973) measured the
creep response E(t) = Ell(t) of a glass fiber-reinforced com­
posite with a fiber concentration vf = 0.54 at three levels of
tensile stress (a = all = 529 MPa, 441 Mpa and 337 Mpa).
They represented the viscoelastic behavior of the ED-6 resin
with the four-parameter.model, usint the following set of
material constants: E e = 3.27 GPa, 1J. = 8000 GPa* hr, E V

= 1.8 GPa, 1Jv = 300 GPa*hr and Vo = 0.38. On the other
hand, the elastic properties of the glass fibers are VI = 0.21
and E = 68.67 GPa.

The analytical expressions in the time domain of the
coefficients of C*(t) are obtained back transforming analyti­
cally Eqs. (44) after substituting Eq. (50) and (51),

Cil(t) = 37.081 - 0.000000000378e-o.0186t

+0.000000003.24e-o.01765t + 1.790e-O.01548t

~O.0000000001973e -O.00014875684943196t

+0.00000000164e -O.000144t + 1.1068e -O.00013470t

- 0.6017e -o.oo86t sinh(0.00851t)

+ 1.92ge -o.oo8654tcosh(0.008511t)

(50)

(51)

" Eovo
"-0=------­

(1 + vo)(l - 2vo)

" Eo
J.to = 2(1 + vo) .

Introducing these properties into Eq. (45), the coefficients
of the relaxation tensor are obtained as rational functions of
the Laplace variable s. The order of the polynomial in the

6

M(t) = ~ + -"t_ + _1 (1 _exp(- tEV)), (48)
EeJLM E V JLv

wher~ E e =1= EM (see Fig. 2). The effective relaxation modu­
lus E is obtained from. the creep compliance using the
following relationship: .

sL(s)sM(s) = LM = 1,..

Then, from Eq. (48), the effective relaiation modulus is
obtained as

" " E e1J M ( E v + 1J Vs ) s
Eo = (49)

EeEV + (E V1JM + E e(1Jv + 1JM))S + 1JV1JMS2 •

The Lame' properties are obtained from Eq. (49) as

Fig.2 Representation of creep data

primary secondary time

1/~

compliance M(t) is independent of the stress level. In this
case, it is possible to write:

E(t) = M(t)a.

A relaxation tests provides the stress as a function of time
a (t) for constant applied strain, as

aCt) = L(t)E.

High-temperature secondary (steady-state) creep data of
metals (used in metal matrix composites) are commonly ap­
proximated by the Maxwell model (Flugge, 1967). The creep
compliance of the Maxwell model, which~ is a series spring
dash-pot system, is .':

1 t
M(t) = --xi + -xi'

· E JL
\\1\fe~~ ~

where JLM is the!slope otthe1econdary creep data (Fig. 2)
and EM represe~s both the elastic modulus E e and the
effect of all primary creep deformations lumped at time
t = O. The four-parameter model is used when a better
representation of the primary creep data is desired. The
four-parameter model has been used also by several authors
(Skundra and Auzukalns 1973, Yancey 1990) to represent the
viscoelastic behavior of polymer matrices. The model is ob­
tained by adding a Kelvin model (also called Voigt model,
which is a parallel spring dash-pot system (Flungge, 1967)) in
series to the Maxwell model. The resulting creep compliance
is
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500

Vf=0.45

--t----j-t----t-.--~_t_______+_____--+------+----+-~- j

600
2
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Fig. 3 Coefficient C~2(t) of the relaxation tensor

The interaction effects between the constituents and the
geometry of the inclusions are fully accounted.

Fig. 4 Comparison with experimental results of axial' creep re­
sponse
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A typical plot of a coefficient of the equivalent trans­
versely isotropic relaxation tensor C*(t) is shown in Fig. 3 for
several values of the fiber volume fraction. Comparisons of
the predicted strain with the experimental data from Skudra
and Auzukalns (1973) are shown in Fig. 4.
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Conclusions
Analytical expressions for the Laplace transform of the

relaxation· tensor of composite material with general type of
elastic inclusions or voids with periodic microstructure and
linear viscoelastic matrix are presented. The Laplace trans­
forms of the relaxation moduli are inverted analytically to the
time domain for the case of long fiber-reinforced composites
and when a four-parameter model is used to represent the
viscoelastic behavior of the matrix. It is worth to noting that
good agreement with available experimental data is obtained.
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Eq. (44) should read
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Eq. (52) should read
C7;I(t) = Lil(t)
C7;2(t) = Li2(t)

C;2(t) = lL;2(t) + ~L;3(t) + ~L:4(t)

C;3(t) = ~L;2(t) + lL;3(t) - ~L:4(t)

C7;6(t) = L~6(t)

CJ4(t) = t (C;2(t) - C;3(t)) = l (L;2(t) - L;3(t) + 2L~(t))

1

(44)

(52)


