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data while u~"'t was adjusted to fit the calculated Tsai-Wu curve (dotted lines in
Figure 4) well to the experimental strengths at a = 111, 3/1 and 7/1. Therefore,
the estimated compressive fatigue strength under cyclic loading is usually dif

ferent from the tensile fatigue strength.
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ABSTRACT: An analytical approximate model, leading to a closed form solution, is
presented to account for buckling mode interaction in composite I section columns. Three
buckling modes are considered in the analysis: a global mode (Euler mode about the weak
axis); a primary local mode (rotation of the flanges and bending of the web); and a second
ary local mode (bending of the flanges), which are modeled using analytical functions and
four degrees of freedom. The fundamental state is shown to be linear and the three critical
states for the isolated modes are found to be stable symmetric bifurcations. Mode interac
tion analysis in terms of the amplitudes of first order fields is carried out, for the first time,
for prismatic sections ofcomposite material. The tertiary (coupled) path involves coupling
between the two local modes and it describes the sensitivity to imperfections of the buck
ling behavior of the composite column. A salient feature of the model presented is the
closed form of the resulting solution, which enables the designer to easily perform
parametric studies. Also, this is the first buckling mode interaction study for thin-walled
composite columns. Numerical examples are presented to validate the results and to show
the influence of the geometry and properties of the composite on the interaction phe
nomenon.

INTRODUCTION

F IBER REINFORCED PLASTIC (FRP) columns are used for civil.engineering con

struction when corrosion resistance or electromagnetic transparency are re
quired. Due to their light weight, thin-walled FRP and Metal Matrix Composite

(MMC) sections are considered for space applications and as stiffeners for air

craft structures. In all these applications, the behavior under compressive loads
may be very important.
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DISPLACEMENT FIELD

. . (n1l"x)~ = y SIn q3 SIn -/-

v{ = -y(l - cos q3) sin1 (n;x)

The second term in u{ is a correction to account for Bernoulli hypothesis.
Next, a primary local mode is described by a rotation q3 of the flanges and

bending of the web as a plate. The displacements of the flanges are

(2)

(3)

(1)

(4)

x
ur = ql I

v{ = q2 sin (r:)

. (1I"X)wr = q2 sIn T

X 11" (1I"X)u{ = q11 - 1 yq2 cos' T

and in the flanges

Figure 1 shows the convention for local coordinates and displacements adopted
in this work. The three modes considered in the analysis are depicted in Figure
2, and are represented in analytical form in this section. Figure 3 shows the
degrees of freedom required to satisfy kinematic and compatibility requirements.
A global mode is assumed to produce the following displacements in the web:

interaction leads to an imperfection insensitive problem (Barbero, Raftoyiannis
and Godoy, 1993).

All previous studies make use of numerical methods (finite strip or finite ele
ments) and are oriented to metal structures, in which the material is assumed to
be homogeneous. In the present work, a simplified model is presented, based on
analytical functions, which can be applied to laminated, fiber reinforced compos
ite materials. The general framework adopted is the theory of elastic stability for
discrete systems, and the interactive buckling approach of Reis and Roorda
(1979). Three modes are included in the analysis. It is shown that the resulting en
ergy is doubly symmetric with respect to the global and primary local mode;
however, it is not symmetric in the secondary local mode. Thus, the second order
fields do not vanish and could be computed. However, the present analysis is re
stricted to the first order interaction, as in the works of Sridharan and Ali (1985).

I

I

~

Recent studies (Barbero and Tomblin, 1992, 1993; Tomblin and Barbero, 1993)
reported experimental procedures to determine: (a) local buckling behavior of the
section, (b) global buckling loads, and (c) reduction of failure load in the in
termediate region between short and long columns. Analytical models to predict
the buckling loads of isolated modes (local and global) have been developed
(Barbero and Raftoyiannis, 1993a, 1993b) and the predictions agree with the ex
perimental data except in the intermediate region. It has been proposed that the
reduction in failure load with respect to the isolated mode prediction may be
caused by mode interaction. Whenever two modes are related to critical loads
that are close, there is the possibility of having interaction between them leading
to a new eq~ilibrium path (a coupled path). Moreover, depending on the nature
of the interaction, Supple (1967) found several possibilities, some of which are
responsible for lirastic reductions in the maximum loads that the system can
attain.

A review of early work on interactive buckling may be found in the book by
Thompson and Hunt (1973). Significant theoretical developments have been re
ported since then by Byskov and Hutchinson (1977), Hunt (1977), Reis (1977) and
Maaskant (1989). There has been a renewed interest in the field in the last ten
years, mainly in relation to the development of numerical methods. The applica
tion in the context of finite strip analysis has been pioneered by Sridharan and co
workers (see, for example, Benito and Sridharan, 1985a and 1985b; Sridharan
and Ali, 1985; and Sridharan and Peng, 1989), and Mollmann and·Goltermann
(1989). Casciaro et ale studied interactive buckling between global (also called
overall) and local modes in the context of finite elements (Casciaro et al., 1991).
Kolakowski (1987, 1989, 1993) used analytical methods for the solution of trape
zoidal columns. To the authors' best knowledge, the only prior studies related to
buckling mode interaction in composite structures are those of Stoll (1993) and
Sridharan and Starnes (1993).

Examples of interactive buckling in I section columns under axial load have
been presented in the literature for isotropic materials. The interaction ofa global
and a local mode was considered in Sridharan and Benito (1984), and Benito and
Sridharan (1985a and 1985b); they assumed a global mode and a local mode
(associated to mode 2 in this paper) and by proposing a second order field, found
a new mode containing only displacement in the flanges (mode 3 in this paper).
A displacement containing first and second order fields proved to be imperfection
sensitive. However, Sridharan and Ali (1985) found that the previous solution
contained an error of unknown magnitude; thus they proposed to include the
mode arising from the second order field as one of the principal modes partici
pating in the interaction. Hence, the problem solved in Sridharan and Ali (1985,
1986) was interaction between a global, a primary local and a secondary local
mode, in which only first order fields are included. Goltermann and Mollmann
(1989) addressed the symmetric bending of an I beam, again using a three mode
analysis based on the. first order fields, but also included the influence of second
order fields. The authors studied previously the two mode interaction of a pri
mary local and a global mode; however, the analysis showed that if the modes are
doubly symmetric then the second order contributions vanish and the first order
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Expansion of the trigonometric functions in q3 leads to for compatibility,

(nrx)( ~)~ = y sin -/- q3 - 6 (5) aWiI a~1ay y=o = ay y=o

1 . (nrx)vI = - 2yq~ Sln
2

-/-

the displacements of the web due to a primary local mode are assumed as

(6)
or else,

qs = ~(q3 - ~ ifJ) (9)

wi' = f(y)qs sin (n;x)
where the function employed to describe the variation of w.., with y is

J(y) = 4(~ - y)h h2

Finally, a secondary local mode is described in the form

(7)
This represents a relation between qs and q3 that can be substituted in w.

Compatibility of Vertical Displacements at the Junction

A displacement wt produces a geometrical end-shortening of the web, 0, as in
dicated in Figure 2. This shortening may be calculated as

I
h

1 1 awt 20=- -(-)dY2 y=o 2 ay

Compatibility of Rotations at the Junction

The degree of freedom qs has been assumed initially as independent of q3;
however they may be related if compatibility of rotations is enforced at the junc
tion between the flanges and the web. The rotation from the web may be
calculated as

This is a local mode, with the same wavelength as the primary local mode, and
is depicted in Figure 2. Benito and Sridharan (1985a, 1985b) identified ~is mode
as the mixed second order field in a two-mode interaction analysis of an I col
umn, and it was subsequently used by Sridharan and Ali (1985), and Benito and
Sridharan (1985a, 1985b). Notice that this new mode does not introduce any dis
placements or rotations at the junction between web and flanges.

Compatibility of Horizontal Displacements

The horizontal displacements of the web are

Since for Y = 0, M = 0, it is necessary to add 0 to the displacement field of
the flanges in order to satisfy compatibility of the vertical displacements.

Compatibility of Longitudinal Displacements

At the junction y = 0 both II{ and uj have the same value; thus, compatibility
is satisfied.

(10)~ = ~(qi - ~ ¢J) sin2 (n;x)
Integrating and expanding

(8)(
2Y)2. (nrx)

~ = q4 b sIn -/-

awtI 4 · (nrx)7iY y=o = qs Ii sm-/-

The rotation of the flange is given by

aMI ( 1) (nrx)ay y=o = q3 - 6 ifJ sin -/

wwIy=o = wr + Wil y=o = q2 sin (~x)
At the flanges, one obtains

VII = v{ + vI I = q2 sin (1f:)
y=o y=o

that satisfies compatibility.

! .
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Transverse Expansion of Flanges and Web

The large strains in the longitudinal direction produce a Poisson-type expan
sion of the flanges. If we consider that the Ny stress resultants in the flanges are
zero (Barbero, Lopez-Anido, and Davalos, 1993), then

Ny = A{"Ex + A{"Ey = 0

ment field in t~rms of four degrees of freedom, with contributions from a global
and two local modes of deformation.

In the web, these displacements are

. (1rX) (y r)( ~). (n1rx)w'" = q" sIn T + h Ii - h" q3 - 6" sIn -1- (14)

from which

where the A{j coefficients are defined in the constitutive relations of Equations
(21). If only the linear part in Ex is considered, then

E = - A{" au{ = _ A{" (ql + ~y ql sin (1rX))
y A{" ax A{" 1 P 1

I A{" (y 1r" • (1rX))vi = y ~dy = - A{l qt 7 + 2P ylql sm T (12)

that should be added to the displacement field of the flanges. Something similar
occurs in the web:

while, for the flanges one may write

(17)

(19)

(18)

(16)

(15)
x

u'" = q11

_ Arl Iy - il
Ai" 1 qlv'" =

w' . (n1fx)( ~) h(" ~)." (n1l'x) (2Y)" . (nrx)= YSID -I q3 -"6 - 12 q3 -"3 SID -I + q. Ii SID -/

X 1r (1rX)
uf = ql 1 - Y I q" cos I

f • (1rX) 1 " . " (n1rx) A{" [ ~ !(1rY)" . (1rX)]
V = q" sIn T - 2yq3 sIn -1- -. A~" ql I + 2 I q" sIn I

(11)A{"
---Ex

Ey
- A{"

or else

Af" auT ql Ai"E=---=---
y Ai" ax 1 Ai"

Summary of Displacement Field

Adding the different contributions, the complete displacement field is ob
tained as

from which

v'" 3 -
AT"

- AI" ql (13)

lUfAL POfENTIAL ENERGY OF TIlE COLUMN

With the displacements field defined in Section 2, it is possible to obtain the
membrane strains Ex, Eyand 'YJtY and the changes in curvature Xx, X, and XJtY using
the following nonlinear kinematic equations.

Ex = au + !(av)" + !(aw)"ax 2ax 2ax

E = av + !(au)" + !(aw)"
y ay 2 ay 2 oy

au ov owaw
'YJtY = oy + ox + ax oy

w'" = wi + w!, u'" = ui, v'" = vI

w' = ~ - 0., uf = It{ + i&, v' = v{ + ~ + ~

Substitution of each one of the components already calculated leads to a displace-

(20)

a"w
XX=-ox2

02W

X, = - oy



(21)
Mx = D 11 Xx + D 12')(y

Nq = A66'Yq

Ny = AufX' + A22f y
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(27)

(25)

(24)

f7 = (0., 0, 0, OJ

V=UW·b+Uf'_{)

ql = (iI A = - V1/VU , qi = 0 if i =1= 1

() = +Pql

J
' Jb/2

e.rm = i (N"Ez + N,E,. + N,,,:y,,,,)dxdy
x=O y= -b/2

I
, Ib/2

Uf: = i x=O y= -b/2 (Mx'Xx + My')(y + M""x.,.)dxdy

where

FUNDAMENTAL PATH AND DISTINCf CRITICAL STATES

The fundamental path is obtained from the equilibrium condition Vi = 0,
where ( ), denotes a derivative with respect to the q, degree of freedom. In the
present case only the first equation is relevant, leading to the linear fundamental
path

V334 , V2222 , V3333 , V4444 , V1334 , V2233 , V2244 , V3344

1 1 1
V[q"A] = A~:q, + 2 ~'jqiqj + 3! ~'j1cq,qA1c + 4! ~'j1c,q,qA1cq, (26)

v;, Vu, V22 , V33 , V44 , VU2 , V133 , Vl44 , V234

for i,j, k, 1 = 1,... ,4. It is important to notice that the coefficients are symmet
ric, and the only non-zero values are

An explicit form of V in terms of the degrees of freedom qi has been obtained
with the aid of the algebraic symbolic manipulator Maple V (Char et al., 1991).
A convenient form to write the resulting energy in terms of discrete generalized
coordinates q, is to express it as the Thylor expansion:

The total potential energy V is next obtained by adding Equations (22-24) in the
form

Interactive Buckling Analysis t;Jf Fiber-Reinforced Thin-Walled Columns

Finally, the load potential is computed as

1

I
I

I

I

I

I
I
I

I

I

I
J

I
I
I

I
I
I,
,

(22)

(23)
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a2w
Xq = -2 axay

Ufl = 2(U~ + U1:)

UW·b = lJ::b + Ubeb

1 JI JhlJ::6 = 2" x=O y=o(N"Ez + NyE,. + N""'Y,,,,)dxdy

1 fl fh
~6 = 2j x=O j y=o(Mx'Xx + My')(y + M""x.,.)dxdy
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where

Nx = Aufx + A 12f y

Mq = D66 XXY

My = D12Xx + D22')(y

where the membrane stress resultants are denoted by Nx , Ny and Nq ; the moment
resultants are Mx , My and Mq ; and the constitutive coefficients for a composite
material are readily obtained in the literature (Jones, 1975; Tsai, 1989). The strain
energy of the web may be written as

Notice·that these are not simply the von-Karman equations, but they also in
clude the nonlinear terms in ov/ox and ou/oy, as in the work of Benito and
Sridharan (1985a, 1985b). These are necessary to represent correctly the nonlin
earities, required for modal interaction analysis, at the junction of flange and
web.

The generat form of the constitutive equations, valid for a composite material
with symmetric laminates, are next written as

The strain energy stored due to deformation of the two flanges is

where
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The eigenvectors x: are normalized so that they satisfy the condition (Reis and
Roorda, 1979)

(31)

(32)

s = 1, 2, 3qi = x:~~

+ b123~1~2~3 + b223~~~3 + Cllll~1 + C2222~~

+ C3333~~ + Cl122~f~~ + C1l33~f~) + C2233~~~)

MODE INTERACI10N

111
W[~"~2'~3,A] = 2: (A - M)~~ + 2 (A - Ac2)~~ + 2 (A - A~~~

The mode i~teraction analysis is carried out here within the context of the
works of Reis (lCJ77) and Reis and Roorda (1979). With three modes included in
the interactive analysis, it is possible to consider the incremental displacements
q, in the form

where ~11 are the modal amplitudes of the displacement in the so-called first order
field (Benito and Sridharan, 1985a, 1985b). Notice that second order fields (hav
ing ~lI~tX1t, where xr are new modes emerging from the interaction) have not been
included in Equation (31). The reason for this is that mode 3 is the new mode that
would arise from a 2-mode analysis, and it has now been included as a competing
mode in the linear combination of Equation (31). A similar analysis is discussed
in Goltermann and Mollmann (1989).

Substitution of Equation (31) into the total potential energy leads to a new func
tional W in terms of the modal amplitudes ~11 as

(29)

(28)(V'i + AlIV'iltQA) xjlc = °
where there is no summation in s, All is the s-eigenvalue representing ·the critical
load of the system, and xj are the associated eigenvectors (isolated modes).

Because of the diagonal form of the coefficients, the eigenvalues result in

I V22 2 V33 3 V44Ac = ---x---=-,M= -~,Ac=-~
V 221QI V 331Ql V 441Ql

In the following we use the W-formulation where the energy is written in terms
of incremental displacements. This is a simplification with respect to the
V-formulation where the energy is written in terms of total displacements. How
ever, the use of the W-formulation does not introduce any new approximation to
the problem. Note that the same notation (q,) is used for the total and incremental
displacements. Only the end-shortening of the colwnn is different (by the additive
term Q1A) when measured in total or incremental displacement.

Furthermore, once the problem is cast in the· W-formulation,; the end
shortening .ql disappears from the analysis. The remaining generalized coor
dinates q2, q3' q4, are identical when measured as total or incremental displace
ments. Next,ql is substituted by Q1A + ql into V to compute the energy in
terms of the incremental displacements q,. The condition ofcritical state takes the
form

V'ilt QIt.xj~ = a.,
where

leading to

Xl = to, (V221Ql)-1/2, 0, O)

x2 = to, 0, (V331Ql)-1/2, O) (30)

bl23 = V234X}~~

bU3 = i(t>334 + A t>1334Ql)(xJ)2~

x3 = to, 0, 0, (V44IQl)-1/2)

The three critical states are bifurcations (since V,X1 Ic = 0) and represent sym
metric bifurcations (since V'iltX1xjxt Ic = 0). Using the general theory of elastic
stability (Thompson and Hunt, 1973; Flores and Godoy, 1992) it is possible to
show that all three bifurcations are stable, thus leading to rising paths with posi
tive curvature. If the eigenvalues of Equations (29) are well apart from each
other, it is possible to load the column up to the lowest critical load A: (s = 1.3)
and no modal interaction is present.. Notice that the proximity between different
eigenvalues depends on the geometry of the system and. the constitutive coeffi
cients of the composite material.

1
Cllll = 24 V2222(X})4

1 A

C2222 = 24 V3333(~)4

1
C3333 = 24 V4444(~)4

1
C1122 = 4 J?'2233(xl)2(~)2
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From Equation (36a), ~1 is obtained as a function of ~1' ~3 and then substituted
into (36b), leading to

1
C2233 = 4 V33....(~)2(.x:)2

1
CI133 = 4: V 2244(xl)2(.x:)2

(A - Ac%)~2 + bI23~1~3 + 2b223~2~3 = 0

(A - Ac~~3 + bI23~1~2 + b213~~ = 0

(36b)

(36c)

Notice that the only load-dependent coefficient is b 113• The following properties
of symmetry. of the modes are detected in W: where

~1(a3~J + {j3~3 + 13] = 0 (37)

that is, the energy is doubly symmetric with respect to the global and primary
local mode but it is not symmetric with respect to the secondary local mode.

Equilibrium Paths

Three equilibrium conditions are obtained from the first derivatives of Equa
tion (32) with respect to the ~., and they are

Finally, from Equation (36c) the following condition is obtained by substitution
of ~1 and ~3:

From Equation (37), ~3 results as

(38)

(39)

~ _ -~3 % v~~ - 4a 31'3

3 - 2a3

a2~~ + 11 = 0

- (bln)2 ,(33 == 2b223, 'Y3 E A - ~a3 ==

(33)

W[ - ~h - ~1'~3,A] = W[~h~1'~3,A]

W[ - ~h~2' - ~3,A] =1= W[~h~2'~3,A]

W[~h - ~2' - ~3,A] =1= W[~h~2'~3,A]

(A - A~) ~t + bt23~1~3 + 4Cllll~f + 2Cll11~1~~ + 2C1133~1~~ = 0
where

(A - Ac%)~2 + b113~1~3 + 4C1221~~ + 2C1133~2~J + 2Cll11~J~2 + 2b113~2~3 = 0

(34)

a2 == b223 - (b123)2 A ~3 At' 'Y2 == (A - A..3)~3

(A - A~~3 + bt23~1~2 + 4C3333~~ + 2C1133~J~3 + 2C2233~~~3 + b123~~ = 0

The solution~. = 0 for s = 1,2,3 satisfies Equation (34) and is the fundamental
path in the ~. - A space. The secondary path for the isolated mode A: is ob
tained by considering ~8 =1= 0 and the other two amplitudes equal to zero, in
which case the s-equilibrium equation leads to

~2~3
~1 = 1'1 = -b123 A - A~~8[(A - A:) + 4c&fU~:J = 0 (35)

Thus, ~1 results in the form

with ~1 given by

~j = 1'2
a2

(40)

(41)

(no summation in s)
Since all C&fU coefficients are positive, the path emerging from A: is stable sym

metric. The solutions with E. "* 0 (s = 1,2,3) represent the coupled paths re
sulting from interaction between modes. They are three cubic equations; however
it is possible to obtain a quadratic approximation from the following system.

This is a tertiary path that arises as a consequence of the interaction between the
two local modes.

The values of Eh ~2 and ~3 from Equations (38), (40), and (41) may be substituted
into Equation (31) leading to a coupled path in the form

(A - ~)~l + bt13~2~3 = 0 (36a)

q = (0, 0, xjE2, ~~3) (42)
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Results of the post-eritical path in terms of the mode amplitude ~1 [Equations
(41-42)] are presented in Figure 4. In the present analysis, ~1 is coincident with
the coordinate q3; ~2 with q2; and ~3 with q4. The amplitude in the primary local
mode q3 is plotted in Figure 4 versus the load. A secondary path with positive
curvature is stable, with the branch going up with the load. The tertiary path
resulting from mode interaction is unstable, with the branch going down with the
load, which is indicative of an imperfection sensitive structure. In the present
problem, the tertiary path has components in ~1 and ~3' starts at a new critical
state, and falls to lower values of the load with increasing displacements. This
new path is characteristic of imperfection sensitive structures, and should be of
great concern to the designer for this particular geometry, in which the modes are
likely to interact.

To investigate the influence of the material properties of the composite on the
coefficients of the nonlinear Equations (36) and (42), it is convenient to define the
ratio r = A22/Au . This ratio reflects the relative membrane stiffness between the
transverse and the axial directions in the column. It is assumed that the bending
relations are also given by r, so that D22 = rD11 • In the case studied in Figure
4, the value of r is 1/3. The coefficients b223 and b123 are the only nonvanishing
coefficients governing the shape of the tertiary path (interactive mode) of the col
umn. Therefore, the variation of these coefficients with the material properties is
very important. The coefficients b223 and bl23 are plotted in Figures 5a and 5b as

Figure 4. Secondary and tertiary path for a section with b = h = 6 in; L = 100 in. Equilib
rium paths in terms of the amplitUde of the primary local mode.

RESULTS

The model presented has been validated for I columns made of homogeneous
materials by comparisons with results obtained by Benito and Sridharan (1985a).
Furthermore, a finite element code is being developed by the authors for instabil
ity of plate assemblies made of composite materials (Godoy, Barbero and Raf
toyiannis, ·1993) and some comparisons for isolated modes are presented in this
section. ,

First, let us consider a column with the geometry defined by b = 6 in; h = 6
in; and material properties for the flanges given by Au = 893,500 lb-in;
A22 = 34~,OOO Ib-in; A12 = 130,800 lb-in; A66 = 113,600 lb-in; Du = 4,289
lb-in; D22 = 2,029 lb-in; D12 = 807.3 lb-in; and D66 = 641.5 lb-in. For the
web, the properties are D11 = 4,090 Ib-in; D22 = 1,863 lb-in; D12 = 731.6
Ib-in; and D66 = 596.1 lb-in. These properties correspond to a 6 X 6 X 1/4 in.
pultruded WF-beam (Creative Pultrusions, 1989). The length has been chosen so
that the two lowest criticall£ads are al.!!10st coincident. -:.[01)~

The fundamental path is Q 1A, with Q1 = 0.658537 X 10-5
, with the critical

loads given by Equation (29) as A~ = 30,021.9 Ib (global); M = 28,633.7 lb
(primary local); and A: = 142,422.6Ib (secondary local load). The associated
eigenvectors, Equation (30), are

Xl = (0, 4.5, 0, 0): global mode

x2 = to, 0, 0.322, 0): primary local mode

x3 = to, 0, 0, 1.369): secondary local mode

The finite element model developed by the authors (see Godoy et al., 1993)
yields values of critical loads of A~ = 11,375 lb for the primary local load; and
A: = 29,776 lb for the global mode. The eigenvector of the primary local mode
in the F. E. analysis is slightly different from the one assumed in the present
model, in the sense that the flanges not only rotate but also show some bending.
Bending of the flanges is incorporated in the present model into the secondary
local mode. The largest displacement component in the eigenvectors calculated
with finite elements are 4.48, 0.558 and 1.369 for the global, primary local, and
secondary local modes respectively. The global mode is in good agreement with
the present calculations (4.5); the differences in the local modes (0.322, 1.369)
are caused by slight bending of the flanges.

For the isolated modes,the post-buckling path is stable and the curvature of the
primary local mode, obtained using the general theory of elastic stability
(Thompson and Hunt, 1973), is 215,222; while a value of 160,406 is obtained in
the F. E. analysis. The differences between these are caused by slightly different
boundary conditions used in the F. E. model. The present analytical model
satisfies simply supported conditions at the ends, while in the finite element
model the end section may deform freely away from the Bernoulli assumptions.
These differences in curvature due to the boundary conditions have been
observed previously by Sridharan and Graves Smith (1978).
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a function of r. When the material properties change, different lengths have to be
considered to obtain almost coincidence between the primary local and the global
critical loads. Therefore, the following column lengths are used: L = 100 in. for
r = 1/3, L = 82 in. for r = 1, and L .= 60 in. for r = 3. The corresponding
global critical loads are 30,021 lb, 31,349 lb, and 30,020 lb. It may be seen in
Figure 5a that b223 displays a minimum value for r = 1, that is, the homogeneous
material; while b123 shown in Figure 5b. is constant with r. Since the coefficient
b223 depends on the applied load, three curves are shown in Figure 5a for loads
in the range of interest, that is for values less than or equal to the global critical
load. It is clear that the variation of the coefficients b223 and b123 is similar for
different load levels.

Finally, results are presented in Figures 6a and 6b for the tertiary path as a
function of r, with values r = 1/3, L = 100 in.; r = 1, L = 82 in.; and r = 3,
L = 60 in. Once again, the tertiary path, originated as a result of mode interac
tion, is unstable as shown in Figure 6a for the A - q3 plane, even though the
projection on the A - q4 plane, shown in Figure 6b, seems flat. The curvature
of the tertiary path, which is indicative of the sensitivity to imperfection, ch~nges
with the material properties (ratio r) as a result of changes in the coefficient b223 •

The material properties play an important role in the interactive buckling of the
I column. Conversely, it is possible to design· the material properties so as to
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Figure 5b. Influence of the material properties of the composite, r = A221Au, on the
quadratic coefficient b123•

Figure Sa. Influence of the material properties of the composite, r = A221Au, on the
quadratic coefficient b223•

Figure 68. Infllience of the material properties of the composite, r = A2z1A11, on the
tertiary path.
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Figure 6b. Influence of the material properties of the composite, r = A2~A11, on the
tertiary path.

avoid the occurrence of interaction for a given length. This is not possible in ho
mogeneoussections, and is one of the advantages of using composite materials.

CONCLUSIONS

An analytical solution for the interactive analysis of composite I columns has
been presented, in which the cooperation of all the walls of the structure is con
sidered. The framework of the analysis is the general theory of elastic stability.

The main hypotheses concerning the structure are uniform compression at the
ends of the colunm; simply supported boundary conditions; and that the flanges
and the web can freely expand in transverse direction to the applied load. The
displacement field assumed satisfies compatibility conditions at the junctions be
tween web and flanges. Local modes are assumed to have a constant maximum
amplitude in the longitudinal direction: this is not entirely correct, as demon
strated by Koiter, and an effect of amplitude modulation should be included in a
more refined model. Sridharan and Ali (1985) have included this effect into a
finite element analysis. The more detailed finite element code for composite
structures developed by the authors (Godoy et al., 1993) takes such modulation
ofamplitude into account automatically. In the present work, the resulting energy
has four degrees of freedom and is quartic; it requires eight coefficients to model

the properties of the composite material, namely All, A22 , A11, A6~h D ll , D21 , D 11

and D66 • The fundamental path is linear, with the quadratic form of the energy
(second variation along the fundamental path) being diagonal, the system leads to
three isolated critical states that are stable symmetric bifurcations. Mode interac
tion is based on a three mode analysis, and considered in terms of the so-called
first order fields (a linear contribution of the three isolated modes, in which the
coefficients of the contribution are load dependent). The coupled path is evalu
ated from a quadratic approximation to the equilibrium condition.

Since there is no previous work in this field reported in the literature, the only
numerical validation of the procedure was performed for uncoupled paths and us
ing a finite element solution developed by the authors. It is expected to further
validate these results·against new experimental work and also against numerical
results from the finite element model extended to account for interactive buck
ling.

Concerning the application to composite materials, it is possible to say that the
model takes into account symmetric laminates. One of the advantages of the pres
ent approach is that results can be obtained using a personal computer and are
computationally inexpensive; thus, parametric studies changing the material
properties, to obtain an optimum in terms of both cost and safety, are simple to
be carried out. Thus, it is expected that the model could be used as a useful tool
for the design of pultruded columns.
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