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Abstract-This paper presents a convenient fonnulation for the stability analysis of structures using the
finite element method. The main assumptions are linear elasticity, a linear fundamental path, and the
existence of distinct critical loads (i.e. no coupling between buckling modes occurs). The fonnulation
developed is known as W-formulation, in which the energy is written in terms of a sliding set of
incremental coordinates measured with respect to the fundamental path. In the presentation developed
here, the only ingredients required to carry out the analysis are the strain-displacement and the
constitutive matrices at the element level. The present fonnulation is compared with the so called
V-formulation, in which the displacements refer to the unloaded state. It is shown that under the present
assumptions of linear fundamental path, the advantages of the V -formulation are lost and both
approaches are similar. An example of a circular plate under in-plane loading illustrates the procedures.
Part II of this paper deals with the application to the post buckling analysis of plate assemblies made of
composite materials.

1. INTRODUCTION

The post·buckling analysis of complex thin-walled
components or structures requires knowledge from
two important fields: stability theory and numerical
techniques. The theory of elastic stability, as we know
it today, was first developed by Koiter [1] for contin­
uum structural systems, and was extended to discrete
system.s by researchers of University College London,
notably between 1965 and 1985. A summary of the
developments in structural stability for discrete sys­
tems may be found in the texts of Croll and
Walker [2], Thompson and Hunt [3], Huseyin (4],
Supple [5] and EI Naschie [6]. Basically, the main
ingredients of the theory include the identification of
critical states, their classification according to the
energy criterion, the study of the post-critical states,
and the sensitivity of the critical states.

Problems of elastic stability are essentiaIJy non­
linear, and an approximate analysis is required to
solve them. There are at least two ways to obtain the
SOlution: via approximate numerical methods (such
as continuation methods), or via approximate ana­
lYtical methods (such as perturbation methods). The.
latter have the advantage that they employ deriva­
tives of the energy functional at the critical state in
order to construct the post-buckling solution, and
these derivatives are also necessary to establish a
classification of the critical state itself.

Most of the applications of the theory to buckling
of structures have been made using analytical sol­
utions, or else Ritz approximations. Howtver,
engineering problems often require the modeling of.

I,

a rather complex geometry, and the finite element
method has been the most convenient tool to achieve
this in the last three decades. Thus, it is most desirable
to have finite element solutions adapted to the needs
of stability analysis.

It is difficult to identify which was the first work
to couple stability theory and finite elements, (for
example, Thompson and Lewis considered the
circular plate in Ref. [6]); but the works of Gal­
lagher [1]~ Ecer [8], Tong and Pian [6], Casciaro
et al. [10]. Casciaro and Aristodemo [II], Casciaro
el al. (12] made important contributions during the
19708. Koiter's methods were also employed to
study snap-through buckling (see Ref~ [13]).

The 1980s were largely dominated by continu­
ation methods, but it is important to highlight the
works of Batista and co-workers in Brazil (see R~fs

[14-16]). As mentioned before, attention was focused
on computational aspects arising from continuation
methods during the 1980s and the reader interested
in those topics may refer to the works of Bushnell
[17], Werner and Spence [18], Riks [19], Wagner and
Wriggers [20], Kouhia and Mikkola [21] and
Wriggers and Simo [22]. The use of finite strips
(Le. semi-analytical finite elements) in the general
theory of elastic stability was developed by Graves
Smith and Sridharan [23], Sridharan and Graves
Smith [24] and Sridharan [25, 26].

The most recent work on finite elements for post­
buckling analysis is reflected in the papers by Flores
and Godoy [27-29] for shells of revolution, Mirasso
and Godoy [30], who included unilateral constraints
into the formulation, and Mirasso and Godoy [31]
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for pseudo-conservative structural systems. Koiter's
theory has been adapted to a computer-aided
environment [32] and to the evaluation of snapping
problems [33].

A formulation based on the total potential energy
has been found very convenient for elastic systems,
and it has many advantages over other energy func­
tionals. Furthermore, the total potential energy has
also been one of the most popular principles for the
development offinite element approximations.

A first possibility is to employ the energy func­
tional V in its original form for the evaluation of both
primary and secondary path; this is called the V­
formulation. For limit point analysis, the text of
Thompson and Hunt [3] contains this approach,
while a formulation for bifurcation analysis was
presented by Flores and Godoy [28]. An advantage of
the V -formulation in problems with a non-linear
fundamental path is that one can choose one path
and follow it without having to calculate the others.
Applications on the V -formulation are in Refs
[27,29].

The derivatives of the energy functional V may be
simplified if the second derivatives, Vij' are written in
diagonal form. This is the so-called V~A transform­
ation, in which case the equations necessary to ident­
ify the nature of the critical state become extremely
simple. Such a transformation may be carried out for
systems with only a few degrees of freedom, but it
may be extremely expensive in systems with a large
number of unknowns, since the diagonalization is
achieved through the evaluation of eigenvalues and
eigenvectors.

A third transformation has been employed in the
literature, ,in which a set of incremental coordinates
is defined; this is called the W-formulation. These
coordinates retain the same direction as the original
ones, but are measured from the fundamental path;
they are known as sliding coordinates [3] and are
defined at each value of the load parameter. Most of
the work using finite elements in this field employs the
W-formulation (for example see Refs [7, 14,34]. The
W -formulation can only take into account bifur­
cation points, and a different approach should be
followed for limit points. Furthermore, it requires
the computation of the fundamental path for load
levels higher than the critical load, in order to
calculate the post buckling path. But if the fundamen­
tal path is linear, the W -formulation J!1ay be a
convenient choice, since the equations needed to
obtain the post-critical path are simpler than the
original V-formulation equations. The present work
is limited to linear fundamental path, and has been
developed within the context of the W -energy
approach.

Perturbation techniques have not been as popular
as other numerical techniques f<?r non-linear analysis.
The difficulties associated to perturbation methods in
finite element analysis (see Ref. [35]) seem to be the
complexity of the terms involved: for example, third

and fourth order derivatives of the energy functional
are three and four dimensional arrays. Thus, some
convenient organization of the procedure is required
to avoid dealing with such high order dimensional
arrays. Casciaro et al. [12] noticed that the symmetric
matrices 'I?f third and fourth order derivatives of the
energy were never required as individual quantities
so that· "~to compute and store them separatel;
would be just 'a sort of computational masochism".
Flores and Godoy [28] have also shown a way to
contract these three and four dimensional arrays into
matrices. Adequate for computer programming, their
approach has been followed in this work. The
notation commonly employed in finite elements has
been preserved, so that the basic ingredients are the
element matrices Bo, B1, and C as in the text of
Zienkiewicz and Taylor [36].

A second drawback is the poor accuracy that may
be expected if large displacements are required in the
post buckling range. Brezzi et al. [37] obtained theor­
etically the accuracy of a specific asymptotic algor­
ithm. The results of Flores and Godoy [29] show that
for thin shells, a second order perturbation analysis
is accurate only within the order of the thickness of
the shell. Thus, perturbation techniques are limited to
the initial post-buckling range. Still, the information
provided by such approach is valuable in at least
three ways: first, to produce a classification of the
critical state; second, to have a qualitative picture of
the post-buckling path; and third, to obtain equi­
librium states along the post buckling path from
which a continuation technique may follow. This
latter use is known as switching to a secondary path,
and it has been developed in the work of Riks [19]
and Flores and Godoy [29].

The above review shows the state of the art of the
confluence between finite elements and perturbation
techniques for structural stability. A formulation
using the W-functional, and restricted to linear fun­
damental path is presented in Sections 2 and 3 of this
paper, following the general outline of the work of
Flores and Godoy [29] in the V-formulation. An
advantage of this presentation is that it is fully based
on conventional finite element notation, and uses
contraction of third and fourth order derivatives of
W. The resulting expressions are easy to program,
and can even be employed on existing finite element
codes. A simple example is presented in Section 4,
to show the differences (and similarities) between the
V- and W-formulation for this class of problems.
Part 2 of this paper deals with the application of the

. present formulation to the analysis of plate assem­
blies (columns of arbitrary cross section, folded
plates, etc.) and including the material properties of
composites.

Notice that attention is here restricted to the
analysis of isolated modes of buckling (distinct criti­
cal loads). The case of compound buckling modes
(coincident or nearly coincident critical loads) will be
considered in a separate work.



(9)

1011

(lOb)

x [BTi(a)CB1 (a)] + 2[Bj; CB'~ (a)

+BT;(a)CB~]+ 4A[BTi(a)CB1 (q.l)

+BT;(q/)CB~ (a)]} dv

Wljk = f{2Bfi(c5)C[B~ + 2B1 (a) + 2A.B1 (qf)]

+2BT;(~k)C[B~ + 2B~ (a) + 2AB~ (ql)]

+[B~ + 2B;(a) + 2AB; (q.l)]TC2B·~ (c5k)} dv

(lIb)

Wlj = f([BJi CB~] + 2[B[i(c5)0' +4A 2[B[i(q/)

x CB1 (q/)] + 4

Wljk/ =4f{BJi(c5)CB1(c5/) +B[i(c5/)CB~ (c5d

+ BTi(~k)CB·{ (~/)} dv. (12b)

W[a, A]=(1/2)aTf[Bo+ B( (a) + 2AB. (q')]TC

x [Bo+ B. (a) + 2AB. (qF)] dva - AaTf. -(8)

Substitution of eqns (4), (6) and (7) into eqns (9)-(12)

leads to

The set of .derivatives of eq (5) are:

Derivatives of the total potential energy

Substitution of eqns (3) and (4) into eqn (5) leads
to the W functional, in terms of a

The above expressions for energy derivatives valid
(7) for any state (not only along the fundamental path)

are cumbersome. However, they become simpler

(6)

(5)

(4)

(2)

(1)
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(f = C£

Of; . ~
£f = - = 2B; (u.) .

.I oa. .I
.I

£; = {B~ + 2B~ (a) + 2AB~ (q.l)}. ,

The constitutive equations are

Derivatives of strain

The derivatives of the strain vector form a matrix
[f;l. Each column of that matrix may be written as the
derivative of £ with respect to a;:

The second derivatives of fi (of each vector) is a
matrix

where ~; plays the role of a Kronecker delta; in the
present formulation, as in Flores and Godoy [28], it
is a vector with all components set to zero except for
the ith component, which has a unit value. Then, £;

results in

where the load vector fis incremented by a single load
factor A.

£ = [Bo+ B. (AqF + a)](AqF + a). (3)

where C is the elasticity matrix, and (f the stress
tensor written in vector form.

Finally, the total potential energy V is

2. THE W-ENERGY FORMULATION

We shall next concentrate on a linear fundamental
path, for which QF(A) = AqF

and qF is the response in the fundamental path for

A=1.
The kinematic equations are next written in a form

similar to Zienkiewicz and Taylor [36], and yield:

Basic equations

Following Thompson and Hunt [3] in the W-for­
mulation we adopt a sliding set of incremental coor­
dinates a, which are measured with respect to the
single-valued fundamental path QF(A). Thus,
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..,:4

when evaluated at the fundamental path, in which
casea=O

Wyk[O, A] = f{BliCB{+2BF<b)0'

+4A l Bfi(ql)CB1 (ql)} dv,

to compute thif coefficient it is more convenient to
define the f~l1owing matrix:

where Ie-denotes evaluation at the critical state. From
eqn (lIe), this matrix may be written as:

but since we are considering a linear fundamental
path, non-linear terms in qF should be neglected.
Thus, Wij[O, A] reduces to

Df(x) = f {2BTi(bj )C[Bo+ 2AB1(q1)]x

+2BT;(x)C[B~ + 2AB1 (ql)]

+[Bb + 2AB~ (qf)]TC2B1 (x)} dv.
Then,

(16)

where u = Auo. The first term in Wij is the linear
stiffness matrix, K.o; while the second is usually called
the load-geometry or initial stress matrix, Ka

with

(11)

If C = 0 we are in the presence of a symmet­
ric bifurcation; while for C #= 0 the bifurcation is
asymmetric.

The load and displacements that define the post
buckling path are expanded using perturbation
analysis, and lead to

(13)
(18a)

(14)

The evaluated third derivatives of W reduce to

Wijk[O, A] = f {2BTi(b)C[B~ + 2ABt(q1)]

+ 2BTi(~k)C[B~ + 2AB'~ (ql)] dv

A suitable displacement component is here taken
as perturbation parameter s. If at (the first com­
ponent of a) has a non-zero component in the critical
mode, it may be chosen as a perturbation parameter;
otherwise we would have to choose a different com­
ponent of a. A convenient choice is to take the largest
component of x as perturbation parameter.

Before we proceed with the analysis, it is con­
venient to define asecond matrix Dq(x, x) as

(lIe) (19)
inally,

from eqn (12b) and (12c), eqn (19) results in:

Dq(x, x) =4 f {BTi(b)CB, (x)x + Bfi(x)CB{(x)

+ BTi(X)CB·~ (x)} dv. (20)

(12c)

~ will also need Wi; in the analysis:

\
3. STABILITY ANALYSIS IN .TERMS OF W

ccording to the general theory. of elastic stab­
[3], a critical (bifurcation) state sa.t~.sfies the foI-
ng eigenvalue problem: .

Symmetric bifurcation.

For C = 0, we have:

a(l)C=x.

(21)

(22)

e nature of the bifurcation depends on the sign
oefficient, defined as C = W(ik Xi X,i Xk . However, with a\2)C = o.

KTx = [Ko+ AK(1]x = o. " (15)
The second order terms result in

(23)
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s more convenient to Stability of the bifurcation state depends on the
coefficient W4

W4 = x TD2(x, x)x + 3xTD 1(x)a(2)C. (24)

where A C is the bifurcation load of the perfect system,
obtained from eqn (15), and ~' is the eigenvector from
the same equation. Notice diat s = at as in eqn (18).
In the presence o( an imperfection for which

le cril .;tate. From
written as:

(29)

where (.) denotes derivative with respect to €-, the
bifurcation is destroyed and leads to a non-linear
path with a maximum at A M, similar to a limit point.
The eigenvector of this new critical point is x M

" and
the associated displacement is aM. The coefficients on
the right hand side of eqn (28) may be obtained from
perturbation of the two simultaneous conditions of
equilibrium and stability, and the results are summar­
ized in the following sections.

Asymmetric bifurcation

Solution of the set of perturbation equations
lead to

(25)

(26)
xTDt(x)x Ie
2~TK(Jx

Asymmetric bifurcation

For C =F 0, we have

Higher order derivatives could be evaluated easily.

If W4 > 0 the symmetric bifurcation is stable, while
if W4 < 0 it is unstable. Finally,

(17)IX.

1B~ (qf)]

S'2B1 (x)} dv. (16)

sence of a symmet­
o the bifurcation is

that define the post
using perturbation

with q\2)C = o. The rest of the equations can be
derived similarily to the case of symmetric bifur­
cation.

A M(I)C = 2A (1)C

aM (1)C = a(l)C = x

€- M(3)C = 2.W4 •

W;x;

IX M(2)C = IX (2)CaM(I)C = a(l)C = x,

where

The first approximation to the imperfection sensi-
tivity relation is here given by .

A M(I)C = 0, A M(2)C = 3A (2)C

(
2 )1/2+

IX = + -- AM(I)C
- €-M(2)C •

Symmetric bifurcation

In this case the main results are

C
€-M(2)C=_._

Wi x;

where 1/2+ denotes the positive square root,

and the relation between A M and €- M results in first
approximation as [3]

AM = AC + AM(I)CS +!A M(2)CS2 +tA M(3)CS3't"

4. INFLUENCE OF IMPERFECTIONS

The previous analysis concerns what is known as
the "perfect" system under one load parameter A.
But structural components used in practice usually
have various forms of imperfections, such as devi­
ations from the as-designed geometry, the position of
the loads or the properties of the material. To study
the influence of such imperfections, Koiter [1] intro­
duced a new parameter €- into the energy, and focused
his attention to the sensitivity of the maximum load
with respect to this parameter €-. Thompson and
Hunt [3] studied the effect of €- using perturbation
techniques; and Flores and Godoy [28] have followed
this approach using finite elements in the V-formu­
lation. This section deals with the finite element
implementation of imperfection sensitivity in the
W-formulation.

Following Thompson and Hunt [3], the same par­
ameter used for the perturbation analysis of the
post-buckling path is here adopted for imperfec­
tion sensitivity. Thus, the eigenvalue, eigenvector,
associated displacements and imperfections may
be written as ' ..

(I8b)

(21)

(22)

(19)

~onent is here taken
f al (the first com­
ponent in the critical
turbat; ,arameter;
lose a .;rent com-
is to, take the largest

t' parameter.
analysis, it is con.'

ix D~(x, x) as

19) results in:

(' )CB'~ (x)} dv. (20)

-,',-- ---------------

c)x (23)

IX =! (_6_)2
/
3A M(2)C.

2 €-M(3)C

It is clear from the above results that the only new
(28) term that needs to be computed in the first order
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approximation is Wixilc. The vector Wi depends on
the specific imperfection considered.

The constituti'1e equations assumed for the elastic
plate are

5. ANALYSIS OF A CIRCULAR PLATE (f = Cf.

An interesting (but yet simple) example to illustrate
the use of the W-formulation solved by finite el­
ement-like approx~mations is the circular plate. This
problem was solved by Thompson and Lewis [38] and
Pandey [39], and will be studied in this section as a
two degrees-of-freedom problem. The geometry of
the' structure is given in Fig. I.

with (J = {N" No, M"Mo}

[

C vC

c= vC C
o 0
o 0

o
o
D

vD
v~ ]

Basic equations

For a strain field defined by

and a displacement field given by

u={w,ii}

the kinematic relations are

(. = Lou + Ltu

Ritz approximation in finite element notation

To highlight the main features of the formulations
developed, a simple displacement field is assumed in
this section to achieve discretization of the problem.
The approximation considers only the shortening of
the plate and the transverse displacement deflecting in
a half wave configuration. But the analysis is carried
out using the present notation in order to show the
main features of the W-formulation. Thus

where u = 4>a

I
(

1

o

'ltr

cos 2R

where u = {ai, a2} and 4> is the matrix of interp­
olation functions, given by

This is not the exact solution considered in Thomp­
son and Hunt [3], but it is a good approximation to
obtain a numerical approximation.

The B matrices (containing the strain-nodal
displacements relations) result in

I
0

R
I

0 -
B1 == L,4>'= R

( )'n'" nr
- 2R cos 2R 0

~
n nr

0
,.

--sin- ,
2Rr 2R

I
u

ho~ I

;!~
I (1t . 1tr y

~Fi I Af :2 2R sin 2R a, 0
rv Iw ~r B, == L I 4> = 0 0

I I
R 0 0

Fig. I. Geometry of the plate considered in the example. 0 0

0
o()

I ow o()or --- 0

I
2 or or

0
0 0r

Lo= 02( ) L 1 =
or2 0

0 0

1o()
0

r or 0 0

l'

________l
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~he elastic

mulations
!sumed in
!problem.
ttening of
~ecting in
is carried
tshow the

.f interp-

I

tThomp­
~ation to

t
in-nodal

, ,

The linear stiffness matrix, Ko, has the explicit form

Ko=[:2("~,Y4(VO+1.191) 0]
, 21tC(1 + v)

and the load" vector may be written as

f = {O, 21tR}

for a unit value of A.
Finally, the load-geometry matrix K(1 is

K = [5.447 N~ OJ
(1 ° ° ",

Fundamental path and critical state

The fundamental path results from the linear equi­
librium condition

leading to qF = {O, R/C(l + v)}.
The first critical point may be obtained from the

linear eigenvalue eqn (15), and yields

D 4(v + 1.191)

R2 1.41

and

x={I,O}.

Analysis using the W -formulation

First, we study the nature of the critical state.

so that we are in the presence of a bifurcation. The
D1(x) matrix is evaluated as

and the matrix of contracted fourth derivatives
results in

The nature of the bifurcation point is investigated
by means of the coefficient '

showing that it is a symmetric bifurcation. The first
order perturbation solution is

A (I)C = 0; q(I)C = x.

The second order terms in the perturbation
expansion are next computed from eqn (23),
leading to:

a(2)C = {O, -0.866/R}

The stability coefficient" W4 results from eqn (24) as

. C
= [10.55 - 4.50(1 + v)] R2

but since v ~ 0.5, then

and the symmetric bifurcation is stable. Next, we
compute the curvature from eqn (25):

or else

C
A (2)C = (0.867v - 1.161)"2.

R

The post buckling path may then be written as:

_ 1 [0.236V - 0.43 h2 °434 2J
q2- -- +. q.

R 1+v

A =~2 {(0.236V - 0.43W

q2 }+ (0.867v -1.l61)j + ....

Analysis using the V -formulation

We evalute the contracted third order derivatives
Dr (x) from Flores and Godoy [28], and the value is
coincident with the one obtained in the W-formu­
lation. Matrix D2(x, x) is also identical, as expected.
q(2)C is coincident with the value of z in the V-formu­
lation, and W4 = V4 • The curvature of the path, A (2)C

is the same as in the W approach.
The value of q(2)C are different, since in the V -for­

mulation is not measured from the fundamental path,
and leads to

_ I {0.236V - 0.43 h2q2- --
R 1+ v

+ 0.434[1 + (I + v)(v - I.339)]qr }-

We conclude that the more complex V-formulation
does not present any advantage over the present
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If we compare the present approach with the
more general V-formulation, we notice that the
main advantage of the latter is that it is not necessary
to calculate the fundamental path for equilibrium
states beyond the first critical load, in order to obtain
the s~condary path. This advantage is lost under the
present assumptions, for which the fundamental path
is linear and no effort is required in the Wapproach
to calculate it at post-critical levels of load.

It has been shown that both approaches can be
written using the same notation and following a
similar procedure of contracting three and four
dimensional arrays. An example illustrates the calcu­
lations required for the solution of a problem, and
it is clear that the complexity of the expressions
involved is not higher than in any continuation
method. In the present perturbation approach, the
solution not only provides the post-buckling path,
but also the nature of the critical state comes
naturally from the analysis.
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