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2. DISPLACEMENTS AND DEFORMATIONS OF
THE PLATES

The reference system and displacement field is
identified in Fig. 1. Following a first order shear
deformation theory, the displacement field is

u(x, y, z) = uo(x, y) - z{}x

v(x, y, z) = vo(x, y) - z{}y

w(x, y, z) = wo(x, y)

of displacements along the corners of the junctions
between plates are discussed in Ref. [7]. Translations
of the junctions in the cross sectional plane is
investigated in [8]; while non-uniform compression
was incorporated in [9]. In all cases mentioned, the
material was assumed as isotropic, somehow reflect­
ing an interest in steel or aluminum structural com­
ponents. Linearized buckling of long plates made of
composite materials was presented by Zeggane and
Sridharan [10, 11] using Reissner-Mindlin infinite
strips. A review of buckling of shear deformable,
laminated, rectangular, anisotropic plates may be
found in Ref. [12]. An extension of the finite strip
approach to post buckling of composite cylindrical
shells is in Ref. [13].

In the present work the finite element rather than
the finite strip method is employed. With the in­
creased capacity of present day workstations and
personal computers, it is now possible to solve large
problems without having to assume analytical ap­
proximations for prismatic members. Furthermore,
the finite element methods easily allow the modelling
of non-prismatic problems, complex boundary con-
ditions and geometries. .
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In a companion paper [1], the authors presented a
finite element formulation suitable for stability analy­
sis following the general theory of elastic stability.
This means that finite elements are employed to
obtain the total potential energy of the system and the
derivatives required to evaluate a critical state along
a linear fundamental path, to investigate the nature
of such a critical state, and to obtain the initial post
critical path. One of the advantages of the technique
is that the matrices usually employed in finite element
analysis are the only ingredients necessary to carry
out the calculations mentioned above. The particular
energy formulation adopted in part I is the so-called
W-formulation, in which the fundamental path is
first obtained and substituted into the energy. This
new expression of the energy is thus obtained in terms
of incremental coordinates [2] measured with respect
to the fundamental path.

Previous applications of finite element analysis in
the context of stability theory may be traced to the
work of Walker [3]. A review of the applications to
shells of revolution may be found in Flores and
Godoy [4]. The post-buckling solution of plate assem­
blies has been tackled in the literature.using finite
strip methods (for an example see Ref., [5]). The
purpose of this paper is to apply the finite ",element
formulation to. the analysis of the plate assemblies
made of composite materials. ..

The first work known to the authors to use finite
strips for the perturbation analysis of the post buck­
ling path is that of Graves Smith and Sridharan [6];
they considered isotropic prismatic structures sub­
jected to end compression. Problems of compatibility

1. INTRODUCTION

Abstract-In a companion paper the authors presented a convenient fonnulation for the stability analysis
of structures using the finite element method. The main assumptions are linear elasticity, a linear
fundamental path and the existence of distinct critical loads. The fonnulation developed is known as the
W -formulation, where the energy is written in terms of a sliding set of incremental coordinates measured
with respect to the fundamental path. In the present paper a number of aPrlications of finit~ elements
for post-buckling analysis on composite plate assemblies are presented. ThIn-walled composIte plates,
I-beams, angle sections, and a specially designed box-beam with flanges (unicolumn) are studied in
post-buckling when axially loaded. The results are in good agreement with previous studies. Moreover,
a parametric study involving critical buckling load and geometry is presented for the case of the
unicolumn.
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The matrix [B I ] is a function of the nodal displace-
ments, i.e. [BI (q)]. Following Zienkiewicz and
Taylor [14] we can write the non-linear. part of the
strains as follows

0 v,x w,x 0

U,.1' 0 0 W,y

0 0 W,.1' w,x
0 0 0 0 U,.1'

{£I} =! 0 0 0 0 v,x

0 0 0 0 w,x

0 0 0 0 W,y

0 0 0 0

0 0 0 0

(2)

(3)

= ~ [A][O] = [B I (q)]{q}

where the matrices [A] and [0] are still a function
(4) the nodal displacements. Matrix [0] can be written

Matrix [Bo] employed in Ref. [14] results from the
Mindlin-Reissner assumptions as

u,x

o
o
o
o
o
O.

N

0: = L NiO:;
i=1

V;y:+W;'y:

u:'1,+W:'1'
2w,x w,y

N

W= L Niwi
i-I

+~

v,y

N

Oy = L NiO),;,
i=1

N

V = L N/vi ,
i=1

u,x

V,.1'

U,.1' + v,x

-8x,x

-0.1',.1'

- Ox,... - 8.1',x

W,y - 0.1'

w,x - Ox

8:

Fig. 1. Reference system and displacement field.

N

U= L Niui,
i=1

N

Ox = L NiO.y:;,
i-I

where Ox and Or are the' average rotations of a line
initially perpendicular to the longitudinal plane.
Within each element these displacements can be
expressed with respect to nodal unknowns with the
aid of the shape functions N i as,

where N is the number of nodes in the finite element.
A nine-node Lagrangian element has been adopted in
this work.

For each node, it is convenient to write the vector
of unknowns as

The deformations are written as the summation of.
a linear plus a non-linear part, leading to

where

and £x' £1" and YXl' are the in-plane strains, ":0 "t' and
".n are the curvatures, Y1': and Y;.\" are the out-of-plane
shear strains and 0: is the ih-plane rotation.
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Ref. [14] results from the
ills as

o o

Taking the variation of eqn (7) one has

d{£l} =! d[A]{O} + !rA] d{O}

= [A] d{O} = [A][G] d{q}

-and hence, it follows by definition that

'j

where N.", N... and N."y are the in-plane stress resul­
tants, Mx , M .. and Mx:. are the moment resultants, Q..

(9) and Qx are 'the out-of-plane shear stress resultants
and M= is the in-plane moment. The constitutive law
is

the other hand, matrix [A (q)] can be written as For the case of a plate made of laminated com-
product of two matrices, the first containing the posite material, the constitutive law simplifies to

Nx All A l2 Al6 B ll Bl2 BI6 0 0 0 £x

N.l· ·A 12 A22 A26 B12 B22 B26 0 0 0 £y

Nxy Al6 A26 A66 Bl6 B26 B66 0 0 0 Yxy

Mx Bll Bl2 B l6 Dll D l2 D l6 0 0 0 Kx

M... B l2 B22 B26 D l2 D22 D26 0 0 0 Ky (15)

M xy Bl6 B26 B66 D l6 D26 D66 0 0 0 Kxy

Qy 0 0 0 0 0 0 A44 A45 0 Yy=

Qx 0 0 0 0 0 0 A45 A 55 0 Yzx

M= 0 0 0 0 0 0 0 0 C* 0=

derivatives of the shape functions and the second the
nodal displacements, as

(14)

4. MATRICES REQUIRED FOR THE STABILITY
ANALYSIS

where, A ij , Bij and Dij are the plate stiffness properties
as computed using the Classical Lamination Theory,
and C* is a very small number compared to the
stiffness values, that corresponds to in-plane rotation
0: [15].

Substituting eqn (14) into eqn (12), the strain
energy results in terms of the strains. Furthermore,
the substitution of eqn (15) into V leads to the
expression of the energy W in terms of discrete
generalized coordinates, as written in eqn (8) of Part
I [1].

As a first step, the linear fundamental path {qf)
should be obtained. The stiffness matrix is needed,
and can be formulated as

(10)

. (11)

[2BI ] = [A][G].

0 Ni•x Ni•x 0

Ni•y 0 0 Ni•y

0 0 Ni•y Ni•x

0 0 0 0

[A (q)] = 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

{q} 0 0 0

0 {q} 0 0
x

0 0 {q} 0

0 0 0 {q}

3. TOTAL POTENTIAL ENERGY (17)

The total potential energy V of the plate subjected
to in-plane and transverse loading is the summation
of the strain energy U and the load potel\tial Q

~ (12)

with respect to {qf), to determine the pre-buckling
solution. The second step is the detection of the
critical states along the fundamental path. For this
reason, it is necessary to compute the geometric
stiffness matrix [Ku ]' This can be done as follows:

The load vector if} is assumed to be incremented
by a single load factor A. The stress vector {(J} is in
this case

(18)
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Following Zienkiewicz and Taylor [14], the stress
vector {(1} is rearranged in a matrix form as

/V.,- 0 0 0

0 N.T 0 0
[a] =

0 0 N.T Nx)'
(19)

0 0 N.T)' /V."

The eigenvector {x} can be normalized in several
ways: one corresponds to {x }T[K(1]{x} = I, so that the
denominator in eqn (24) is 2. A second· possibility is
to choose a unit value for the largest component of
{x }; ~~is latter alternative has been· implemented in
the pres~nt work.

For Iiri~~r fundamental path {a(1)C == {x}. As a next
step, the {a(2:C} coefficients are computed from

and hence, the geometric stiffness matrix [K(1] can be
computed as

The linear eigenvalue problem is

where the value of one of the components in the
(20) vector of the second derivatives of the displacements

has to be chosen (Le. a\2)C = 0 if the perturbation
parameter is ql)' Finally, the curvature of the post
buckling path at the bifurcation point (for symmetric
bifurcation) results in

([Ko] - A [K(1]){x} = O. (21)

lZ TA)
~~

(30)

N

Z = L Nizi • (28)
i=1

r = r(e, t1).

(26)

{x }T[D2(x, X )]{x} + 3{x }T[D1(x)]{a(2)C}

3{x }T[K(1]{x}

N N

X = L Nixi, Y = L NiYi'
i=1 i=1

A (2)C =

r=x{+yj+Zk

The matrix [D2(x, x)] contracted by the {x} eigen­
vector can be computed from

+ 2[2BI (X)]T[C] [2B1(x)]} dv. (27)

S. ORIENTATION OF A PLATE ELEMENT IN THE
3-D SPACE

The plate element described previously has been
developed for plane applications. In the case of a
three-dimensional structural geometry, a transform­
ation needs to be performed on the nodal coordinates
and nodal displacements.

The element surface can be clearly defined from the
nodal coordinates. For an N-noded isoparametric
element, one can write

The element surface is a three-dimensional vector r

Since the shape functions Ni are functions of eand tI,
the element surface is also a function of eand "

(23)

(24)
~.C

C = {x}TDI(x){x}.

[Dt(x)] = f. {[2B\(t5j W[C][Bo+2ABt(qF)]{X}

+ [2BI(x)]T[C][Bo+2ABI(qF)]

The critical states are determined from eqn (21) (Le.
the critical load A C and the corresponding eigenvector
{x }).

Next, attention is given to the study of the post
critical path passing through the bifurcation point.
First, we must determine whether the bifurcation is
symmetric or asymmetric. For that, it is necessary to
compute the matrix [D I (x)] contracted by the eigen­
vector {x}. This can be written in terms of finite
element matrices as

where b; is the Kroneker delta, with values b; = 1 if
i =j, and bi = 0 if i ¢ j. The matrix [2B~ (bj )] can be
computed from the second matrix of eqn (11) if,
instead of {q}, we insert a vector containing unit
value in the jth row and zeros in the rest. The
coefficient C may now be computed as

If C = 0, the critical state is a symmetric bifurcation,
while for C ¢ 0 the bifurcation is asymmetric. To
follow the post buckling path, a perturbation analysis
is carried out from the critical state. The variables ai

and A are expanded in terms of a perturbation
parameter S, as indicated in eqn (18) of Part I [I].
In asymmetric bifurcation, the slope A (l)C of the
post buckling path at the bifurcation point can be
co~puted as
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where

and

From vector analysis, the normal vector D: on the
element surface at a point (~o, '10) is

(40)

(39)

(38)

r~}-rll
ll2 AIJ]rJy, - l21 In A23 y;

z; ).31 l32 l33 z;
and

r~}-rll
A12 AIJ]{"JVi - l21 An l23 Vi

w; l31 l32 l33 z,

The vectors of the rotations Ox, 0). and 0: are
oriented in a special way on the coordinate system
(Fig. 2), and hence, special care must be paid for their
transformation to another coordinate system. At
first, the rotation vectors Ox, O}, and 0: must be
reoriented to 0., O2 and 03 • This can be done as
follows:

The above procedure is not valid in the special case
when the normal D: is parallel to the unit vector i.
Then, we assign Dx =j and we compute By = D: X D.t •

By writing in a matrix form,

{~} _. [lll ll2 A13]{~}
] - A21 In l23 ]

k .. l)1 l)2 l33 k

we have the directional.cosines (Aij) that define the
transformation of coordinates from the old to the
new (prime) coordinate system. Each component of
l matrix is the cosine of the angle between i and j',
where i, j =x, y, z. This matrix will be used to
transform the nodal coordinates and the displace­
ment vectors of the element. The following relations
can be immediately stated

(31)

r,. = [ ~ (~~I}IJr+[~(~I}J

+[~(~I)ZIJ. (33)

Note that since the element is ftat~ we need to define
the normal at only one point on the element surface.
As soon as D: is defined, an orthogonal coordinate
system can be generated following the procedure
described by Ahmad et a/. [15], which follows.

First, a vector DJ' is defined as n, =D: X i; and using
n" we define a vector Ox as Dx =D). X D:. The three
vectors Ox, .0,. and D: define an orthogonal coordinate
system that is uniquely attached to the finite element.

As a second step, we normalize D.t , D). and D: to I',
j' and k', using

Before and after multiplication of l by T gives as a
result the modified transformation matrix l* for the
rotation vectors, which is

(34)

(35)

(36)

{
8

1
} [ 0 1 O]{8x

}{O*} = O2 = -I 0 0 0). = [71{O}.
0) 0 0 1 0:

(41)

where for instance the norm for Ox is

y

[ A~ -l12 -A32]
{A..} == -A.21 III lJl (42)

(37) -l2) ll3 lJ3

"z "3

~~y "1
x

Fig. 2. Transformation procedure for 8,'(, 8y and 8:.
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Fig. 3. Orthotropic plate under inplane compression.
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The difference in the values of the curvature of the
post buckling path is due to the fact that finite
element model allows for inplane waviness in the
buckled configuration, while Pandey's model assumes
the ends to remain straight after buckling. This case
is ih.~roughly discussed in Ref. [6] for a steel square
plate.:",

Also, ',~ clamped circular steel plate subjected
to inplane compression has been studied in post
buckling. The bifurcation in this case is also stable
symmetric, and the critical load and curvature
have been computed as A C = 405.61b in-I and
A (2)C = 15,7681b in-3, respectively. According to
Thompson and Hunt [2] the critical load and curva­
ture are A C = 403.31b in-I and A (2)C = 16530 Ib in-3,

respectively. There is a difference of 4.8.0/0 in the value
of the curvature between the numerical and analytical
solution due to the mesh.

Pandey (1991)

Clamped I-beam

As a second case let us consider a wide flange
I-beam that has been studied by Vakiener et al. [17].
The cross sectional dimensions are 8 x 8 in and
the thickness of the flanges and the web is 3/8 in.
The length of the column is 5 ft (60 in). Vakiener' et
al. [17] report apparent. (homogenized) material
properties, that in terms of engineering constants
are E I = 2600 ksi, E2 = 1000 ksi, GI2 = 425 ksi,
Vl2 = 0.33 and V21 = 0.127. The stiffness data as re­
quired by eqn 15, can be computed using the classical
lamination theory [18]. Both ends are assumed simply
supported. More specifically, the boundary con­
ditions are determined as follows:

(I) lateral deflection is restrained in both planes (x
and y, x and z) at both ends;

(2) longitudinal deflection is restrained at one end
but it is unrestrained at the other end where the load
is applied;

(3) torsional rotation is restrained at both ends;
(4) flexural rotation is allowed at both ends of the

section.
The applied load in this case is uniformly distributed
over the flanges and the web, while in Vakiener
et al. [17] the nodes at the free edge of the flange
receive one-third of the load applied to the node at
the junction of flange and web, and the nodes along

(43)i = I, ... ,N.[
[A]; [0] ]

[A); = [0] [A *]; ,

All edges simply supported

hence, the displacement transformation matrix for
each node of the element, from a system of axes to
a prime system of axes, is

The procedure described previously, has been
applied for the development of shear deformable
plate element capable of representing the buckled
configuration of a plate or plate assembly. For
specific examples discussed herein, a critical state
along the fundamental path has been detected and the
nature of the bifurcation has .been studied. It is not
easy to find examples of post buckling analysis of
composite thin walled elements in the literature,
and only a limited number of problems have been
employed for validation of the present code.

Composite plate

Let us first consider the case of a rectangular
composite plate subjected to inplane axial com­
pression. The geometry and the loading are shown
in Fig. 3. The material properties with reference
to eqn (15) are Au = 1, 017,650 Ib in-I, A22 =
391,4041b in-I, A I2 = 129,187.5Ib in-I, A66 = 159,375
lb in-I, DlI = 11,925.58Ib in, D22 = 4586.761b in,
DI2 = 1513.911b in, D66 = 1867.671b in, and A44 =
Ass = 132,187.5Ib in-I, where Bij = 0 for i,j = 1, 2, 6,
A4s = A 54 = 0 and C* is a very small number com­
pared to Aij stiffnesses. The plate is simply supported
at all edges. A finite element mesh of 16 elements has
been formulated, and the lowest critical load has
found to be A C = 19431b in-I and associated with
one buckling half wave. The nature of the bifurcation
is stable symmetric, and the curvature of the post
buckling path at the bifurcation point has been found
to be A (2)C = 4361.41b in -3. The critical load was
computed by Pandey [16] as A C = 1949lb in -I, also
associated with one buckling half wave. From the
results of Pandey, the nature of the bifurcation is
again stable symmetric, and the curvature of the post
buckling path at the bifurcation point is
A (2)C = 6283.41b in- 3• Hence, the model is in a good
agreement regarding the critical buckling load values.
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Fig. 4. Local buckling of an orthotropic I-beam under axial compression.
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the interior of the flange and web receive two-thirds
of the load applied to the node at the flange-web
junction. The critical buckling load computed in
Vakiener et ale [17] for a 1440 element mesh is
A C = 58 kips corresponding to four buckling half
waves along the length. The present model with 25
elements predicts a critical load A C = 55.5 kips corre­
sponding again to four buckling half waves. The
results are in a good agreement, despite the difference
in the loading systems considered. Furthermore, the
nature of the bifurcation has been found to be stable
symmetric and the curvature. of the post buckling
path at the critical state has been computed as
A (2)C = 242.93 kip in -2 (see Fig. 4). A stable post
critical path is consistent with the fact that Vakiener
et ale [17] were able to 'carry the column buckling
experiment into the post buckling regime. However,
they do not report any post buckling analysis.

Simply -supported I-column

The stability of an FRP composite I-beam sub­
jected to pinned end compression is also considered.
More specifically, a 6 x 6 x ~ I-column made from
E-glass fiber reinforced vinylester is studied next
(Creative Pultrusions [19]). The length of the column
is 100 in. The material properties for the flanges
are All = 893,500 lb in-I, A22 = 343,000 Ib in-I, AI2 =
130,800Ibin- l , A66 = 113,600Ibin- l , DII =4289
Ib in, D22 = 2029lb in, D I2 = 807.31b in, D66 =
641.51bin, and A44 =Ass =94,666Ibin- 1, where
Bij = 0 for i,j = 1,2, 6, A4s = AS4 = 0 and C· ~ 0; and
for the web DI1 = 4090 lb in, D22 = 1863lb in,
DI2 = 731.61b in, D66 = 596.1 lb in. .,'.

The boundary conditions as applied in the previous
example do not allow for global buckling. ':rhe'new
consideration in this case is that the ends of the
flanges have n~ restraint whatsoever and only' the
ends of the web are restrained as in the previous
example. These boundary conditions now allow for
Euler buckling about the weak axis of the cross-sec­
tion. Local buckling occurs for A C = 27,3241b and

the post buckling path is stable symmetric and the
curvature has found to be A (2)C = 172,1821b in-2.
Global buckling occurs for A C = 29,7621b and the
post buckling path is also stable symmetric with the
curvature in this case given by A (2)C = 27.31b in -2.
The two post critical equilibrium paths are plotted in
Fig. 5 in terms of the applied load.

Angle section

Next, the stability of an angle section FRP bar
has been studied. It is a 6 x 6 x i in and 20 in
long bar, that is subjected to uniformly distributed
axial compression applied at the ends. The
material properties are All = 1,284,000 Ib in-I, A22 =
480,300 lb in -I , A 12'= 180,800 lb in -I, A66 = 160,800

. Ib iil-I, DIl = 13,910 Ib in, D22 = 6082lb in, Dl2 =
2364lb in, D66 = 1968lb in, and A44 = Ass =
134,000 lb in -I. The boundary conditions applied are
the same as in the clamped I-beam case; that is we are
mainly concerned with local buckling and it is as­
sumed that other forms of instability such as Euler

p

Fig. 5. Global and local buckling of an FRP I-beam under
axial compression.

__1_



Fig. 6. Geometry and buckling of an FRP angle section.

Fig. 8. Paran

4

11

,. (b)

t.1

(a)808.66 kips in-I, A22 =194.20kipsin·- ', A12 =49.05
kips in-I, A66 = 77.03 kips in-I, Bll = -4.449 kips,,'
B22 = -0.283 kips, BI2 = -0.087 kips; B66 =
-0.118 kips, Dll = 5.6671 kips in, Dn = 1.5223
kips in, D12 =0.3814 kips in, D66 =0.6026 kips in, and
A44 = Ass = 64.19 kips in-I, not necessarily represen­
tative of current unicolumn sections. The load is
uniformly distributed on the ends, and the boundary
conditions applied are the same as in the case of the
clamped I-beam. From the stability analysis, the
critical buckling load has found to be
A C = 1.7638 kips In-I associated with five half waves
along the length. The modal shape is presented in Fig.
7. The bifurcation is in this case stable symmetric,
with the curvature of the post critical path at the
bifurcation point being A (2)(" = 22.9 kips in -3. It is
worth mentioning that the ultimate compressive load
determined in the present analysis is 84.66 kips. Yuan
el al. (20] reported higher ultimate loads for the
unicolumn due to the different properties that corre­
spond to the specimens. Note· that a stable post
critical path is consistent with the experiments by
Yuan et al. [20] that were carried into the post critical
regime. The post buckling path is also presented in
Fig.7.

For the unicolumn, a parametric study has been
also performed to understand the influence of the
geometry on the critical loads. More specifically, the
width of the flanges b2 (Fig. 7) varies fromb2 = 0
(square 6 x 6 in box-beam) to b2 =3 in (current
unicolumn). The width of the box~section walls is
b l =6 in. The critical buckling load of each case is
plotted vs the width ratio b21b1 in Fig. 8. As a second
case, the thickness t of the walls of the cross-section
varies from t = 5132 in to I = 5/8 in, while the dimen­
sions of the cross-section are fixed to 12 x 12 in and
b2 =3 in. The critical load is now plotted vs the ratio
Ilb, in Fig. 8. Notice that there is a maximum in Per
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buckling are prevented from occurring. The stability
analysis using finite elements determined a critical
buckling. load Ii C = 786 lb in-I. The nature of the
bifurcation is stable and symmetric, and the curva­
ture of the post buckling path at the bifurcation point
has been found to be A (2)(" = 10351b in - 3

• The mode
corresponding to the critical load is axial-torsional.
The geometry of the angle section, the critical load
and the post buckling path and modal shape can be
seen in Fig. 6.

Unicolumn

As a final example, the buckling behavior of a
composite box~beam with flanges called unicolumn
(see Fig. 7) has been studied. The cross-sectional
shape is 12-by-12 in with all walls having 5/16 in
thickness and the length is 60 in. Experimental results
for this shape have been presented by Yuan et al. [20].
The unicolumn was designed to achieve higher ca­
pacity in carrying axial compressive loads and to
facilitate construction by providing a convenient
way to attach beams to the flanges of the unicolumn.
The material properties presently used are All =

The finite ele
the post bucklir
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Fig. 7. Local buckling of a composite box-beam with flanges.,
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Fig. 8. Parametric study of local buckling loads.

applied load. The buckling modes as they come as a
solution to an eigenvalu~problem,may have in-plane
waviness and amplitude modulation [21]. This may
result in numerical differences between the finite
element solution and analytical· or semi-analytical
solutions previously developed. In the present work,
a nine-node Lagrangian element with 6 d.o.f. per
node has been used; it requires 15 coefficients to
model the properties of the composite material of
each element, namely All' A22 , A12 , A66 , B II , B22 , B 12 ,

B66 , Dll ,. D22 , D12 , D66 , A44 , Ass and A4s • The
fundamental path is linear, and the lowest value of
critical load of the eigenvalue problem is considered
for post buckling analysis. The general theory of
elastic stability [2] has been successfully applied to
plate and plate assemblies experiencing a bifurcation.
The nature of the bifurcation that governs the post
buckling behavior of the structure is determined. The
slope and the curvature of the post buckling path at
the bifurcation point is needed in order to follow the
post buckling path up to point. Also, in the case of
unstable symmetric or asymmetric bifurcation an
imperfection sensitivity analysis can be performed
and safety factors can be realistically determined.
Since there is limited previous work in this field
reported in the literature, numerical validation was
performed for some of the cases considered. It is
expected to further validate these results against new
experimental work.

Concerning the application to composite materials,
it is possible to say that the model developed here
takes into account any kind of laminates and also
plate assemblies and cross-sectional shapes of any
geometrial complexity. Finite elements can easily
take into account complex boundary conditions and
loading. The accuracy of the results can be improved
with mesh refinement. Thus, it is expected that it
could be used as a useful tool mainly for the design
of pultruted columns.
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