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Abstract-Explicit analytical expressions for the relaxation moduli in the Laplace domain of
composites with viscoelastic matrix and transversely isotropic fibers are developed. The cor­
respondence principle in viscoelasticity is applied and the problem in the Laplace domain is studied
using the solution of the elastic problem having periodic microstructure. Formulas for the L~place

transform of the relaxation functions of the composite are obtained in terms of the properties of
the matrix and the fibers. The inversion to the time domain of the relaxation and the creep functions
of composites reinforced by transversely isotropic fibers is carried out numerically when a power
law model is applied to represent the viscoelastic behavior of the matrix. Finally, comparisons with
experimental results are presented.

1. INTRODUCTION

The creep response of polymer and metal matrix composites is one of the limiting design
parameters for advanced composite structures expected to operate for long periods of time
on a variety of applications (Barbero, 1994). The widespread use of carbon fibers provides
the motivation for the development of a model capable of representing composite materials
reinforced with transversely isotropic fibers.

Many micromechanical models have been developed to estimate the elastic properties
of composite materials (Christensen, 1990; Mura, 1987). The macroscopic viscoelastic
properties of fiber-reinforced materials were evaluated by the cylinder assemblage model
proposed by Hashin (1965, 1966), where the correspondence principle (Christensen, 1979)
was applied. Christensen (1969) proposed an approximate formula for the effective complex
shear modulus in the case of materials with two viscoelastic phases by using the composite
sphere model. The self-consistent method and a numerical inversion method were used by
Laws and McLaughlin (1978) to obtain the response in the time domain. Yancey and
Pindera (1990) estimated the creep response of unidirectional composites with linear vis­
coelastic matrices and transversely isotropic elastic fibers by applying the micromechanical
model proposed by Aboudi (1991) to obtain the Laplace transform of the effective vis­
coelastic moduli. Then, they used Bellman's numerical method for the inversion to the time
domain. Wang and Weng (1992) used the Eshelby-Mori-Tanaka method (Mori and
Tanaka, 1973) in order to obtain the overall linear viscoelastic properties.

While several micromechanical models initially developed for the analysis of the elastic
behavior of composites have been extended to the viscoelastic case, no model has been
developed for linear viscoelastic solids with periodic microstructure, even though many
r~sults are available for the elastic case (Nemat-Nasser and Hori, 1993). Furthermore, no
attempt has been made to develop explicit analytical expressions in the time domain.
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Interest in using the elastic solution for composites with periodic microstructure (Luciano
and Barbero, 1994a) is motivated by the following reasons. First, the periodic solution is
the best approximation available for advanced composites that have periodic micro­
structure, taking into account not only the periodicity of the microstructure but also the
geometry of the inclusions. For composites without perfectly periodic microstructure, the
periodic solution provides a bound on the estimate of the overall properties, while other
methods (e.g. the self consistent method) provide a bound that represents the perfectly
random distribution of the inclusions (Nemat-Nasser and Hori, 1993).

In the present. paper, analytical expressions in the Laplace and time domain for the
coefficients of the creep and relaxation tensors of composite materials with periodically
distributed transversely isotropic fibers and linear viscoelastic matrix are proposed. The
inversion in the time domain is carried out numerically because of the nonlinearity of the
viscoelastic behavior of the matrix, which is represented by a power law. Comparisons with
available experimental data obtained by Yancey and Pindera·(1990) and other results that
illustrate the capability of the model are presented.

2. VISCOELASTIC CONSTITUTIVE EQUATIONS

The constitutive equations of a linear viscoelastic isotropic material can be expressed
in the time domain in the, following way:

(J(t) = /(2) Loo A(t-T)tre(T) dT+2 Loo /l(t-T)e(T) dT, (1)

where aCt) and e(t) are the stress and strain tensor, A(t) and /let) are the two stress-relaxation
functions, the dot indicates the differentiation with respect to time and ]<2) denotes the
identity tensor of second order.

If the Laplace transform of a functionf(t) is denoted as:

](s) = f: J(t) exp ( -st) dt,

then eqn (1) can be expressed in the following way:

a(s) = sX(s)tre(s)/(2) +2sj1(s)e(s) = sC(s)e(s).

(2)

(3)

The Poisson ratio in the transformed domain V
TD is written in terms of ~(s) and pes)

as:

V
TD = ~(s)/2(X(s) +pes»~. (4)

In the following, only the set of linear viscoelastic materials with Poisson ratio that
remains constant in the course of the deformation [i.e. vet) = v = V

TD
] will be analysed [s~e

Aboudi (1991) and Wang and Weng (1992)].

3. PERIODIC EIGENSTRAIN IN THE LAPLACE DOMAIN

Consider an infinitely extended linearly viscoelastic solid with periodic microstructure
characterized by a unit cell D (Fig. 1). Let each cell D be a parallelepiped with dimensions
aj in the direction of the coordinate axes Xj, where j = 1, 2, 3 and let V be its volume. The
unit cell is divided into two parts: the fiber Q and the matrix D-Q and let Vf be the volume
fraction of the fibers (Vr = Vn/V).

In the following a composite with viscoelastic isotropic matrix and elastic transversely
isotropic inclusions will be considered. The viscoelastic behavior of the matrix will be
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Fig. 1. Geometry of the unit cell D.
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represented by eqn (1) or (3), while the constitutive equation for the transversely isotropic
fibers is written as :

u(s, x) = SCI (s)e(s, x) = Cle(s, x) in Q. (5)

In order to compute the viscoelastic properties of the composite, the fibers, periodically
distributed in the body, can be simulated in the Laplace domain by an homogenization
eigenstrain 8*(S, x), periodic in xj . In this way, the analysis of the viscoelastic behavior of a
composite material with periodic microstructure is reduced to the viscoelastostatic problem
of a solid subject to a periodic eigenstrain. The expression of the Laplace transform of the
periodic strain e(s, x) inside Q in terms of 8'*(s, x) can be derived (Luciano and Barbero,
1994b) from tne elastic expression (Luciano and Barbero, 1994a). However, in order to
obtain the relaxation moduli of the composite it is not necessary to have the exact expression
of 8'(s, x), but only its volume average in Q, 8'(s). In particular, the volume average of the
strain in the inclusion 8(S) can be written in terms of the volume average of the eigenstrain
8'*(s) in the following way:

8'(s) = pes) : C(s) : 8'*(s) = 8(s) :8'*(s)

where 8(s) is the Eshelby tensor in the Laplace domain for solids with periodic micro­
structure and depends only on the periodicity of the unit cell (al ) , the geometry of the
inclusions and the viscoelastic properties of the matrix.

If the expression of 8(s) is known, the equivalent eigenstrain method can be applied
in order to obtain the exact volume-average homogenization eigenstrain which simulates
the presence of the periodic fibers inside the body. To this end, let an applied average strain
tensor 80(S) be arbitrarily prescribed in the unit cell. Then, use the following average
consistency condition (Mura, 1987) in the Laplace domain (i.e. the equiv~lence between
the stress in the homogeneous material and the heterogeneous one) :

C'(s): (eo(s)+P(s): C(s) :e*(s)) = C(s): (eo(s) + (P(s) : C(S)_/(4)) :e*(s)), (6)

where /(4) is the identity fourth order tensor. It is worth noting that the tensor pes) takes
into account the geometry of the inclusion and can be evaluated only once for every C I of
the fibers. Then from eqn (6), the equivalent average volume eigenstrain e*(s) can be
obtained in terms of the tensors C/(S), C(s), pes) and ~ for every s as:

8'*(s) = [«(C(s)-C/(s))-J -P(s)): C(S)]-l : eo (s).

The Laplace transform of the uniforlTI overall stress O"o(s) in the unit cell is:

(7)
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sC*(s) : 80(S) = sC(s) : (80 (s) ---- VrE*(S», (8)

where C*(s) is the overall relaxation tensor of the composite material. Using eqn (7) and
noting that so(s) is arbitrary, the following expression of C*(s) is obtained:

sC*(s) = sC(s)-sVr({C(s)-C/{S»-1 -P(S»-l. (9)

Taking into account the periodicity of the microstructure and using a Fourier series rep­
resentation of the field variables, the tensor pes) for an isotropic matrix can be written as
[see Nemat-Nasser and Hori (1993) and Luciano and Barbero (1994a) for the elastic case] :

pes) = ,ao~s) ~' t(~)(Sym (~® 1(2) ® ~)- 2(1 ~vo) (~® ~ ® ~ ®~»). (10)

where

(90{~») (90{-~»). i-t(~) = Vr --v;- V
n

With go(~) = n exp (l~X) dx (II)

and ';o{s) and vo are the Laplace transform of the shear modulus and the Poisson ratio of
the matrix respectively, ~ = {~h ~2' ~3} with ~j = 2nnj /aj {nj = 0, ± 1, ±2 .. .j not summed,
j = 1,2,3) and"~ = ~/I~I_ Then, from eqn (10), eqn (9) can be written as:

where 10{s) is the Laplace transform of the Lame constant A{t) of the matrix. Then, defining
the series 8f (with 1= 1-9) as in Luciano and Barbero (1994a), the final expressions of the
components of the tensor C*(s) can be obtained for any shape of inclusion. However, in
this paper we are interested in composite materials reinforced with long fibers which may
be transversely isotropic. In this case five series are different from zero and only three are
independent (Nemat-Nasser et al., 1982). If the fibers are aligned with the xl-axis, it holds
that:

8 1 = 84 = 8 8 = 8 9 = 0,

8 2 = 8 3 , 8 5 = 8 6 -

Defining i o = slo(s) and flo = s/1o(s), the components of eqn (12) become:

SerI(S) = i o+2flo

T,T ( .2 2) (" (2flo +2io- C;3- C;3){a~ - a~) 2{a4 - a3). (io - C/l2 )2)-1
-Yr -a4+ a3 - +-------

al ai

SCf2(S) = 2
0
+ Vr ((20 -C/I:~(a4 -a3»)

x ((2#0 +220- C;3 - C;3)(a~ - an + 2(a4- a3)(20 - C'12)2)- 1

al ai

(13)



Relaxation tensor of viscoelastic composites

X(2PO+2lo-C;3-C~3)(a~-aD+ 2(a4-a3)(~O-C'12)2)-1

al al

x (2Po+2'xo-C;3-C~3)(a~-an + 2(a4-a3)('xo-C;2)2)-1

al at

where

8 "'3 8 "'2C' +12"21 4"2C' . 2" C,2 4" 1 C' 4" C' C'a2 = 110 - 110 33 110 AO - flo II - Jlo 23 + Jlo AO 23 + Jlo I I 33

- 8,aoi oC;3 -4,u0 C;~ +2,uoC;~ -4,uOC'II i o+8,uoi oC; 2

+2ioC /
II C;3 +4C'I2 C;3io-4C/

I2 C;3io-2ioc'II C;3

. 8
6s--­

3 2- 2vo

,ao
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(14)

The series 8 3 , 8 6,87 were computed by Nemat-Nasser et al. (1982) for several values
of the 'volume fraction of the inclusions. The numerical values can be fitted with the
following parabolic expressions using a least-square method (Luciano and Barbero, 1994a) :

8 3 = 0.49247 -0.47603 Vr-O.02748 vI

S6 = O.36844-0.14944Vr-O.27152Vl

8 7 = 0.12346-0.32035Vr+0.23517Vl. (16)
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4. RELAXATION TENSOR IN THE TIME DOMAIN

The C0111pOnents of the relaxation tensor in the Laplace domain are given in eqn (14)
for composite nlaterials reinforced with transversely isotropic fibers. The lnatrix can be
represented by any linearly viscoelastic lnaterial. The inversion to the time domain can be
performed nU111ericaliy (Belhnan, 1966; Schapery, 1974; Laws and IvlcLaughlin, 1978;
Yancey and Pindera, 1990) or analytically if the nlatrix is represented with the two- or four­
paranleter Inodel (Barbero and Luciano, 1994). Experimental data for viscoelastic matrix
are usually available in the [orIn of creep strain rate as a function of time t for various
values of applied stress (j. Pi. viscoelastic material can be represented by the power law

(17)

The power law provides very good representation of the data, and the data reduction
is very simple, with the coefficients A, Band D obtained simply by multiple linear regression.
However, the power law in eqn (17) leads to nonlinear models for which the correspondence
principle, used in this work, cannot be applied. Several simplified models can be derived
from eqn (17). If the coefficient D is assumed to be equal to one, the material is said to be
linearly viscoelastic. Such nlaterial is amenable to a well developed viscoelastic theory,
based on the correspondence principle (Christensen, 1979). In the following, we use a
linearly viscoelastic material represented by a power law of time, for which the creep
compliance can be written

J(t) = Do + Ctl! (18)

where Do represents the elastic response, and C and n are determined by linear regression
of the logarithm of the creep data. Defining

A __ Cr(n+ 1)
J(s) = sJ(s) = Do + ,

SI1

then

A_I
E(s) = sEes) = J(s) ,

from which the Lanle functions of the matrix in the transformed domain are

flo = 2(1 +vo)'

(19)

(20)

(21)

(22)

Introducing these expressions in eqn (14), the coefficients of the relaxation tensor are
.obtained as functions of the Laplace variable s. The inversion to the time domain is done
nun1erically (Bellman, 1966) using J-Jegendre polynomials to find N discrete values of the
solution. Then, a po\ver lav,l is fitted to these N discrete points using a chi-square goodness­
of-fit statistical test. The initial value theorem is used to obtain the elastic response. For
exalnple, we consider a graphite-epoxy cOlnposite Inaterial containing transversely isotropic
fibers (T300 graphite) represented by the [oHowing properties (Yancey and Pindera,
1990) :
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Fig. 2. Coefficient CTI (t) of the relaxation tensor.

EA == 29.42 X 106psi

ET == 3.6 X 106 psi

VA == 0.443

VT == 0.05

G == 6.40 X l06 psi

Vr == 0.62 (23)

and a viscoelastic Inatrix, represented by a power law with Do == 1.53 1/(106psi), C == 0.093
1j(106psi-min), n==0.17, and vo==0.311. The experilnental data (y-rancey and Pindera,
1990) are available for only 120 min. Plots of the components of the relaxation tensor are
shown in Figs 2-7 for variolls values of fiber volume fraction. The cOlnponent Cft in Fig.
2 is divided by the fiber volume fraction Vr to be able to sho'" all results in a single figure.
The values of Cf~ 1 of the fiber are included for comparison. It can be noted that
Cfl j Vr~ c~ 1 when Vr == 0.62, but as Vrdecreases, the contribution of the tnatrix beC0111eS
more important and the curves of CTI / Vr beco111e separated fro111 the fiber value Cf} l' The
relaxation of the matrix is included in Fig. 3 for c0111parison. The effect of the reinforcen1ent
results in larger values of Ci2 for larger values of Vr. Ho~wever, the relaxation rate with
time is very similar to that of the Inatrix. Sin1ilar observations can be drawn for the
remaining components of the relaxation tensor.
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Fig. 3. Coefficient C5.2 (1) of the relaxation tensor.
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Fig. 5. Coefficient C~3 (t) of the relaxation tensor.
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Fig. 6. Coefficient C:4 (t) of the relaxation tensor.

5. TRANSVERSELY ISOTROPIC COMPOSITE MATERIAL

Because of the periodicity of the microstructure, the relaxation tensor C*(t) for a
unidirectional composite represents an orthotropic material with square symmetry. In the
case considered in Section 3, .the directions X2 and X3 are equivalent and the relaxation
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Fig. 7. Coefficient C~6(t) of the relaxation tensor.

tensor is unchanged by a rotation about Xl of nn/2 (n = 0, ±1, ±2 . ~ .). This implies that
only·six components are required to describe completely the tensor.

In order to obtain a transversely isotropic relaxation tensor C*TI(t), equivalent in an
average sense to the relaxation tensor with square symmetry, the averagtng procedure
proposed by Aboudi (1991) is used. Then, the following expressions are obtained explicitly
in terms of the coefficients of the tensor C*(t) described in Section 3 :

C I tT1(t) = Cfl (t)

ClfT1(t) = Cf2(t)

C2f T1 (t) = ~C~2(t) +~C~3 (t) +~C:6(t)

C2tT1 (t) = ~C~2(t) +~C~3(t)-~C:6(t)

C4tT1 (t) = ~ (C~2 (t) - C~3 (t) )

C6l T1 (t) = Ct6(t). (24)

6. CREEP COMPLIANCE

The creep compliance in the Laplace domain can be obtained from the relaxation
moduli [eqn (14)] by using:

(25)

Plots of the components of the creep compliance tensor are shown in Figs 8-13. The
compliance of the matrix is included in Fig. 9 for comparison. It can be noted that the'
reinforcement changes the creep behavior even at low values of the fiber volume fraction.
The effect of the volume fraction is consistent among all the results presented in Figs 8-13.

7. COMPARISONS WITH EXPERIMENTAL RESULTS

Comparisons with experimental results are presented in this section for epoxy 934
reinforced with a 62% fiber volume fraction of T300 graphite fibers. Yancey and Pindera
(1990) measured the viscoelastic properties of 934 epoxy resin at two temperatures [NR:
room temperature (72°F) ; NE: elevated temperature (250°F)], as shown in Table 1.
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-0.02 -,--------------'---------,11------------ 111_ .._ ..
-0.025 -t- H H H H H H H HH ..HH·..H .. H•. H ·H H H H H ·H H·· H· ..•· .. · .. H H..H_HH H.H.H H·l

,....-,
"U).€ -0.035 + HH .. H _ .. H HH H H H H H _ _ _._· • • ·_·..• .. • •.. •.. •.. • •.. •• • -1

~
N -0.04 -!- H H H H H H HH ··H· ·.H H·H · ·.H HH H ..• •.. •.. ···· .. · .. ·• • • I

~

en -0.045 -l- H H HH H•.. ·······H· ···•· ..•· ..H.···H·.·· ··· H .•.. H H H H H H _ _ j

62%

400/0

20%

-0.05 + H HH H H HH _ HH H _ _ H j

1E31E2

v "VO"OM --

1E-2 1E-1 1EO 1E1
time [min]

Fig. 10. Coefficient - Sf2 (t) of the creep tensor.

-0.055 ~f-H-H+ttI--t-++I+++tt--+-t-H+t+Ift--t--H-I-++tH--I-IH-.......tH~+H-+-H+++tH

1E-3

The fiber is T300 graphite with properties back calculated from composite properties
so that the micromechanic predictions of the method of cells (Aboudi, 1991) used by
Yancey and Pindera (1990) fit the experimental data. Minor discrepancies between the
experimental results and the model results presented in this work can be attributed to the
fact that the fiber properties were back calculated to fit exactly Aboudi's model (1991) and
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Fig. 12. Coefficient S t4 (t) of the creep tensor.
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Fig. 13. Coefficient St6 (t) of the creep tensor.

not the initial response of the periodic microstructure model presented in this work. The
fiber properties (Yancey and Pindera, 1990) are shown in Table 2.

The predictions obtained with the present model, using the properties given in Tables
1 and 2, are compared with the experimental data in Figs 14-17. The experimental data,
available only up to 120 min, were obtained from tests performed on coupons with fiber

SAS 32: 13-E
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Table 1

NR NE

Do(ljl06psi)
C (ljl06psi-min)
n
Vo

1.530
0.093
0.170
0.311

2.05
0.173
0.200
0.317

Table 2

NR NE

EA(106psi) 29.42 31.09
ET (106psi) 3.67 2.15
VA 0.443 0.450
VT 0.05 0.05
G (106psi) 6.40 9.89

•

c

NE experiment

NE model

NRmodel

NR experiment

40 60 80 100 120
time [min]

20

10 deg.

-
~L: - - - - -
I

o
o

0.03

0.15

0.12

~. 0.06
C/)

......
"USE 0.09
"'­
~.......

Fig. 14. Comparison with experimental results of axial creep response in the global system of
axes (10°).
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NE experiment.
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~ 0.4 l.-,....._~-.......--....----------........-----.....
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o 20

Fig. 15. Comparison with experimental results of axial creep response in the global system of
axes (45°).

orientations of 10°, 45° and 90°, as indicated in Figs 14-17. Since experimental results for
8 66 from tests at 10° and 45° are almost coincident, all the data are collapsed in Fig. 16.
While the compliance of the composite at 10° from the fiber direction Sxx is fiber dominated,
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Fig. 16. Comparison with experimental results of shear creep response in the material system of
axes (10° and 45°).
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Fig. 17. Comparison with experimental results of transverse creep response in the material system
of axes (90°).

the compliances 866 (inverse of the in plane shear modulus) and 822 are matrix dominated
properties (Figs 16 and 17). The comparison presented demonstrates the ability of the
proposed model to represent the viscoelastic behavior of fiber-reinforced composite
materials.

8. CONCLUSIONS

Analytical expressions for the Laplace transform of the relaxation and creep tensors
of composite materials reinforced with transversely isotropic fibers and linear viscoelastic
matrix are presented. Numerical inversion to the time domain was implemented along with
a power law representation ofthe matrix creep. Good agreement with available experimental
data is obtained. The interaction effects between the constituents and the geometry of the
inclusions are fully accounted for by the micromechanical model used.
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