
Thin-Walled Structures 18 (1994) 97-116

Local Buckling Experiments on FRP Columns

John Tomblin & Ever Barbero

Mechanical and Aerospace Engineering, Constructed Facilities Center, West Virginia
University, Morgantown, WV 26506-6101, ·USA

(Received 31 July 1991; revised version received 3 March 1992; accepted 16 June 1992)

ABSTRACT

In this paper, local flange-buckling of thin-walled pultruded FRP columns
i~investigated. Experimental data are presented and correlated with theo­
retical predictions. Good agreement between theoretical and experimental
results is found. Possible explanations for slight deviations in the experi­
mental data are advanced. The experimental and data reduction procedures
used to obtain the local buckling loads are presented. A new data reduction
technique using Southwell's method is developed to interpret local buckling
test data. The usefulness of the data reduction technique is demonstrated
for various column sections and experimental conditions.

1 INTRODUCTION

Pultruded composite beams and columns are being extensively used for
civil engine.ering structural applications. They have many advantages over
conventional materials (steel, concrete, wood, etc.), such as light weight
and high corrosion resistance. Mass production of composite structural
members (e.g. by pultrusion) makes composite materials cost-competitive
with conventional ones. In the pultrusion process, fibers and polymer
resin are pulled through a heated die that provides the shape of the cross­
section to the final product. Pultrusion is a continuous process for the
production of prismatic sections of virtually any shape. 1 Other mass
production techniques like automatic tape layout can also be used to
produce prismatic sections.
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Pl.lltruded structural members have open or closed thin-walled cross­
sections. For long composite columns, overall (Euler) buckling is more
likely to occur before any other instability failure. For short columns,
local buckling occurs first, leading either to large deflections and finally to
overall buckling or to material degradation due to large strains (crip­
pling). For intermediate lengths, interaction between local and global
bucl<ling and possibly material degradation may occur. Because of the
large elongation to failure allowed by both the fibers and the resin, the
composite material remains linearly elastic for large deflections and
strains, unlike conventional materials that yield (steel) or crack (concrete)
for moderate strains. Therefore, buckling is the governing failure for this
type of cross-section and the critical b"llckling load is directly related to the
carrying capacity of the member.

For a composite column, the ela~sical bucklip.g theory2 in combination
with basic concepts of the classical lamination -theory3, 4 are applied in
order to determine the bending ~tiffness of the Golumn5 and the critical
buckling load.6 In the case of short columns, Euler's theory cannot be
applied because short column buckling failure is associated more likely
wtthl()caJbuckling (Le. buckling of a part of ·the cross-section of the
column) or material failuf~ that may be encountered before any instability
failure. A very short colplTIll, of solid cross-section with thin parts, such as
wide flange I-beams and box beams, is considered herein.
- The problem of local buc~ling has already been considered for steel
cross-sections and considerable research has been done in this area in
order to increase the carrying capacity of a steel member against local
buckling by introducing stiffeners. 7 An analytical solution for local buck­
ling of pultruded composite columns6 is used in this work. Other alter­
natives are to use the Finite Strip method8 or the Finite Element Method.9

Experimental results on FRP columns for cooling towers were presented
by Yuan. 10

In almost any experimental test, the validity of the test somewhat relies
on the workmanship of the testing apparatus and material being tested.
This is particularly true in a buckling test where a high state of instability
exists. Due to the manufacturing process of pultruded fiber reinforced
plastic (FRP) beams, imperfections in the final beam composition are
impossible to control to any reliable estimate. These imperfections will
playa large role in any buckling experiment.

2 DATA REDUCTION IN LONG-COLUMN BUCKLIN-G

This section provides the background for the proposed data reduction
method for local buckling described in Section 3. In any buckling experi-
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Fig. 1. Experimental curves for a column with initial imperfections.
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(1)

ment, particularly one using FRP sections, the theoretical critical load of
the column is almost never achieved due to material imperfections. The
resulting load-deflection curve will have the form represented in Fig. 1. Its
maximum is very difficult to obtain experimentally and it may not have a
close .correscpon.d.ence with the theQretical critical .1oa.dPcr...Thus, it
becomes necessary to make use of the method proposed by Southwell ll

, 12

which takes into account the load reduction resulting from such imper­
fections.

2.1 Southwell's method

The governing equation for an axially loaded column in terms of the
deflection wand an imperfection wo , both measured from the line of
application of the load, is

(
d

2
W d2Wo)

D. dx2 - dx2 + Pw = 0

Provided that Wo vanishes at each end of the column, a general solution
of eqn (1) may be obtained by expressing wand W o in terms of a Fourier
series, assuming wand »'0 will be continuous functions of x:

00 [ nnx]w= L Ansiny
n=l

00 [_. nnx]
wo = ~ AnSlll y

(2)

(3)

By substituting eqn (2) and (3) into eqn (1), the following relation is
found:
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(4)A - An
n-

l-~
Pn

where Pn represents the critical load of the nth mode. The true deflection
measured with respect to the centroidal axis of the column (or middle
surface of the flange) is ~ == W - WOo In the case of no interaction among
modes, one modes dominates and ~ reduces

(5)

(6)

or

~ 1 AI. nx- == - ~ + - SIn -
P PI PI L

Equation (5) relates the deflection ~ to the increasing load P. This
equation also repre~ents a rectangular hyperbola h-avingthe axis ~ == ~'Al

and the horizontal line P == PI ,as asymptotes (Fig. 2). Equation (6)
represents a linear relationship between ~/P and ~ with the inverse of the
slope representing the critical buckling load and the ~-intercept repre­
senting the apparent imperfection (Fig. 3).

Southwell's method may also be extended to cases which also take into
account real imperfections of the beam, eccentricity at the ends, the
beam's own weight, and transverse lateral load, 13,14 all of which have the
same effect when analyzed by Southwell's method. On all accounts, the
load will not pass exactly through the centroid of the section and the
column will be subjected to bending actions and lateral deflections from
the first application of load. Southwell's method is extended in the next
section for data reduction of local-buckling test data.

3 DATA REDUCTION IN LOCAL BUCKLING

Although Southwell's method was developed for the long column (Euler)
case, application to short columns, tested in the manner described above,
appears to be possible. As will be seen in following sections, measurements
taken on the flanges during a local buckling test fallon the same hyper­
bolic curve as shown in Fig. 2. Thus, when this curve is linearized, the
slope of the res-ulting straight line will give the inverse of the critical load
as shown in Fig. 3.
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Fig. 2. Hyperbolic D.-P plot with asymptotes P == PI and D. == -~.
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Fig. 3. Linearized D.-D./P plot with slope 1/PI and intercept -~.
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A major question in the application of the proposed data reduction
method to the local buckling measurement is the placement of the gauges
with respect to the buckled mode shape. As in the classical Southwell's
method, the most lo"gical gauge placement will be in the center of a buck­
ling wave in the sample being tested (where the maximum deflection can
be obtained with respect to the compressive load). But, in local flange
buckling tests, the convenience of being able to properly place a gauge in
the center of a wavelength is impossible due to the unknown buckled
shape.

For example, a typical buckled flange with three gauges placed along
the wavelength L' is shown in Fig. 4. Recalling eqn (6), the deflection is
dependent upon the position x of the gauge with respect to the wavelength
L'. Hence, with respect to Fig. 4, eqn (6) becomes

~ 1 AI. nx
- == - ~ +- sIn -
P PI PI L'

(7)

When this linear relation is plotted, the slope of the straight line is the
inverse of the critical load (1/PI) and the intercept is the initial deflection
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Fig. 4. Section of buckled flange with wavelength L lf
•

or imperfection, in this case A] sil1(nxIL). When several gauges from the
same test are linearized and placed on the ~-~IP plot, the resulting lines
will fall on lines similar to those represented in Fig. 5.

As shown in Fig. 5, even though all lines have different intercepts
(different values of the wavelength position x), the slope remains constant
at liP]. Hence, the critical load can be obtained regardless of the gauge
position with respect to the wavelength. This is very important because of
the following: if only one displacement transducer is available, its output
can be used regardless of its location with respect to the unknown location
.of the maximum deflection of the buckled flange. If several displacement
transducers are available, their output can be used without further
complications introduced by the uncertainty of wavelength and wave
location. It should be noted that the quantity A] sin(nxlL) will be very

a
p

Slope
remains
constant

Fig. 5. Linearized plot showing slope independence with respect to dial gauge placement.
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small due to the fact that the initial deflection is not apparent in the
column, but initial imperfections in the material exist. It should also be
noted that in the extreme case when little or no measurement is recorded,
the gauge may be positioned at inflection point x == 0 or L. In this case,
the measurements taken from the gauge should be neglected for the
Southwell analysis.

4 ANALYSIS OF EXPERIMENTS

Local flange buckling of an axially compressed column plays an important
role in the load carrying capacity of the member. Since deformations in
the flange during local buckling can be quite large, they can induce mate­
rial damage. Therefore, the local buc'kling load can be used as a failure
criterion for the entire column.

In this section, the local flange buckling behavior of pultruded compo­
site wide flange I-beams is studied. A theoretical orthotopic plate model
based on the Levy method with one free and one elastically restrained
ed~ge was used to predict the behavior of the test specimens.6 For each
section being tested, three cases were considered for the elastic spring
constant d representing the amount of elastic support provided by the
web: clamped(d~ (0), elastic (d == D~EB) and hinged (d == 0). As shown
'by Raftoyiannis,15 the elastic supported boundary condition d == D~EB
best approximates the true boundary conditions which exist in the wide
flange I-beam. Thus, any experimental loads will be compared to the
elastically restrained case.

In addition to the'theoretical curves, numerous experimental tests were
performed on each wide flange I-beam section. At least three tests were
done on each section with lengths corresponding to mode II, III and IV of
the theoretical local buckling curves. Dial gauges were placed along the
flanges and measurements of the flange deflection and load were obtained.
A scheme based on Southwell's method, as described in Section 3, was
used to reduce the data and determine the critical load. All experimental
loads appear to be in good agreement with the theoretical predicted value.

4.1 Experimental setup and procedure

The flange local buckling tests were performed using a Baldwin test
machine to apply the axially compressive load to the specimens. Various
column lengths were cut, depending on the specific section being tested.
The FRP beam specimens were manufactured and supplied by Creative
Pultrusions, Inc. I Local buckling tests were conducted using the following
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doubly-symmetric wide flange I-beams: I02mm x 102mm x 6·4mm
(4" x 4" x 1/4"); 152mm x 152mm x 6·4mm (6" x 6" x 1/4");
152mm x 152mm x 9·5mm (6" x 6" x 3·8") and 203mm x
203 mmx 9·5 mm (8" x 8" x 3/8"). Table 1 shows the flange properties
for eachFRP section along with the elastic support provided by the web.
Using the properties for each section, Figs. 6-9 show the theoretical
buckling curves predicted by the Levy solution6 along with the overall
(Euler) buckling curves. Note that in Figs 6-9, the plots were nondi­
mensionalized by the flange width and the local buckling load (listed
below in Tables 2-4) for each section.

.Since all the lengths and sections were to be loaded into compression, it
was very important to check that all cuts made were perpendicular to the
column length. This was done to ensure that the cross-section was loaded
uniformly.

To distribute a uniform load from the Baldwin machine, a thick steel
plate was used at both ends. In addition to the steel plate, a protective grid
constructed from 25·4 mm (I") steel square bar was mounted to the plate.

TABLE 1
Flange Properties and Web Support for Each Wide-Flange I-Beam Section (note:

D l6 == D26 == 0 for all flanges

Section D 11 D I2 D 22 D66 DWEB
22

(nl111) (N em) (N em) (N em) (N em) (N em)
[x 103 j [x 103 j [xl03 j [x103J [xl03 j

102 x 102 x 6·4 45·04 8·218 20·88 6·664 20·74
152 x 152 x 6·4 48·46 9·121 22·92 7·248 21·05
102 x 102 x 9·5 157·1 26·71 68·71 22·23 67·11
203 x 203 x 9·5 161·3 26·82 69·09 22·39 67·52
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Fig. 6. Experimental loads for modes II, III and IV compared with theoretical curves for
the 102mm x 102mm x 6·4mlTI (4" x 4" x 1/4") WF I-beam.
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Fig. 7. Experimental loads for modes II, III and IV compared with theoretical curves for
the 152mm x 152mm x 6·6mm (4" x 6" x 1/4") WF I-beam.
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Fig. 8. Experimental loads for modes II, III and IV compared with theoretical curves for
the 152mm x 152mm x 9·5mm (6" x 6" x 3/8") WF I-beam.

2.0 ....-------------,

1.5

-I
-I
10 20

o '-----'---"-~~.........>-..-~-.....-......-------............

I

L / b

Fig. 9. Experimental loads for modes II, III and IV compared with theoretical curves for
the 203 mm x 203 mm x 9·5 mm (8" x 8" x 3/8") WF I-beam.
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Specimen

Protective
Grid

Base Plate

Fig. to. Experimental setup showing base plate and protective grid.

This protective grid surrounds the specimen on all sides, as shown in Fig.
10, to protect against lateral slippage. It should be noted that the protec­
tive grid does not allow free rotation at the ends of the column but was
needed for safety reasons. Hence, the boundary conditions are slightly
different than the simply supported case assumed in the theoretical
analysis.

Dial gauges, with 0·025 mm (0.001") accuracy and a maximum
measurem-ent of 25·4mm (I"), were used to detect the deflection of the
flanges. An average of four dial gauges were placed along the specimen
length attached to the outer edge of the flange. Figure 11 s.hows a typical
dial gauge placement along the specimen length. As seen from Fig. 11, the
dial gauges were staggered on both sides of the flanges along the length of
the column. Since the exact shape and mode of the deflected flange are
unknown, the exact longitudinal placement of the gauges was determined
randomly in a staggered pattern as indicated above. All dial gauges were
then placed into position and preset to a reading of approximately
12·7 'mm (0·5"). This presetting was done to allow the deflection of the
flange to be positive or negative, as measured by the dial gauge, since the
shape,. inflection and mode of the flange is an unknown.

The testing procedure consisted of lo.ading the column and periodically
taking measurements from the dial gauges. In the initial phases of the
tests, the stepsize of the readings somewhat depended upon the theoreti­
cally predicted local buckling load (22 kN to 44 kN stepsize). Once a
noticeable change 9ccurred in the gauges, the stepsize in the gauge read­
ings was decreased. It was also noticed that in the very initial stages of the
tests (P < III kN), the gauge readings fluctuated slightly. These changes
are not considered as buckling, but as deformations occurring while the
column was being loaded as a result of initial imperfections. Once a
certain load was reached (around P == 120 kN), the gauges stabilized and
did not move until the approach of the local buckling load. It should be
noted that these initial imperfections were not consistent in all specimens
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Fig. 11. Typical dial gauge placement along WF I-beam fl"anges (actual test shown for the
l02mm x 102mm x 6·4mm (4" x 4" x 1/4") WF I-beam).

that were tested (some specimens stabilized at or below 22 kN). All speci­
mens stabilized over an ample range of loads (133 kN to 445 kN range).
Hence, all measurements taken before the stabilized period were neglected
for the buckling analysis. "

Almost all specimens were loaded and" measurements taken until the
flange was clearly buckled by eyesight. Once the final readings were taken,
the column was unloaded. It should also be noted that in most tests,
cracking of various kinds occurred inside the columns during the test.
Thus, any attempt to reload the specimen to repeat the test will result in
lower readings for the local buckling load than in the initial test when the
material is undamaged.
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4.2 Experimental test results

Local flange buckling tests were conducted on the wide flange I-beams
listed in Section 4.1. At least three tests were done on each section. The
lengths that were tested corresponded to the theoretical length calculated
for a local buckling mode of II, III and IV. During each test, dial gauge
measurements were taken from each gauge. The results were then plotted
on a D.-P plot, in which a hyperbolic relation was obtained (see Section
2).: This curve was then linearized on a ~-~/P, in which a linear regres­
sion was done on each separate gauge measurement (see Section 3). The
average correlation coefficient calculated for each gauge measurement for
all local buckling tests was 0·99. The resulting slopes and intercepts
(regression coefficients) were averaged to obtain a general slope for the
test. The resulting critical buckling load was then determined from the
inverse of the average slope. The deviation of the average regression line
with respect to the individual regression line for a single gauge (for each
single test) was less than 1% for all tests. Hence, averaging of the slopes
e-btained from eachga-u-ge introduced a negligible error in the buckling
load. For plotting purposes, the intercepts were also averaged in order
that all gauge measurements and the average regression line could be
shown on a single plot for one local buckling test. The average intercept
for the test introduced virtually no change in any regression line with
respect to the original line due to the extremely small magnitude of the
intercept value (small imperfection).

4.2.1 Mode II results

The shortest lengths that were tested in the short column tests were lengths
corresponding to a local buckling mode II. For the theoretical mode II
lengths, the buckled flange will have a shape corresponding to two full
wavelengths. Figures 6-9 show the mode II lengths as determined from
each of the theoretical curves generated in Section 4.1, corresponding to
eac'hwide flange I-beam. Figures 12-14 show the gauge measurements
taken during the test and the resulting linear regressed line corresponding
to three of th~ wide flange I-beam sections tested. These three examples
show the behaviors observed throughout the experimental program. As
seen from Figs 12-14, all gauge measurements have a hyperbolic rela­
tionship and a resulting linear relationship for ~ and D./P. The extent of
the hyperbolic relationship was dependent on the amount of imperfection
existing in the material and varied from test to test. Table 2 shows the
length, theoretical buckling load, experimental buckling load (inverse of
the slope) and the percentage difference between the theoretical and
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Fig. 12. Mode II hyperbolic and linearized measurements for the 102 mm x
102mm x 6·4mm (4" x 4" x 1/4") WF I-beam.

experimental loads for each section tested. As seen from Table 2, the
percentage error is less than 11 % for all sections tested. With the excep­
tion of the 203 mm x 203 mm x 9·5 mm (8" x 8" x 3/8"), which may be
due to a large imperfection, all experimental loads are slightly higher than
the theoretical value. This larger load and percentage error obtained could
be a direct result of the boundary conditions assumed; in the theoretical
analysis. As stated before, the theoretical analysis6 assumes simply­
supported boundary conditions at the ends. The boundary conditions in
the test were not simply-supported but a combination of fixed and simply­
supported. This boundary condition difference can explain the higher load
obtained experimentally.

4.2.2 Mode III results

The next lengths that were tested corresponded to mode III lengths,
shown in Figs 6-9, as taken from the theoretical curves for each section
tested. For the theoretical mode III lengths, the buckled flange will have a
shape corresponding to three full wavelengths. Figure 15 shows the
hyperbolic measurements taken during the test of the
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Fig. 13. Mode II hyperbolic and linearized measurements for the 152mm x
152mm x 6·4mm(6" x 6" x 1/4") WF I-beam.

TABLE 2
Resulting Experimental Local Buckling Loads for Mode II Tests

Section (mm) Length (cm) Ptheory (kN) Pexper. (kN) % Diff

102 x 102 x 6·4 26·7 223·5 246·6 10·3
152 x 152 x 6·4 38·1 175·3 179·0 2·1
152 X 152 X 6·4 38·1 175·3 179·3 2·3
152 X 152 X 9·5 39·4 547·5 583·9 6·7
203 X 203 X 9·5 49·5 434·4 406·1 6·5

152mm X 152mm X 6·4mm (6" X 6" X 1/4") wide flange I-beam and the
resulting linear regressed line. Table 3 shows the length, theoretical buck­
ling load, experimental buckling load (inverse of slope) and the percentage
difference between experimental and theoretical loads. As seen in Table 3,
all differences were less than 9% and all loads were slightly lo.wer than the
theoretical (which could result from material imperfection). It should also
be noted that both the I02mm x I02mm x 6·4mm (4" x 4" x 1/4") and
the 152mm x 152mm x 6·4mm (6" x 6" x 1/4") tests result in errors
less than 40/0, thus proving the accuracy of the theoretical values.



Local Buckling Experiments on FRP Columns 111

420
6X DO 60 0

Xl 0 6

376 l:o 6

2'332
0 Gauge # 1

0 0 Gauge # 2
CL 288 6 Gauge # 3

x Gauge # 4
244

432

/). (mm)

200 L..--------'--_-L----'-_~__'__""""""------L._ __'

o

1E-05 .---------------.,

,-......

~ 8E-06

E
5 6E-06

- Linear Regression
c Gauge # 1
o Gauge # 2
6 Gauge # 3
x Gauge # 4

/!,./P = 2.462e-6 * (/!,.) + 5.71e-9

CL
4E-06

"-
2E-06

<l

0
0 2 3 4

/). (mm}

Fig. 14. Mode II hyperbolic and linearized measurements for the 203 mm x
203 mm x 9·5 mm (8" x 8" x 3/8") WF I-beam.

TABLE 3
Resulting Experimental Local Buckling Loads for Mode III Tests

Section (mm) Length (cm) Ptheory (kN) Pexper. (kN) % Diff

102 x 102 x 6·4 40·6 223·5 223·6 0·0
152 x 152 x 6·4 57·2 175·3 170·4 .2·8
152 x 152 x 6·4 57·2 175·3 169·1 3·6
152 x 152 x 6·4 57·2 175·3 174·3 0·6
152 x 152 x 9·5 58·4 547·5 507·2 7·3
203 x 203 x 9·5 73·7 434·4 396·8 8·7

4.2.3 Mode IV tests

The longest columns that were tested in the short column range were those
corresponding to mode IV, shown in Figs 6-9, of the theoretical curves.
For the theoretical mode IV lengths, the buckled flange will have a shape
corresponding to four full wavelengths. Figure 16 shows the hyperbolic
measurements taken during the test of the 152 mm x 152 mm x 6·4 mm
(6" x 6" x 1/4") wide flange I-beam and the resulting regressed line. Table
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Fig. 15. Mode III hyperbolic and linearized measurements for the 152 mm x
152mm x 6·4mm (6" x 6" x 1/4") WF I-beam.

4 shows the length, theoretical buckling load, experimental buckling load
(inverse of slope) and the percentage difference between the theoretical
solution and the experimental results. As seen from Table 4, allpercen­
tages are rather large (13-24%) and all loads are below the theoretical
prediction. These large differences may be a result of interaction between
long and short column ranges as shown by Tomblin. 16 The possibility of
interaction can be visualized in Figs 6-9 from the length of the column in
mode IV being close to the column length at the intersection of the local
and Euler buckling curves.

4.3 Experimental observations

During the testing and data reduction procedure, varIOUS observations
were made as follows:

(1) All gauges had small movements from the initial application of load
and then stabilized at a load (P:S III kN) until flange buckling
occurred. The stable range was large (133 kN to 445 kN).

(2) In several cases one flange buckled before the other, which may be
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Fig. 16. Mode IV hyperbolic and linearized measurements for the 152 mm x
152mm x 6·4mm (6" x 6" x 1/4") WF I-beam.

TABLE 4
Resulting Experimental Local Buckling Loads for Mode IV Tests

Section (mm) Length (em) Ptheory (kN) Pexper. (kN) %Diff.

102 x 102 x 6·4 54·6 223·5 180·8 19·1
102 x 102 x 6·4 54·6 223·5 222·4 5·0
152 x 152 x 6·4 76·2 175·3 143·0 18·4
152 x 152 x 6·4 76·2 175·3 148·8 15·1
152 x 152 x 6·4 76·2 175·3 161·8 7·7
152 x 152 x 6·4 76·2 175·3 152·0 13·3
152 x 152 x 9·5 77·5 547·5 455·3 16·8
203 x 203 x 9·5 100·3 434·4 329·2 24·2

caused by imperfections existing in that flange. However, this
phenomenon did not affect the value of the critical load due to the
use of the data reduction method proposed herein.

(3) When flange buckling occurred, all gauges had movement without
extra addition of load. Thus, possible human error in gauge readings
may exist. However, the dispersion of values and correlation with
theoretical prediction are very good.
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(4) InthecaseoftheI52mm X I52mm X 9·Smm{6" X 6" X 3/8") and
the 203 mm X 203 mm X 9·5 mm (8" X 8" x 3/8") sections, only a
few gauge readings could be obtained. This was due to the fact that
once buckling occurred, the column experi~nced loud cracking and
large gauge movements. This, in combination with the high load,
made the total failure of the column progress very quickly and made
manual reading of the gauges difficult.

(5) "During the testing procedure, in the case in which no changes in the
gauge readings are obtained (i.e., gauge positioned at an inflection
point), the gauge readings must be neglected in the regression
analysis. However, during all the testing done on all the FRP
sectio"ns, this was encountered only twice.

(6) Mode IV tests produced the highest degree of error between
experimental loads and theory. These discrepancies are due to
interaction existing between the local and global buckling modes as
shown by Tomblin. 16

(7) Although the proposed method accurately determines the local
b-uckling of the flan-ge, all FRP col-u-mns tested exhi-bi-t€d·a C€f-ta-i-n
degree of post-buckling stiffness. Hence, the total ultimate strength
of the column is greater than that predicted by just the local buckling
analysis. However, it should be noted that in most cases, permanent
damage of the section occurred via internal cracks, delamination,
etc., as was evident when the column was reloaded.

(8) Due to the instrumentation employed, no measurement of the post­
buckling wavelength was possible.

Figures 6-9 show the experimental load obtained plotted with the
theoretical curves for each section. As seen from these figures, good
agreement with the elastically restrained theoretical load exists.

5 CONCLUSIONS

The local flange buckling load obtained experimentally appears to be in
good agreement with the theoretical loads for each wide flange I-beam
section tested. As shown in Tables 2 and 3, all percentage differences
between the theoretical and experimental loads are below 11 %. The large
percentage differences experienced in the mode IV test reported in Table 4
should be further investigated. Measurements of the post-buckling wave­
length should be attempted.

A novel method to obtain the local buckling load based on Southwell's
method was developed. As can be seen in the linearized ~-~/P plots, all
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measurements fall close to the regressed straight line with very little data
scatter. Thus, by using this method in local buckling tests of pultruded
beams, one can account for the material imperfections common in the
pultrusion manuf~cturing process.
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