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Based on generalized laminate plate theory, the formulation of a one-dimen­
sional beam finite element with layer-wise constant shear (BLCS) is presented.
The linear layer-wise representation of in-plane displacements permit accurate
computation of normal stresses and transverse shear stresses on each layer for
laminated beams with dissimilar ply stiffnesses. The BLCS formulation is
equivalent to a first-order shear deformation beam theory (Timoshenko beam
theory) on each layer. For the accurate computation of interlaminar shear
stresses, the layer-wise constant shear stresses obtained from constitutive
relations are transformed into parabolic shear stress distributions in a post­
processing operation described in detail. The accuracy of the BLCS element is

.demonstrated by solving several numerical exampl~s reported in the literature.
While retaining the simplicity of a laminated beam theory, the element predicts
results as accurate as much more complex elasticity analyses, and it is suitable
to model frame-type structures.

1 INTRODUCTION solution of a simply supported beam under
uniform load. However, the drawback of this

In Bernoulli-Euler (classical) and Timoshenko theory is that the stresses, derived from a specific
(first order shear deformation) beam theories, a loading condition and from which strains are esti-

,plane section through the cross-section is mated, are not necessarily valid for an arbitrary
assumed to remain plane after deformation. This loading condition. Including the transverse shear
assumption is sufficiently accurate for isotropic strain and nonclassical axial stress, Krishna
beams and for layered composite beams with plies Murty4 formulated a beam theory in which a para-
of similar stiffnesses, but it leads to serious dis- bolic shear stress distribution across the depth
crepancies with the actual state of stresses in of the beam is obtained from the constitutive
laminated beams when one or more layers have equation.
quite different stiffnesses. To more accurately A three-dimensional elasticity solution for
represent the actlial response of isotropic or lami- ~ymmetrically laminated rectangular beams is
nated beams, various explicit and numerical solu- given by Cheng et al.,5 where each layer of the
tions have been proposed, as described next. beam is, assumed to J>e hom9ge~eQUs, transversely

Rao and Ghosh1 presented a pla~e stress elas- isotropic, and unidi:rectionallY.~;i;eiftforced. The
ticity solution of a laminated beam using Airy's explicit solutioQ.,;\Va's:,follnd ,by using'the equations
stress function. Through a strength-of-materials of equiliqrium 'and;::poul:i~~'ry condi~ions, and by
approach, Levinson2 included warping in such a determining the fi~o\Vn coefficients .. in the
way that satisfies the shear-free boundary condi- assumed displacement' 'and stt€SS functions; a
tions on the surfaces of the beam, obtaining a pair procedure: ,kn6wn;:~ .~s the semi-inverse method
of coupled equations of motion. The theory cou'ld (Timo~h~nko6). The .solution ...}Vas app~~~p to a
not, however, provide accurate resuits for a cantilever beam with a C9~centrated load at the
simply supported beam with uniform load. tip and to a simply supported or clainped beam
Rehfield an.d Murthy3 formulated a beam theory with a concentra~ed load at midspan..
that includes the effects of transverse normal Recent research has focused on the removal of
strain, transverse shear strain, and nonclassical the restriction of plane sections by introducing
axial stress with the help of a plane stress elasticity higher-order terms (mainly ,.thi:\}l-o!~~er) in the
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kinematical description of the displacement field
(Reddy7); an approach known as higher-order
shear deformation theory (HSDT). In HSDT, the
shear stress distribution through the cross-section
is non-linear, and therefore a shear correction
factor is not needed in the constitutive equation.
Reddy8 present~d a generalized formulation of
higher-order laminate plate theory (GLPT) which
can be specialized to a number of particular
theories, such as Reddy et al.9 Incorporating
linear transverse normal strain and quadratic
transverse shear strain through the thickness of a
beam, Kant and Gupta IO developed a higher­
order beam theory and implemented a CO finite
element with four degrees of freedom per node;
convergence was very slow with the two-node
finite element. Assuming transverse incompres­
sibility, Kant and Manjunath11 developed a set of
higher-order displacement models in which the
longitudinal displacements through the thickness
can be expressed with up to cubic functions. The
models were implemented for a CO four-node,
cubic finite element, where the interlaminar trans­
verse normal and shear stresses were computed
from. stress equilibrium equations. Using a dis­
placement function similar to that proposed by
Levinson2 and following Reddy7 for the deriva­
tion of equilibrium equations, Gordaninejad and
Ghazavi 12 developed a laminated beam theory
with a mixed finite element discretization; the
theory includes a second derivative of transverse
displacement in the strain component and
requires C I-continuity, which is not computa­
tionally efficient. Yuan and Miller I 3 derived a five­
node finite element with a total of 16 degrees of
freedom (dof) under the assumption of a cubic
variation of the in-plane displacement through the
thickness. Based on this element, a laminated
beam element of N layers with a total of 9N + 7
dof was later developed. I4 Surana and NguyenI5

extended HSDT to arbitrarily curved two-dimen­
sional beam elements; their formulation allowed a
variable order of approximation (p~version) in the
transverse direction, including transverse normal
strain. A thorough discussion of shear deforma­
tion theories is presented by Noor and Burton l6

and Kapania and Raciti. 17

Computation of accurate inter- and intra­
laminar stresses are important, because these

stresses can cause delaminations and initiation of
failures in the laminates. Based on force and
moment equilibrium and the principle of mini­
mum complementary energy, Kassapoglou and
Lagace18 presented a method to compute the
three-dimensional stress state in a symmetric
laminate plate under uniaxial load. Lajczok19

applied a finite difference technique to the com­
putation of the derivatives of strains and curva­
tures obtained from MSCjNASTRAN. The
derivatives are substituted into the equilibrium
equations, from which the interlaminar shear
stresses are computed. Using equilibrium and
compatibility of stresses and assuming a parabolic
shear stress distribution through the thickness of
each layer, Chaudhuri and Seide20 presented a
method to compute the interlaminar shear
stresses for a quadratic laminated triangular ele­
ment. Similarly, Reddy et al.,9 described a layer­
wise computation of shear stresses for laminated
plates by integrating the equilibrium equations
and using the in-plane stresses obtained from the
finite element solution.

In the present study, a I-D laminated beam
finite element with layer-wise constant shear
(BLCS) is formulated based on GLPT. The
formulation of BLCS is much simpler than that of
a similar N-Iayer beam element developed by
Yuan and Miller.21 The layer-wise representation
of in-plane displacement in BLCS permits accu­
rate computation of normal and shear stresses on
each layer for laminated beams with dissimilar ply
stiffnesses, and the model allows for discontinuity
in strains at layer interfaces. Plane stress and
transverse incompressibility on each layer is
assumed. The in-plane displacements are
assumed linear on each layer, and the transverse
displacement is constant through the thickness.
The layer-wise constant shear stresses obtained
from constitutive relations are transformed into
parabolic distributions, following an approach
similar to that presented by Chaudhuri and
Seide20 and Reddy et al.9 The model can predict
the linear elastic behavior of straight cross-ply
laminated beams with rectangular cross-sections
consisting of symmetric or asymmetric laminates.
Various numerical examples are solved, and the
results are compared with other solutions pre­
sented in the literature.
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2 LAYER-WISE CONSTANT SHEAR BEAM THEORY

Assuming transverse incompressibility and layer-wise representation of in-plane displacement (Reddy et
. aI.9), the displacements of a point in a laminated beam can be written as

u1(x,z)=u(x)+U(x,z), uz(x,z)=w(x) (1)

where u and ware, respectively, the longitudinal and transverse displacements of a point on the reference
axis of the laminate, and U(x, z) is a function whose value is zero on the reference axis of the beam (Fig. 1):

U(x,Z=O)=O (2)

The function U(x,z) represents layer-wise in-plane displacements and is approximated by continuous
known functions ¢j(z) and undetermined coefficients U j(x):

n

U(x,Z)= I Uj(x)¢j(z)
j= 1

(3 )

where ¢j(z) are any continuous functions that satisfy the condition

¢j(O)=O forallj= 1,2, ... ,n

A finite element approximation of the in-plane displacement through the thickness can be obtained from
eqn (3) using Lagrangian interpolation functions (see Barbero22 ). In BLCS, a layer-wise linear representa­
tion of in-plane displacements is used. The constitutive equation for a lamina, obtained from the trans­
formed stress-strain relation of an orthotropic lamina under the assumption of plane stress (x-y plane)
and without the transverse normal component (Jones23 ), can be written as

~ -ax QII QI2 Q'16 0 0 -ex

ay QIZ Q22 Q26 0 0 cy

axy QI6 Q26 Q66 0 0 JIxy (4)
ayz 0 0 0 Q44 Q45 YyZ

axz 0 0 0 Q45 QS5 YXl

z

deformed section
( layer-wise 'plane )

layer N

layer 1

u(x)
=I

reference axis

w(x)

x

Fig. 1. Laminated beam geometry and displacement components.
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In beam theory it is generally accepted that the following stresses are negligible: ay = ayz = O. Furthermore,
for a cross-ply lamina, axy = O. Imposing these conditions in eqn (4) and solving for the non-zero stress
components, we obtain

where

axz = Gxzyxz (5)

- 2
Q45 -

Gxz = ----+ QS5
Q44

(6a)

Integrating ax and axz in eqn (5) through the thickness of an N-Iayer laminated beam, the resultant forces
can be derived as.follows:

f
h/2 du N. dJ

Nx=b... axdz=bAl-+bIB~- )
-h/2 dx j= 1 dx

f
/1/2 dw N .,

Nxz = b oxzdz= bA2 -+ b IBiuJ

- !l/2 dx j= 1

f
l1/2 . N -j. " du .. du

NJ=b a A/dz=bBJ-+b~ D lJ -x xr 1 ~ 1
- h/2 dx j= 1 dx

. fh/2 d~j . dw N ...
N J = b 0 _r_ dz= bBJ -+ b ~ D 1J _J

xz xz 2 ~ 2 U
- h/2 dz dx j= 1

where b is the width of the beam. Expressed in matrix form, eqns (6) become,

[Z:J = b[~' ~J :: + bjt, [~~ ~J {~}
dw

(6b)

(6c)

(6d)

(7a)

where

du

dx

dw

dx

N [Djk
+bI 1

k=l 0
(7b)
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for all i,j= 1,2, ... ,N

The above presentation completes the derivation of the constitutive equations of the theory. In the follow­
ing section we present the finite element formulation.

3 BLCS FINITE ELEMENT FORMULATION

The generalized displacements of the finite element are expressed in terms of nodal displacements using
interpolation functions:

m

(u, W, uj) = L Hi( Ui, Wi' U{)
i= 1

(8)

where Hi are the interpolation functions for the element, and m is the number of nodes per element. The
displacement vectors in BLCS are expressed as

{~O} T = {U 1 WI .. .Urn W rn }, {~j} = {Uj}

where the superscript 0 refers to the value at the reference axis. Thus, the strain-displa_cement relation is
defined as

{eO} = [BL] {~O}, {ej } = [BL]{~ j} (9)

The compatibility matrices [BL ] and [BL] expressed in terms of the interpolation functions are

aH1 0
aHz 0

aHm 0ax ax ax
[BL ] aH1 aH2 aHm(2x2m)= 0 0 0ax ax ax

(10)

The element model can now be derived using the equilibrium condition. Based on the principle of virtual
work, the equilibrium equation can be obtained from

f oae dv = f[08 dv +JtiO/)' ds
v v s

where It are body forces and t j are surface forces. Neglecting body forces, the external work done by
applied forces becomes

(11 )
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(12)

where {F} includes transverse (fz) and axial (fx) force vectors applied at the reference axis, and {F~}

contains axial (fx )-force vectors applied at the laminate interfaces. Then, eqn (10) can be written as

f
LJh/2 !~ ° ~ i ) Nb {axaxz } oex+o;x; dzdx-{o~O}T{F}- 2:{o~j}T{F~}=O
° -h/2 Yxz -f Yxz j = 1

The virtual strains are expressed as

~ 0 ~ ;=dOw ;'~Ujd~i
uyxz + uyxz + ~ u

dx j=I dz
(13)

Substituting eqn (13) into eqn (12) and using eqns (6), we have

J
L N N

o[{ be°) T{N} +j~{oe
j
}T{N

j
}] dx- {o~o} T{F} - j~{d~j} T{F~} = 0

where

dou

dx
, {~Ej} =

dow

dx

and from eqn (7) and eqn (9), the resultant force vectors are

N

{N} = b[A][BL]{L\ o} + b 2: [Bi][BL]{L\/}
i= 1

N

{Ni } = b[IJ/][BL]{~O} + b 2: [D ik ][BL]{L\ k}
k=1

By substituting eqn (15) and the virtual strain vectors from eqn (9) into eqn( 14), we have

(14)

(15)

(16)

Expanding the summations in eqn (16), we obtain N simultaneous equations for the element model as
follows:

[A J ] [B I ] [B2 ] [BN] {L\ o} {F}
[B1]7 [D Il ] [D 12 ] [DIN] {L\ I} 1 {F;}

(17)-
b

[BNrT [DN1 ] [D N2 ] [DNN] {L\N} {F~}

where

fL

[Ad = I [BLf[A][BLl dx
Jo
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[Bi]= f)BLf[Bi][BL]dx

[Dii]= f)BLlT[Dii][Bd dx

The dimensions of [At], [B;] and [Dij] are (2m x 2m), (2mX m), and (m X m) respectively. Therefore, the
total degrees of freedom per element are 2m + mN. The layer-wise constant shear stresses are" trans­
formed into parabolic distributions, as discussed next.

4 COMPUTATION OF"PARABOLIC SHEAR STRESS

Based on the suggestions given by Chaudhuri and Seide20 and Reddy et al.,9 the layer-wise constant shear
stresses are transformed into parabolic distributions. The stresses at the ith layer are obtained from
constitutive relations:

a(i) = E(i)e(i)
x x x'

aU) = G(i)y(i)
xz xz xz (18)

The constant shear stress axz in the ith layer is interpolated using quadratic functions to obtain a para­
bolic distribution as follows:

3

a~1( i) = L¢j( i)ay)
j= 1

(19)

wherei is a non-dimensionallocalcoordinate withth€Qliginat-thebettemsurfaee0fthe-ithl-a~ye-r;fJ\i),

a~), and a~) are, respectively, the shear stresses at the bottom, middle and top of the ith layer, and ¢j are
the second order Lagrangian polynomials. The Lagrangian polynomials <pj(i) can be expressed in terms of
a global coordinate z with origin at the midsurface of the beam:

A. ( )=1-3 (Z-.Zi)+2(Z-.Zi)2
Y'l Z hi hi

where hi = Zi+ 1 - Zi is the thickness of the ith layer. For a laminated beam with N layers, 3N equations are
necessary to obtain layer-wise parabolic shear stress distributions through the cross-section. The required
number of equations can be derived from the following four conditions: (1) N equations are used to
equate the average shear stress with the constant shear stress from constitutive equation on each layer; (2)
two equations are used to impose zero-shear condition at the surfaces of the beam; (3) N - 1 equations are
used to satisfy continuity of shear stresses at the interfaces; and (4) N - 1 equations are used to define the
slope discontinuities axz,z at each interface. Using eqn (19), the condition (1) yields

l.fZi

+

J

~ A..(z)a(i) dZ=.!. [a(i) + 4a(i) + a(i)] = a(i) (20)hI .~ Y'J J . 6 1 2 3 xz
z; J=)

The shear-free conditions on the top and bottom surfaces of the beam are

a(l)= a(N)=O
I 3 (21 )
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At the interfaces shear stresses satisfy the continuity condition

a~) - a~i+ 1) = 0

Finally, the slope discontinuity of the shear stress at an interface becomes

(1+ 1) _ (i) ~! (_ (1) + 4 (i) _ 3 (i)) +_1_ ( _ 3 (i+ 1) +4 (i+ 1) _ (i+ 1))
axz,z axz,z hi a1 a2 a3 hi+ 1 a 1 a2 03

(22)

(23)

To satisfy stress equilibrium, the variation of the shear stress can be equated to the variation of the normal
stress as

a =-axz,z xx,X

The evaluation of 0xx,x requires the second derivatives of u and Vi:

[
d 2

U N d2Vj . ]
axx,x=Excx,x=Ex d 2+.L -d2¢J(Z)

x J=1 X

where the second derivatives of the displacements for an m-node element are

(24)

and the second derivatives of the interpolation functions Hi are calculated as

d 2H· 1 d 2H. 1 dH· m d 2H kI I I L
dx2 = J2 d;2 - J3 d; k=l

Xk d;2

where J is the Jacobian. By arranging eqns (20)-(24) with respect to unknowns ay), we obtain 3N simul­
taneous equations, whose solution gives a parabolic distribution of shear stress through the thickness.

5 NUMERICAL EXAMPLES Table 1. Maximum deflection ratio

Timoshenko and Goodier25 3·28 2·46 1·82 1·36 1·09 1·02
(2-D elasticity)

Rehfield and Murthy3 3·28 2·46 1·82 1·36 1·09 1·02
Yuan and Miller21 3·25 2·45 1·82 1·36 1·09 1·02

(8 elements; 3 layers)
Levinson2 3·49 2·60 1·90 1·40 1·10 1·02
BLCS (4 elements; 4 layers) 3·33 2·50 1·85 1·38 1·09 1·02

To assess the capability of the model and its accu­
racy, various examples are solved and the results
are compared with available solutions. A three­
node BLCS finite element integrated with two
Gauss points along the element axis is used. The
stresses evaluated at the Gauss points are extra­
polated to the nodes using linear interpolation
functions, as suggested by Cook et al.24

H/L 1·0 0·8 0·6 0·4 0·2 0·1

Example 1: effect of shear deflection

The maximum deflection for a simply supported
isotropic beam, subjected to a uniform load, is
computed with BLCS for various width-to-span
ratios (H/L ). The results are compared with elas­
ticity and numerical solutions used previously by
Yuan and Miller.21 The maximum deflection ratio,
defined as deflection including shear effects to
deflection computed from Bernoulli-Euler beam
theory, is shown in Table 1. The results presented
with BLCS used four elements with four layers.

When compared to the elasticity solution
(Timoshenko & Goodier25 ), the BLCS results are
about 2% higher for H /L = 1·0. As discussed by
Levinson,2 the reason for this discrepancy is the
transverse incompressibility assumption used in
the formulation.

Example 2: stress and displacement ratios

The stress and displacement ratios of a fixed-fixed
sandwich beam under an uniform load (Fig. 2) are
compared with other·studies. The stress ratio (SR)
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q Table 3. Displacement and stress ratios

Fig. 2. Fixed-fixed sandwich beam with uniform load.

Example 3: experimental-BLCS stress
comparisons

Case £2/£. 13/ I. 12/1.

A 0·2 10 10
B 0·1 10 20
C 0·01 10 20
D 0·2 0·5 1

CBA

Table 4. Laminae material properties

!
s ~ m ~

s m
1.18 I 2.165 I 2.165

I I I
I

8.66

E, (MPa) (ksi) 2440 (354) 521 (75·5) 4·34 (0·629)
G, (MPa) (ksi) 875 (127) 181 (26·2) 1·53 (0·222)

of laminae used are given in Table 4, and the
material and thickness combinations of the core
and face layers for the four beams are given in
Table 5. Kemmochi and Uemura predicted the
response of the test-beams by a multi-layer built­
up theory. In BLCS, 16 elements with eight layers
are used to compute the stresses at sections s-s
(constant shear) and m-m (maximum moment). In
the figures reported by Kemmochi and Uemura28

it appears that the labels for transverse normal
and shear stresses are switched. In Fig. 4, the
BLCS and experimental normal and shear stress
distributions are compared at section s-s, and in
Fig. 5, the BLCS and multi-layer built-up theory
normal stress predictions are compared to experi­
mental measurements at section m-m. The BLCS
predictions agree closely with the experimental
results. The BLCS accuracy for predicting the
stress is particularly significant in model 4, which

Fig. 3. Sandwich beam under two-point bending (units: lb
and in).

Case DiTaranto Rao Yuan & BLCS
Miller

DR SR DR SR DR SR
DR SR

A 3·16 2·45 2·82 2·06 2·83 2·08
B 6·25 5·41 4·95 3·26 5·09 3·21 5·07 3·23
C. 16·1 3·65 15·9 3·35 16·7 3·37 16·7 3·41
D 2·30 1·40 a 2·30 1·40 a 2·46 1·23 2·49 1·33

"Values obtained from Rao,27 Fig. 9, p. 395, which do not
coincide with values reported by Yuan and Miller,21 Table 2,
p.744.

W

13

b

face

core

face

L

Table 2. Material and thickness combination

is defined as the maximum normal stress at the
midspan of the beam divided by the maximum
stress in an isotropic beam made of the face mate­
rial and analyzed by classical beam theory. The
displacement ratio (DR) is the ratio of the maxi­
mum deflection in the sandwich beam to that of
an isotropic beam made of the face material. The
face and core material and thickness combination
are given in Table 2. DiTarant026 neglected the
bending stiffness of the core and the shear defor­
mation of the faces. Realizing the significance of
the bending stiffness of the core in a stiff-cored or
thick-cored or highly unsymmetric sandwich
beam, Ra027 included the bending stiffness of the
core but neglected the shear deformation of the
faces. In BLeS, to include the shear deformation
of the faces, the shear modulus of the face mate­
rial is assumed to be equal to 0·4£1 (or 0·25 for
Poisson's ratio). One half of the sandwich beam is
analyzed with eight elements, each having six
layers. As shown in Table 3, the BLCS predictions
compared reasonably well with those of others,
especially with Yuan and Miller's values. How­
ever, Yuan and Miller did not report the shear
moduli of the faces.

Using photoelasticity, Kemmochi and Uemura28

measured the stress distribution in four three­
layered beams, which were tested in bending
under symmetric two-point .loading, as shown in
Fig. 3. The material properties of the three types
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Table 5. Test model specification

Thickness, mm (in)

Modell
Model 2
Model 3
Model 4

Material
face/core

A/A
A/B
B/C
A/C

Face

4·48 (0'176)
4·76 (0'187)
4·51 (0·178)
4·72 (0·186)

Core

30·0 (1·18)
30·0 (1'18)
30·0 (1·18)
30·0 (1'18)

Width, mm (in)

6·56 (0,258)
6·57 (0'259)a
6·32 (0·249)
6·57 (0'259)a

Load (W),
N(lb)

98 (22'03)
98 (22'03)
9·8 (2'203)
9·8 (2'203)

(lIn the experiment, the face width was a little larger than that of the core. The face width is used for core and face in BLCS.

0 50 100 150 psi

q
Modell

0 50 100 ISO 200 psi

o

o

25

50

SO psi

100

symmetry line--4 M_od_el_2 /__

Nonna! Shear

Model 4

• o
K.-emmochi & Uemura(experiment)

BLCS

Fig. 4. Stress distribution at section s-s.

o 100 200 300 psi

Model 1 sYm.metry line

/

o 25 50 psi

Model 3

o 100 200 300 400 psi

Model 2

o 50

Model 4

100 psi

-- Kemmochi & Uemura(experiment)

-- Kemmochi & Uemura(multi-Iayer built-up theory)

• BLCS

Fig. 5. Normal stress distribution at section m-m.

has a very low core stiffness compared to face
stiffness.

Example 4: elasticity-BLCS comparisons

Cheng et al.s derived a 3-D elasticity solution for
unidirectionally reinforced and symmetric lami-

nated beams. The solution was illustrated for a
three-layered cantilever beam under a tip load
(Fig. 6). The following material properties and
geometric parameters are used: E 1 = 1·04 x 106

kg/cm2, G1 = 4 X 105 kg/cm2, E 2 = 2·08 X 106 kg/
cm2 G = 8 X 105 kg/cm2 v= 0·3 a = 5 cm, 2 "1'
a= 15 cm, b= 10 cm, and L= 75 Cffi. In the BLCS
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Nannal Stress at support (kg/cm 2)

10 20 30p '0
15 .-------,----....,----,011---.....--.......

I

Cheng, et at.
BLeS

...........
.........

/'!
N 5

1
~ 0 1I"----~--"---____Jl-rt---__1

i /
J3 -5 symmetry line -----~---'

~

L

z

l~*a.Ia
t±j
I 2b I

1.0 2.0
Shear stress (kg/cm2 )

Fig. 6. Cantilever under concentrated tip load and stress distribution.

material number

section

I _I

8@1.25=lO

/.
l'
2
1
2
2
1
2
1

Q

Beam configuration and section.

q

Fig. 7.

analysis, one element with four layers is used. The
normal stress distribution of BLCS at the support
Is very· close to fhe elasticity result, but there is
a little difference in shear stress distribution (Fig.
6). The difference is mainly due to the 3-D effect
included in the elasticity solution and the different
boundary conditions imposed at the support, i.e.
the longitudinal displacement in BLCS is fixed
through the thickness, whereas in the elasticity
solution, it is fixed only at the center of the
section.

6 SUMMARY AND CONCLUSION
Example 5: displacement, shear and normal
stress comparisons

A symmetrically laminated cantilever beam is
analyzed for two load cases: a uniformly distri­
buted load, and a concentrated tip load (Fig. 7).
The laminate material properties and loading
cases are given in Table 6. Surana and Nguyen l5

analyzed this problem using nine, 2-D curved
beam finite elements, derived by approximating
the transverse displacement with a polynomial of
variable order p. In the BLCS analysi~, eight ele­
ments with eight layers are used. The displace­
ments are compared in Table 7, and the stresses
are compared in Figs 8 and 9. The BLCS results
agree very well with Surana and Nguyen's solu­
tion, which used a 16th order polynomial approx­
imation·(p= 16) for the transverse direction.

A three-node, laminated beam finite element with
layer-wise constant shear (BLCS) is formulated
using a two-Gauss-point quadrature rule along the
element axis and assuming transverse incom­
pressibility and layer-wise linear distribution of
in-plane displacement. The constitutive equation
for a lamina is based on plane stress, both through
the thickness and width of the beam. The laminate
constitutive equations are calculated using the
constitutive equations and linear interpolation
functions of in-plane displacement of the laminae.
Using the principle of virtual work, the element
stiffness matrix is derived, which has 2 + N
degrees of freedom per node of an N-Iayer beam.
The deformed cross-section is not plane through
the thickness but plane on each layer. The layer­
wise constant shear distribution obtained from
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. Table 6. Material properties and loading case

Loading case

Table 7. Maximum deflection

Surana and Nguyen 15

(p= 16)
BLCS

Material 1

£xl£\,=30
E\'= 1·0 x 106

C.nl E\'= 0·5
vxy·= 0·25

Material

Material 2

E xl£\,=5
E\'= 1·0 x 106

Gx\'IE\, = 0·5
v-ry·= 0·25

Case A

Q=200
q=O

Case A

0·03031

0·03029

CaseB

Q=O
q= 100

CaseB

0·535

0·552

constitutive relations is modified into a parabolic
distribution by using compatibility and equili­
brium of the shear stress at each layer. Several
experimental and numerical examples available in
the literature are used to evaluate- the accuracy of
the BLCS element. Compared with the results
of other studies, the prediction of the displace­
ments and stresses of the BLCS element are quite
accurate. The examples presented in this paper
show that the BLCS element can be used for the
accurate analysis of sandwich beams with soft
cores. Furthermore, the simplicity of the element
makes it suitable for the analysis of frame-type
structures.
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