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ABSTRACT
A new three-dimensional element with two-dimensional kinematic constraints is used for the linear analysis of laminated composite
plates. The element can represent plates with variable number of layers and thickness, including ply drop-off problems. The element
is validated by the “Patch test” for the case of isotropic and laminated plates. In particular a refined computation of stresses is performed
by integrating the equilibrium equations through an assembly of elements that represents the laminate. Some examples are reported to
show the capability of the element to predict the mechanical behaviour of this kind of structures. Aninterface with the NISA commercial
program is developed and used for the pre- and post-processing of the results.

1. INTRODUCTION

Multilayered composites are appropriate structural materials in weight sensitive aerospace applications where high
strength-to-weight ratios are needed. A large body of technical literature has been published on the subject. Much of the
analysis tools were originally developed for thin plates, based on Kirchhoff-Love kinematic assumptions. As it is well
known, the classical laminate theory underpredicts the deformation energy because transverse shear strains are neglected.

-In fact as the plate becomes thicker compared to its in-plane dimensions, the transverse effects become more pronounced,
" especially in the case of laminated composite plates because of their low transverse shear moduli compared to their

longitudinal moduli. - )

Reissner studied these effects on elastic plates [1] and on sandwich type shells [2], while Mindlin included rotatory inertia
terms in the dynamic analysis of plates [3]. Reddy [4] applied the First Shear Deformation Theory (FSDT) for the analysis
of laminated composite plates and shells. The FSDT produces excellent results (e.g. deflections, fundamental vibration
frequencies, etc.) but the accuracy of the stress distribution does not improve significantly over the Kirchhoff-Love Theory
(Classical Plate Theory - CPT) and is not satisfactory. The determination of the stresses is very important for the solution
of crucial aspects in the optimal design of composite laminates, like the determination of the ultimate load carrying capacity
obtained by the application of one of the anisotropic failure criteria or by the application of continuum damage mechanics
theories. Higher Order Theories have been proposed in attempt to improve the prediction of the stresses.

All of the equivalent single-layer theories share a common characteristic: the assumed distribution of the displacements
through the thickness is continuous with the derivative with respect to the thickness coordinates. This implies that the
out-of-plane shear strains are continuous across the material interfaces. As a result of the different material properties, the
out-of-plane stress components are discontinuous at the interfaces between layers, thus violating the equilibrium conditions.

To overcome the limitations of the equivalent single-layer theories and to obtain a good evaluation of the stresses, a class
of theories were developed. These theories are based on a distribution of displacements which is continuous in the thickness
of the plate but with derivatives with respect to the thickness coordinates that are not necessarily continuous at the interfaces
between layers. Layer-Wise Constant Shear (LCS) Theories were proposed by several authors [5-15]. The Finite Element
implementation of these theories is not simple because they imply a large number of degrees of freedom (dof) per node.
Moreover, the physical interpretations of the dof and the large number of stress resultants and displacements is not intuitive
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as in the CPT and FSDT. LCS Theories, for example, have not been used for shells because of the complexity of the
formulation, except for the case of cylindrical shells [8]. '

Barbero [16] developed a new element for the analysis of laminated plates starting from the formulation done for
three-dimensional shell elements by Ahmad et al. [17] and using the kinematic constraints of LCS Theories. In particular
he noted that with the use of a 3D element, it is possible to analyze laminated composite plates overcoming the difficulties
of LCS Theories but retaining the precise stresses calculation. However, in [16] the stresses were calculated by using only
the constitutive equations. Here a procedure for the refined calculation of interlaminar stresses is developed along the lines
of previous work [18-19]. The procedure requires computation of higher order derivatives of the shape functions. These
derivatives are presented here in the context of the isoparametric formulation of three-dimensional problems.

The main disadvantage of conventional 3D continuum elements when utilized in the analysis of Composite Laminates
Structures it is the large number of dof involved. The formulation presented here is based on the fact that certain assumptions
made in the plate theories are quite valid for a broad class of problems of moderately thick laminates. The proposed element
has a small number of dof per node and produces results as accurate as conventional 3D continuum elements for a large
range of problems. With this element, the imposition of the boundary conditions, loads, etc., has a very simple physical
interpretation and is identical to the conventional 3D continuum elements.

It is important to note that, because in this element the position of the middle surface is irrelevant, it is possible to model
problems with a variable number of layers (ply drop-of), variable thickness (e.g. tapered glued-laminates, timber beams, etc.).

The objective of this work is to demonstrate the applicability of LCS Theories [5-15] to complex analysis problems of
laminated structures (e.g., ply-drop-off). Specifically, this work is concerned with the development and validation of a
3-Dimensional Layer-wise Constant Shear (3DLCS) elements. From a designer’s point of view, an important feature of
the formulation presented here is that the loads, boundary conditions, and degrees of freedom have the same physical
interpretation as in three-dimensional continuum elements. An interface with acommercial Finite Element Analysis (FEA)
package (NISA) [20] was developed to further facilitate the interpretation of the results. Previous finite element
implementations of LCS Theories, could not be efficiently incorporated in commercial FEA packages because of the large
number of dof per node associated with two dimensional LCS Theories. The present three-dimensional formulation solves
this problem completely. The interface with NISA demonstrates the case of implementation of the proposed element in
commercial packages. Maximum accuracy in the computation of stresses is achieved in this work by postprocessing the
stress results from constitutive equation with the aid of the equilibrium equation. The idea introduced in [18,19] for two
dimensional elements is generalized here for three-dimensional elements. Validation of the present formulation is
accomplished by the application of the patch test to laminated composites subjected to both in-plane loads and bending.

2. KINEMATICS AND CONSTITUTIVE EQUATIONS

Consider a laminated plate composed of n orthotropic laminae, each arbitrarily oriented with respect to the elemental
coordinate (&, 1, §). In particular & and 1 are two elemental coordinates in the middle plane of the plate element and £ a
linear coordinate in the thickness direction. v

Each layer (or subset of layers) of the plate is discretized by the 3D elements. Pairs of points, iy, and iy s, €ach given

in Cartesian coordinates, prescribe the shape of the element (Figure 1). If (§, 1, {) vary between — 1 and 1 on the respective
faces of the element, a relationship between the Cartesian co-ordinate of any point of the plate and the elemental co-ordinate
can be written in the form:

x Xi X
- 1+ v 1 -
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top bottom
where N; (€, n) is a function taking a value of unity at the node i and zero at all other nodes.
The displacement {u} = {u, v, w}Tinsidean element is given by:
{u}=[N1{d} v v ()
where { 8 } is the collection of the nodal { §; } that in this formulationis { & } = { u; v;; w; }T. The interpolation functions
-are equal for u, v and w:
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where 7 is the number of the nodes and N;=N;(&,n,0).

The order of interpolation functions N; along the two directions on the surface of the plate can be chosen independently |
of the order through the thickness. Linear or quadratic interpolation of the displacements (i, v) and the geometry (x, y) are
commonly used. The order of approximation in the thickness direction corresponds to different kinematical assumptions
in LCS Theory. Here a linear variation is used. The quadratic element has 18 nodes. Nodes 1 to 9 have 3 dof (u, v and w),
nodes 10 to 18 have 2 dof (x and v) as shown in Figure 2. The variables u and v correspond to the in-plane displacements
at the interfaces between elements (layers). The transverse deflection w is constant through the thickness. Therefore, a
single global node connects to all the local w-nodes that lie on a line perpendicular to the middle surface. The quadratic
element has 45 dof.

The constitutive equations for the k-th layer made in orthotropic material arbitrarily oriented with respect to the global
coordinates is similar to the equations for a monoclinic material [21].

Then we have, with reference to the local reference system (1,2, 3) (Figure 3):
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The two dimensional reduced stiffness matrix for an orthotropic material subjected to plane stress in local reference
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sverse strain (s’§ = 0) would have, egs. (4). and (5) are combined as

To overcome the locking effect that a vanishing tran

follows,
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where K is the shear correction factor fixed at the value of 5/6. In contracted notation we have:
{o® ) = [DF1{ek) @)

The explicit expressions, in function of the Engineering constants, for the [D] matrix coefficients are:

k k ~
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The relationship between stress and strain written with reference to the global coordinate (x, y, z), and the rotation matrix
for the lamina k is:

{o¥} = [D¥]{e¥) ®)
where;
[D¥] = [T* 11 [D*][TK] ©)
cos? 6 sinf8* 0 0 0 2 sin 6% cos 6
sin2 9" C082 Gk 0 0 0 —25sin 6% cos Ok
T = 0 0 1 0 0 0 (10)
[T°) 0 0 0 cos®* —sin@* 0
0 0 0 sin6® cos@* 0
—sin Gk cos Bk sin 9" cos 6F 0 0 0 cos? Gk — sin? 9" |

The components in directions of orthogonal axes related to the surface { = constant are essential if account is to be taken
of the kinematic assumptions of LCS Theory. The strain components of interest are:

( €, ) ( 7
& Viy
{e} =<’sz>-_—< w,y+v,z (11)
Yxz Wyt
() [yt Ve
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with the strain in direction z neglected so as to be consistent with the plate LCS Theory assumption of incompressibility
of normals. Here and in the following, comma indicates a derivative with respect to the indicated coordinate.

3. INTEGRATION OF THE PLATE STIFFNESS MATRIX

The total potential energy IT, can be expressed as:

n=%f{o}T{e}dv—j{u}T{p}dV—J{u}T{q}dS (12)
| \%4 S

where { 6 } and { € } are the stress and the strain vectors respectively, { u } the displacements at any point, { p } the body
forces per unit volume and { q } the applied surface tractions. Integrations are taken over the volume V of the structure
and loaded area S. The first term on the right hand of (12) represents the internal strain energy and the second and third
terms are, respectively, the work of the body forces and distribute surface loads. Replacing egs. (2) and (8) into (12) and
considering that with the Finite Element Analysis (FEA) the total potential energy of a continuum will be the sum of the
energy contributions of the individual element in which the structure has been divided, we can write the total potential
energy of the element e as follows:

m, = % I {8 )T B [D][B] {38 }dV - J (8 'INI"{p}av, - J (&Y INI" (q)ds,  (13)
Ve Ve Se

where V, is the element volume, S, the elemental loaded surface area, { 8° } is the vector of nodal displacements of the
element and [B] is the strain matrix, composed of derivatives of the shape functions written with respect to the coordinates

(%, y, z) and correlating strains and { 8¢} as:
{e} = [B]{&} (14)

The minimization of the Total Potential Energy, with respect to the nodal displacements { 8° } results in:

oM _| [ mrmimiav, |15 - f[N]T{p}def[N]T{q/}dse = [K*]1{8} - (F°} =0
v

€
a { 8 } Ve e SE
(15)
where { F® } is the equivalent nodal force vector and [K®] is the stiffness matrix period.
The stiffness matrix is written as (with third row and column of [D] deleted):
[K*] = f [B]” [D] [B) dx dy dz (16)
14
The matrix B can be written explicitily as:
Ni, O 0
0 N, O.
[B] = .0 Ni,Z Ni,y"' (17)
Ni, 0 N,
I ..Niy Nix 0. ]

The layer-wise constant shear constraint is satisfied by virtue of the linearity through the thickness of the displacements
u and v in eq. (2) (Figure 2). The incompressibility of the normals is imposed by omitting €, in eqgs. (11) and (17).
The derivative of the displacements with respect to the global axes (x, y, z) are obtained in the standard way.as:
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Uy Voo W, Ug Vg W
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The Jacobian matrix is defined as:
%g %g ag
[J] = x’n y9n Z:n (19)
Xy Vg g

and is calculated from the coordinate definition of equation (1).

Eq. (16) can be used directly to assemble the global stiffness matrix. The assembly procedure and the boundary conditions
are described in section 4.

The numerical integration is performed by Gaussian quadrature [22]. A two point rule suffices in the € direction, while
aminimum of three or four points in both & and 1) directions is needed for parabolic or cubic elements respectively. Reduced
integration is used in the & and 7 directions for the shear terms.

The loads can be defined in the global coordinate system. If pressure is applied the calculation of the loaded area in the

global coordinate is necessary and the nodal forces can be obtained by the knowledge of the Jacobian and the element
thickness, by the following relation:

P, ngp ngp | NiPy
_j - 2
(Fp) =) INI| P, |da =3, 3| NP, We, W, 1 n, 7 @0
A Pz r=1s=1 NiPz

where:

P;  is the component of the distributed load in the direction i: ‘

A is the area of upper, or middle or bottom surface of the 3DLCS element, depending on the position of the
loading;

TH is the thickness of the 3DLCS element of each Gaussian point (ngp = number of Gaussian points);

W is the weight at each Gaussian point;

€ isequaltolor—1or0 respectively when the distributed loading is on upper or bottom or middle surface.

4. ASSEMBLY PROCEDURE AND CONDENSATION OF REDUNDANT dof

The integration of the element stiffness matrix is performed as a standard 18-node element with 3 dof per node (u, v, w)
but with the appropriate shape functions N; described previously (Figure 2).

The transverse deflection w is constant through the thickness of the element by the incompressibility assumption made
omitting g,inegs. (11) and (17). Therefore, the dof of two nodes aligned through the thickness of an element can be reduced
to a single dof (w in the bottom for example). If this is not done the stiffness matrix present a singularity and the solution
cannot be reached.

Then, at the element level the stiffness matrix is rearranged so that the dof corresponding to the displacement u and v on
the surface of the plate for all nodes (e.g. 18 nodes) are considered first.

The remaining dof corresponding to w-displacements are assigned to a new set of nodes (e.g. 9 nodes) called w-master
nodes in this work. The w-master nodes are independent of the original nodes to facilitate the assembly procedure. However,
they can be any set of nodes located at one of the interfaces of the laminate. The location of the w-nodes through the
thickness of the laminate does not affect the results. At the element level, the resulting element has 18 nodes with 2 dof (u
and v) per node plus nine additional nodes with 1 dof (w) per node.

If more than one layer is present in the laminate, another condensation procedure must be done for each vertical in which
€ assume that the w-displacements are equal, due to the incompressibility condition, and then only one w-master node
8- the w-master node at the bottom of the laminate) must be taken into account, connecting the remaining node to this
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master node. This has been easily achieved through the usual assembly by assigning the same global node number of the
w-master node to all the w-nodes located on its normal. :
The technique adopted has the following advantages:
(a) eliminates the need for complex bookkeeping to identify individual sets of elements stacked to form a laminate.
(b) allows the front-width of the band-width optimization algorithm to take into account the thickness direction as well
as the surface direction in the search for the optimum element or node assembly order.
(c) eliminates the need for elements with a large dof number that otherwise results if the assembly through the thickness
is performed a priori. This is particularly useful for implementation in commercial FEA codes [23].

5. REFINED COMPUTATION OF STRESSES

The constitutive equations (7) are used to obtain all six components of stress at the reduced Gauss points. The distribution
of in-plane stresses Gy, G, and Gy, is linear through the thickness. The distribution of inter-laminar stresses Oy, and Gy, is

layer-wise constant. All components of stress obtained at the integration points can be extrapolated to the nodes using the
procedure described by Cook in 1974 [22]. This is done to facilitate the graphic output using pre- and post- processing
package [20]. : o

Selective reduced integration is used on the shear-related terms. The new element (3DLCS) reduces to FSDT when only
one element is used through the thickness. Therefore, the behaviour of the 9-node Lagrangian FSDT element with selective
reduced integration, free of shear locking, is also present in the proposed element. Furthermore, Reddy and Barbero [23]
successfully used selective reduced integration on their LCST element that has the same kinematic as a stack of 3DLCS
elements. As shown by Averil [24], the 9-node Lagrangian element with selective reduced integration does not exhibit
locking as the plate (or, in this paper, layer) becomes very thin. This is a remarkable advantage of the proposed element
over conventional 3-D continuum elements with full integration. »

The 3DLCS element gives a very good representation of all the stress components except G, without the aspect ratio

limitations of conventional 3-D continuum elements. When transverse stress G, is needed, either conventional 3-D
continuum elements can be used or further postprocessing can be done by using the third equilibrium equation:

90, 00, 0O
it ? AT 7 4 z
+ +—=—+p,=0
» ox dy a P (21)
Quadraﬁc‘ interlaminar stresses that satisfy the shear boundary conditions at the top and at bottom surfaces of the plate
are obtained in this work for laminated plates modelled with 3DLCS elements. An approximation of the shear stress
distribution through each layer with a quadratic function requires 3n equations for each of the shear stresses (O, Gyz),

where 7 is the number of layers. To obtain these 3n equations, Chaudhuri [18] proposed that n equations can be used to
satisfy the n average shear stresses on ‘each layer, two equations can be used to impose vanishing shear stresses at the
surface of the plate (top and bottom), (n — 1) equations are needed to satisfy the continuity of the shear stresses at the
interfaces between layers and the remaining (n — 1) equations has to be used to compute the jump in G, ; (Or Oy, P at
each interface. ) ‘ . )

The average shear stresses on each layer are computed from the constitutive equations and the displacement field obtained
in the FEA. ‘ '

In this work, the following equilibrium equations

0, dc, 90, do,, dc,, 30, |
L & “'[ * oy ] 2 - | o 22)

afe used to compute G,, ,and Oy, , directl‘y from the FEA approximation in the proposed element.

The procedure requires computation of second derivatives of the displacement (&, v, w). In this wofk, the second
~derivatives are obtained from the shape functions used in the isoparameteric formulation ( Appendix II).
Using egs. (8), (14) and (17) we can write: SR
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(o, [ Nw 0 0. ]
| | o, 0 Ny,
— mk — [k
O (=D 0 Ny Ny [{8) = DX B8} (23)
ok Nig 0 N
0_.];}, "'Ni, yx Ni,xx 0... .J
\ ’xJ -
and similarly:
Oy [Ny O 0. ]
o, 0 Ny, 0.
k k
192y (=D .0 Ny, Ny |[{8°) = D¥[B](8°) (24)
ok, Niy 0 Ny
k O'Jléy,yj i "'Ni,yy N,,xy 0... |

where the matrices [B,] and [B,] are used for the computation of the second derivatives of stresses in the same way as the
strain-displacement matrix [B] is used for the computation of stresses. With the second derivatives of stresses, the parabolic
shape of o,, and Oy, through the thickness with respect to the local axes can be obtained. Then, by the knowledge of the
angle 8 between the local axes and the natural directions (1,2, 3) (Figure 2) it is possible to calculate the stresses in direction
of the fibres and normal to them, which are needed to study the failure or damage of laminated, composite plates.

6. VALIDATION

6.1. Patch tests

As originally conceived by Iron [25, 26], the patch test simply verifies that an arbitrary patch of assembled elements

reproduces exactly the behaviour of an elastic solid material when subjected to boundary displacements consistent with
constant straining.

By numerous publications it was shown that:

(a) the patch test still remains a necessary condition for the finite element form;
(b) it can be readily extended to check sufficient requirements for convergence;
(¢) is an assessment of the asymptotic convergence rate of a particular finite element form;

(d) is useful to check the robustness of the appropriate algorithm which violate in their formulation the compatibility
(continuity) requirements.

Figures 4 and 5 show acceptable patch test [25, 26] meshes to validate the proposed element. Boundary nodes of the
Ppatches are loaded by consistently derived nodal loads appropriate to state of constant strain/stress. Internal nodes are
neither loaded nor restrained. The patches are provided with enough support to prevent a rigid-body motion. The standard
finite element procedure is executed and the computed stresses, strains and the displacements are compared with the exact

solution. If these values are the same or the difference is an acceptable tolerance then the patch tests are passed. Application
to laminated composites under traction and bending is shown next.

6.1.1. Patch test on an isotropic plate under in-plane loading

An isotropic plate under in-plane loading was analysed with the five element mesh depicted in Figure 4.
The in-plane stress is taken to be unity and the material adopted has these mechanical parameters:

E=29000K si ; v=0.294
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Then the exact solution for the stress and the strain is:\
_ . 1 -5, ==Y _ -3
O, = 1.0Ksi; g, = F- 3.44827 x 1077 ; g, = B = - 1.014 x 10

In all the five elements and in each Gauss point the values computed by the FEA coincide with the expected solution.
The same patch test was performed by applying the specified displacements u at the free face (I = 10.00”) calculated by
the relation: '
‘ | /
u= _[ g, dv = g1 = 10 x 3.44827 x 1075 = 3.44827 x 1074

0
and the same results are reached.

6.1.2. Patch test on a composite laminated plate under in-plane loading

A second patch test, similar to the previous, but on a three layers laminate (0°/90°/0°), is performed to check the proposed
3DLCS element. The material adopted has these mechanical parameters:

El = 3.0 GPa; Ez = E3 = 1.0 GPa; GIZ = Gl3 = 623 = 05 GPa; Viz = Vi3 = Vo3 = 0.25

The patch is firstly loaded by consistently derived forces to have a unitary distributed load on the loaded faces. Then the
same patch is subjected to the uniform displacement on the free faces I = 10.0” in a way to produce the same unitary
distribution on the loaded face. The dimensions and labels of the elements and layers are shown in Figure 5 while the
boundary conditions are the same as example 6.1.1. ’

The exact solution is obtained by a simple computer program based on the Classical Laminate Theory [21]. In particular,

the displacements ; and v; at the nodal points are calculated by:

X Yi
u,-=_[exdx=x,-sx; v,-=j£ydy=y,-ey
0 0

The results are shown in Tables 1t0 6.
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Figure 5. Patch for a laminate under in-plane loading

» Table 1. Stresses and Strains at the Gauss Points of the element no. 1 - Specified displacements

G.P. 6x (GPa) oy - 10 (GPa) €x g .10 ,
num. CPT | 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS
1 ©1.290 1.288 0.436 0.463 0.426 0.426 -0.640 -0.610
2 1.290 1.288 0.436 0.435 0.426 0.426 -0.640 | -0.638
3 1.290 1.288 0.436 0.392 0.426 0.426 -0.640 -0.680
4 1.290 1.289 0.436 0.435 0.426 0.426 -0.640 -0.639
5 1.290 1.289 0.436 0.444 0.426 0.426 -0.640 - -0.629
6 1.290 1.289 0.436 0.435 0.426 0.426 -0.640 -0.638
7 1.290 1.289 0.436 0.449 0.426 0.426 -0.640 -0.624
8 1.290 1.289 0.436 0.434 0426 | 0426 . -0.640 -0.639

Table 2. Stresses and Strains in the Gauss Points of the element no. 6 - Specified displacements

Ox (GPa) Oy - 10 (GPa) €x g . 10
CPT - 3DLCS C.P.T. 3DLCS C.PT. . 3DLCS C.P.T. 3DLCS
0.419 0418 -0.871 -0.902 0.426 0.426 -0.640 | -0.649
0419 0418 -0.871 -0.902 0.426" 0.426 -0.640 -0.649
0.419 0.419 -0.871 -0.824 | 0426 0.426 -0.640 -0.623
0.419 0.419 -0.871 -0824 | . 0.426 0.426 -0.640 -0.623
0.419 0.419 -0.871 -0.878 - | 0426 0.426 -0.640 -0.642
0.419 0.419 -0.871 -0.878 0.426 0.426 -0.640 -0.642
0.419 0.419 -0.871 - -0.890 0.426 0.426 -0.640 -0.646
0419 0.419 -0.871 -0.890 0.426 0426 -0.640 -0.646
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Table 3. Stresses and Straiﬁs at the
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Gauss Points of the element no. 1 - Patch subjected to forces .

rG.P. ox (GPa) oy - 10 (GPa) & gy. 10
rum. C.PT 3DLCS C.P.T. 3DLCS C.P.T 3DLCS C.PT. 3DLCS
1 1.290 1.288 0.436 0.457 0.426 0.425 -0.640 -0.616
2 1.290 1.292 0.436 0.429 0.426 0.427 —-0.640 —-0.647
3 1.290 1.290 0.436 0.394 0.426 0.427 -0.640 -0.680
4 1.290 1.291 0.436 0.431 0.426 0.427 -0.640 —0.645
5 1.290 1.281 0.436 0.424 0.426 0.423 -0.640 —0.644
6 1.290 1.298 0.436 0.442 0.426 0.429 -0.640 -0.639
7 1.290 1.282 0.436 0.438 0.426 0.425 —-0.640 -0.630
L 8 1.290 . 1.297 0.436 0.442 0.426 0.429 —0.640 -0.639
Table 4. Stresses and Strains in the Gauss Points of the element no. 6 - Patch subjected to forces
GP. ox (GPa) oy - 10 (GPa) &x gy. 10
num. C.P.T 3DLCS C.P.T. 3DLCS CPT. 3DLCS C.P.T. 3DLCS
1 0.419 0.420 —-0.871 -0.926 0.426 0.427 -0.640 -0.640
2 0419 0.420 -0.871 -0.926 0.426 0.427 -0.640 - 0.640
3 0.419 0.420 —-0.871 -0.847 0.426 0.428 —-0.640 -0.560
4 0.419 0.420 -0.871 -0.847 0.426 0.426 -0.640 -0.560
5 0419 0.424 -0.871 -0.854 0.426 0.428 -0.640 —-0.600
6 0.419 0.424 -0.871 -0.854 0.426 0.426 -0.640 -0.600
7 0.419 0.424 -0.871 -0.869 0.426 0.425 —-0.640 -0.590
8 0.419 0.424 -0.871 -0.869 0.426 0.429 -0.640 -0.590
Table 5. Stresses at the centre of the elements
Applied forces Specified displacements
Element ox (GPa) oy - 10 (GPa) ox (GPa) oy - 10 (GPa)
num. C.P.T 3DLCS CPT. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS
1 1.290 1.289 0.436 0.436 1.290 1.289 0.436 0.432
2 1.290 1.289 0.436 0.416 1.290 1289 0.436 0.421
3 1.290 1.289 0.436 0.436 1.290 1.283 0.436 0417
4 1.290 "~ 1.289 0.436 0.395 1.290 1.291 0.436 0.396
5 1.290 1.289 0.436 0.399 1.290 1.291 0.436 0.400
6 0419 0.419 -0.871 -0.873 0.419 0.422 -0.871" -0.874
7 1.290 1.289 0.436 0.436 1.290 1.290 0.436 0432
8 0.419 0.419 -0.871 -0.833 0.419 0.422 -0.871 -0.828
9 1.290 1.289 0.436 0.416 1.290 1.289 0.436 0.421
10 0.419 0.419 -0.871 -0.873 0419 0.437 -0.871 -0.854

(Contd.)
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Table 5 (Contd.)

11 1.290 1.289 0.436 0.436 1.290 1.282 0.436 0.417
12 0419 0.419 -0.871 -0.791 0.419 0.421 -0.871 -0.791
13 1.290 1.289 0.436 0.395 1.290 1.291 0.436 0.396
14 0.419 0419 -0.871 -0.800 0.419 0.420 -0.871 -0.795
15 1.290 1.289 0.436 0.399 1.290 1.291 0.436 0.400
Table 6. Displacements at the nodes €y (C.P.T) = 0.426 ¢y (C.P.T) = - 0.064)
Coordinate C.P.T. Applied forces Specified displace.
node x y u ' v u v u v
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 2.000 1.667 0.852 -0.107 0.859 -0.103 0.852 -0.104
3 3.000 3.333 1.278 -0.213 1.284 -0.220 1.278 -0.217
4 0.000 5.000 0.000 -0.320 0.000 -0.342 0.000 -0.340
5 1.000 0.833 0.426 -0.053 0421 -0.060 0.426 -0.058
6 2.500 2.500 1.065 -0.160 1.054 -0.160 1.065 -0.160
7 1.500 4.167 0.639 -0.267 0.636 -0.267 0.639 -0.265
8 0.000 2.500 0.000 -0.160 0.000 -0.157 0.000 -0.156
9 8.000 1.667 3.408 -0.107 3.408 -0.103 3.407 -0.104
10 7.000 3.333 2.982 -0.213 2.964 -0.220 2.981 -0.217
11 5.000 1.667 2.130 -0.107 2.133 -0.107 2.130 -0.103
12 5.000 3.333 2.130 -0.213 2.136 -0.219 2.130 -0.218
13 10.000 0.000 4.260 0.000 4224 0.004 4.260 0.003
14 10.000 5.000 4.260 -0.320 4.220 -0.342 4.260 -0.339
15 9.000 0.833 3.834 -0.053 3.847 -0.059 3.835 -0.059
16 10.000 2.500 4.260 -0.160 4.168 -0.155 4.260 -0.156
17 8.500 4.167 3.621 -0.267 3.643 —0.269 3.621 -0.265,
18 5.000 0.000 2.130 0.000 2.143 0.025 2.130 0.026
19 5.000 5.000 2.130 -0.320 2.142 -0.344 2.130 -0.341
20 1.250 2.500 0.533 -0.160 0.536 -0.161 0.533 -0.158
21 8.750 2.500 3.728 -0.160 3.757 -0.163 3.727 -0.159
22 5.000 0.833 2.130 -0.053 2.134 -0.056 2.130 -0.054
23 5.000 4.167 2.130 -0.267 2.133 -0.264 2.130 -0.262
\i 5.000 2.500 2.130 -0.160 2.143 -0.164 2.130 -0.160
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6.1.3. Patch test on an isotropic plate under constant curvature

A patch of an isotropic plate with material properties of example 6.1.1 is subjected to a constant curvature X, = 1076 along
the x axis. Figure 6 shows dimensions, labels and boundary conditions of this patch test. The strains €, at the Gauss points

can be calculated by:
€, = Xy - 2 = 1 X 1076 x (+ 0.289) x ¢ = + 0289 x 107°

where the coordinate z is zero at the middle surface of the plate. The FEA solution perfectly reproduces the C.P.T. values.
The values of y,, are zero everywhere in perfect agreement with the hypotheses of the C.P. T.

6.1.4. Patch test on a composite laminated plate under constant curvature
The same patch used in example 6.1.2 (Figure 5) is now subjected to a constant curvature X, fixed at the value of

1 x 10~ ® as in the previous example. The curvature has been obtained fixing, at the side x = £ 5.0” (origin of the axes fixed
at the centre of the middle plane), the nodal displacements given by:

Uy =& - X; =Yy " 4 " X

The remaining boundary conditions are the same of example 6.1.3.

1=10"

Figure 6. Patch for an isotropic plate under constant curvature

The comparisons between the results obtained by the proposed 3DLCS element and the C.P.T are shown in Table 7 and
8. The shear strain Y,, obtained by the FEA is zero in each Gauss Point as hypotized in the C.P.T. By the comparison of
the results obtained, shown in table 1 to 8, we can affirm that the patch test is passed. The differences regarding the effects
in direction y are indicative of a better representation by the 3DLCS element of the real 3D state of stresses and deformation
as compared to C.P.T. and not a deficiency of the element in passing the patch test.
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Table 7. Stresses oy at the nodes . T1 (T2) Top of layer 1 (2) - B1 (B2) Bottom of layer 1 (2)

Element 165 10° (GPa) Element 6 o - 10° (GPa)
node pos. 3DLCS C.PT pos. 3DLCS C.P.T
! ' 1 B1 0.153 0.150 B2 0.017 0.016
2 B1 0.153 0.150 B2 0.017 0.016
3 B1 0.153 0.150 B2 0.017 0.016
4 B1 0.153 0.150 B2 0.017 0.016
5 B1 0.153 0.150 B2 0.017 0.016
6 B1 0.153 0.150 B2 0.017 0.016
7 B1 0;153 0.150 B2 0.017 0.016
8 B1 0.153 0.150 B2 0.017 0.016
10 T1 0.051 0.050 T2 -0.017 -0.016

11 T1 0.051 0.050 T2 -0.017 - -0.016
12 T1 0.051 0.050 T2 -0.017 -0.016
13 T1 0.051 0.050 T2 -0.017 -0.016
14 T1 0.051 0.050 T2 -0.017 -0.016
15 T1 0.051 0.050 T2 -0.017 -0.016 -
16 T1 0.051 0.050 T2 -0.017 -0.016
17 T1 0.051 0.050 T2 -0.017 -0.016
Table8. Strains ey - 10° at the Gauss Points of elements no. 1and no. 6
Element no. 1 Element no. 6 ‘
G.P. 3DLCS C.P.T. 3DLCS C.P.T

1 0.42956 0.42955 0.09622 0.09623

2 0.23710 0.23711 —-0.09622 -0.09623

3 0.42956 0.42955 0.09623 0.09623

4 0.23711 0.23711 -0.09623 -0.09623

5 0.42956 0.42955 0.09623 0.09623

6 0.23711 0.23711 -0.09623 -0.09623

7 - 0.42956 0.42955 0.09623 0.09623

8 0.23711 0.23711 -0.09623 -0.09623

Gy3 = 0.523 x 10° psi ;

6.2. Refined computation of stresses

E, = E3 = 1.56 x 10°psi;

Gy = Gy3 = 0.82 x 10%psi

Vip = Viz = 024,

Vo3 = 0.49

Next we consider a case of a simply-supported (0°/90°/0°) square (I - [) plate under uniformly distributed transverse load.
The material properties are: .

E; = 19.2 x 10°psi ;
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The plate is simply-supported on all four sides. Owing the symmetry, only a quarter of the plate is modelled by a
4 x 4 x 3 mesh of 3DLCS elements. Figure 7 shows the dimensions and the boundary conditions adopted.

<

Figure 7 - Scheme used for the computation of the stresses

The through-the-thickness distribution of the in-plane normal stress o, for aspect ratio I/h = 10, is shown in Figure

8(a). The stresses are computed at the nodes with coordinates x =y = 0. Figures 8(b) and 8(c) contain similar plots of the
interlaminar shear stresses O, and ©,,, respectively. The stresses are normalized by the relations:

_ . _h N
(ze ) Gyz) = ;7 (GXZ N Gyz) N Gx = 7 X

In Figure 8(b) oy, is computed at the point x = 0 and y = a and in Figure 8(c) 0, is computed at the point x = a and y =
0. In these plots, broken lines represent the stresses obtained by the constitutive equations, while the smooth solid lines
represent the stress distribution obtained using the equilibrium equations. The difference between the results is very clear
and the excellent representation of the shear stresses demonstrated.

. . . .. nx L .

The same scheme, but with the sinusoidal distributed load | ¢ =g cos 2.4 08 -2% on the plate, is used to make a
comparison between the shear and normal stresses calculated by the proposed element arid the analogous determined using
the three-dimensional exact solution of Pagano [27, 28]. The positions in which the stresses are calculated and the mesh
adopted on only a quarter of the plate are the same used in the previous example. Observing the plots reported in Figures
9 we can say that the results compare very well, especially for 6, and 0.

6.3. Ply drop-off beam problem

Ply drop-off is an important problem in the study of structures made of composite materials. A part of a layer of a composite
laminate is removed in a transition from thick to thin laminates. Obtaining an exact solution or a finite element analysis of
these irregular structures is a major problem. This is because the thick part has its middle surface at a different location
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Figure 8(a). Normal stresses
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Figure 8(b) and 8(c) — Shear stresses: comparisons between equilibrium and constitutive equations

DLCS for a cantilever beam subjected to
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Figure 9(a). Normal stresses — Comparisons between the 3DLCS results and the tridimensional exact solution of Pagano [27, 28]
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Figure 9(b) and 9(c). Shear stresses — Comparisons between the 3DLCS results and the tridimensional exact solution of Pagano [27, 28] mod
lo W Ws W; W3pLcs _ . 64
A 5.00 0.01725 0.00053 0.01778 0.01750 - Asin
B 2.50 0.00538 0.00026 0.00565 0.00552 ;gOSh(
).
Now the ply drop-off beam is modeled removing one element (el. num. 2) as displayed in Figure 10. In order to calculate the str
the exact solution, the structure has to be considered in two parts. The thicker is referred to by a subscript 2 and the section ¢ fortw
with the drop-off, referred by a subscript 1. i The
PB  PLE 6P S
2 142 2 . NIS:
W, = + + =
2= 3%, Y 26, T 5Ga, - MeontB) ! Thee
~ isthe n

thin the




LAMINATED COMPOSITE PLATES WITH THREE-DIMENSIONAL LAYER-WISE CONSTANT SHEAR ELEMENTS 207

Figure 10. Ply drop-off problem

P5  PLL, PE 6Py
0 = —— + —=. Wy =m0+ ———
2EL T EI 3El " 5GA,’

W2 tip = W2 + 62 . 12; Wt (pointA) = W2 tip + Wl

For the example depicted in Figure 10 the total transverse displacement (analytical) is equal to 0.03393" while the Finite
Element result is 0.034846". It can be noted that the 3DLCS result is larger than the analytical solution. This is because

the analytical solution assumes the two middle surfaces coincide, which is not the case in this example. It is interesting to
hote that at the drop-off point the normal is not straight, consequently the displacement calculated by the Finite Element
model is larger than predicted analytically. ‘

6.4. Central deflections of plates

mped square plate subject to (miformly transverse load are analysed
0 show the results making comparisons with the analogous results obtained running the commercial program NISA II

are made in isotropic material with the same mechanical parameters of example 6.1.1, the scheme of

he structures, the boundary conditions and the loads are reported in Figure 11. The results are reported in tables 9 and 10
Or two ratios of a/h.

- The elements used in NISA II
NISA 3D: brick elements
NISA 2D: two dimension

are described by these parameters:
with 20 nodes, NKTP = 4, NORDR = 2,

al thick and thin shell elements with 8§ nodes, NKTP = 20, NORDR =2,
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mesh 6x6x(1) (3DLCS, NISA2D, NISA3D)

Y
h
I
a
(-
a P= 1
- - !
A ) )
Simply Supported
Po=1 - ] u=w=0 on the sides parallel to x
= | v=w=0 on the sides parallel to y

Clamped: u=v=w=0 on all sides
Figure 11. Isotropic plates used in the comparisons between NISA II and 3DLCS

the well known effect of the ill-conditioned equations discussed by Ahmad [17] due to the €, different from zero. The
proposed element, instead, is a solid element but the condition that €, is omitted in the equations (11) and (17). Then the

problem of the ill-conditioned equations is overcome. When the structure became thick the three solutions are not very
different, and the proposed element shows that is the more deformable taking in better account the shear effects.

Table 9. Central deflections of simply supported isotropic plate under point load
C.P.T. solution [29]:0.001159(Pa2)/D; D=EhY12(1- V)

alh NISA3D NISA2D 3DLCS C.P.T.
100 4.06331 436106 4.3919 4.38133
10 5.01545e-3 5.05799-3 5.4028e-3 -
Table 10. Central deflections of clamped isotropic plate under uniformly distributed load
C.P.T. solution [29]: 0.00126(Po a®/D; D = Bh¥/(12(1 - v*)
alh NISA3D NISA2D 3DLCS C.P.T.
100 0.36866 0.45717 0.48006 0.47631
10 5.13700e-4 5.68437e-4 5.6896e-4 -

The computer program has been implemented by including a subroutin

pre-processor commercial programs.

The 3DLCS model requires 18 nodes per elemen
NISA or ABAQUS are used to produce directly the
The ninth and the eighteenth nodes of 3DLCS are pro

7. THE PRE- AND POST-PROCESSOR

e to useful input the data from NISA or ABAQUS

t with 2 dof (« and v) and 9 nodes with 1 dof (w). The twenty nodes of
first 16 nodes of 3DLCS with 2 dof and the first 8 nodes with 1 dof.
duced by using the interpolation functions of the serendipity elements
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(2 dimensional 8-node elements). This can be better understood by considering at Figure 12. Here we outline how to obtain
the connectivities of the 3DLCS elements starting from the NISA elements. The connection with the ABAQUS elements
is equivalent,

When all the structures has been discictized by running the pre-processor of NISA II (Display III) we can connect the
NISA connectivities to the 3DLCS connectivities by an array, called G. The i - th components of the G array has the value
of the corresponding node in the NISA connectivities correlates with the i — 4 node in the 3DLCS connectivities. Explicitly
we have:

G() = 1; G@=3% GB) =5 G@=71

G@O) =2 G(6) =4 G(7) = 6 G@8) =8

GO =21, G0 =13 GU) =15 G2 = 17

G(13)=19; G(4) =14 G5 =16 G(6) = 18;
G(17) = 20; G (18) = 22:

The connectivities of the NISA element which appears in the input file, is read by the element number (IEL), followed by
the array L (I), where I goes from 1 to 20 (note that NISA element has twenty nodes). Now the integer / is made to go from
one to eight first. For each I from 1 to 8 we have
' AN=G((); GN=L(AN)

The nodal coordinates of each GN is found and, with the use of the serendipity element interpolation functions, over these
first eight nodes the position of the ninth node is appropriately calculated. Although this node appears in the array of nodal
Ccoordinates, it is not part of any element at this point. So, it is very important that the coordinate of the ninth, eighteenth
and twenty seventh nodes are made by using the serendipity interpolation functions, because the procedure can be used
also for the shell elements. In fact, for plates it is sufficient to use the average of the coordinates. Now, this new node is
 labeled as L (21). This process has to be repeated with 7 going from 10 to 17, producing a new node labeled as L (22).

1(19) 5(23) 2(20)

3DLC

17

Figure 12. 3DLCS, NISA and ABAQUS elements and their connectivities
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Finally we go over a loop of / from 1 to 18 and: _
AN =GU; CWL D) =LEAN

~ where Cis the connectivity array of the 3DLCS elements with L beihg the element number and / the node. Thus for I going
from 1 to 18 AN goes from 1 to 22 and the connectivities of the 3DLCS elements are written completely. ’

Forces and boundary conditions are read directly from the NISA input file.

To use of the post-processor of NISA is only needed to extrapolate the results (the stresses for example) from the Gauss
points to the nodal points or in the centre of each element, as described by Cook [22]. Then it is only necessary to write
the opportune files with the formats prescribed by the NISA post-processor (DISP-POST).

8. CONCLUSIONS

Some notes are relevant on this new elements; in particular the linear variation through the thickness of the element presents
several advantages as follows:

(a) it reproduces the FSDT kinematic assumption when a single element is used to model the entire thickness of the

- laminate. The numerical integration must be performed layer by layer;

(b) it reproduces the LCS Theory kinematic constraints when the element is used to model a single layer of laminate. It
was demonstrated (Barbero [7]) by comparison with exact solutions that the layer-wise linear distribution is the most
efficient one. Therefore, more refined approximations through the thickness (e.g. quadratic, cublc spline) are usually
not necessary. However, they can be easily implemented;

(¢) the computational cost is reduced thh respect to three-dimensional quadratlc finite elements (20 or 27 node brick

elements).

Appendix I. List of Symbols

L%z Global coordinates _

1,2,3 Lamina natural directions ( 1 = fibre direction)
&n. ¢ Elemental coordinates

N; Interpolations functions in global coordinates
Ni

Interpolation functions for the global coordinate definitions

Displacement vector

{61} ={ w; } Nodal displacement vector

{8%) Elemental displacement vector

n,n, Number of nodes in the mesh and in the element, respectively

{o}; {0} Stress vectors in global and local coordinates, respectively
e} {€} Strain vectors in global and local coordinates, respectively

[C,-j] Three dimensional stiffness matrix :

[Qy] Two dimensional stiffness matrix

[D,-j] 3DLCS stiffness matrix

K Shear correction factor

E,, Ey, Ej Young’s moduli in direction 1, 2, and 3, respectively

Gl~2’ G13’ 623 Shear moduli ’

Viz Vi3, Vo3 Poisson coefficients

[Tk], rotation matrix for the generic lamina k&

In Total potential energy

{Fp} Equivalent nodal forces due to applied pressure

{p}= {px,p;,pz )

Body forces per unit volume



{q}

[B]

(K]

{F}

[J]
[B,].[B,]

P.

. i

A
TH

%
ngp

coordinate according to:

oN;
ox
oN;
dy
oN;
0z
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Applied surface tractions

Strain matrix in global coordinates

Plate stiffness matrix in global coordinates

Equivalent nodl forces

Jacobian matrix

Matrices of second derivatives of interpolation functions with respect to x and y co-

ordinate, respectively
Component of the distributed load in direction i

Area of upper, middle or bottom surface of the 3DLCS element, depending on the
position of the loading

Thickness of the 3DLCS element at each Gaussian point

Weight at each Gaussian point

number of Gaussian points

Appendix II. Computation of higher-order derivatives

The computation of the second derivatives of the interpolation functions with respect to the global coordinates involves
additional computations.
The first order derivatives with respect to the global coordinates are related to those with respect to the elemental

where the Jacobian [J] is evaluated using the approximation of the geometry (1).
The second derivative of N; with respect to the elemental coordinate (x, y, z) are given by:

(o o e || w;
0§ d& 9§ o0& &
ox dy 0z oN; —1 | ON;
_| 9x 9y 9z Wil _ g i All-1
an dn dn on ] an (AL
9 dy Oz oN; oN;
198 9C 9L | | 3¢ L
O°N, &N,
Q82 ox*
N, O°N,
82n2 82y2 N,
o, o, ax
3¢ 1. ) 9 2, | 9N
=1J T L [ All-2
o [ =0 gy (T (ALl -2)
anol Jy 0z oN;
92N, 92N, 9z
3EAL x 9z
O°N; &N,
dEan ox dy

Then the second derivative respect to the global coordinate are given by:
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where the coefficients of [ J 1 Jand [ Jz] are the following:

2
0.
J%1=[£);
1 _ 5,9y dz
425y
2
J%1=(5a%);
1 _ 0y 0z
4= 250 o
2
0.
J§1=(a_2);
1 _ 9 0z
134—a§ac’
A _ Ox ox
M7 oanag
1 _ 5,0y 9z
Jia = 2355
gL = 9x Ox
51 aéac’
1 _@y_az
J54 agag"'
Ji - 9xdx
ol " 9gan’
gl _ 9y oz
Jea atan T
2 azx.

9ydz
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0x 0z
N,
‘ Ox dy
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ST3EaC T agat’ = 3Eac Tacar
1 =22__al 1 _ aZ aZ
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dox 0z dox 0z dx 0 dox 0
Jlo-9x 9z 0xdz 1 _ dxdy  dx dy.
5= 3Ean Tanae’ 76 =3ean Tanae
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2 _ 9%y 9
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J%1=;_::2; ‘ J%2=a%21‘%; J%3=aa_121z2;
B = (7;%53 B = aizc% ’ B = g%i
Ta =a::23§; 132=§1a12_alc‘; 133=ag2§z;‘
J5 = a?gc J§2=a_223'L§i J§3=agzgcv
T4 = agzgn; T = 5%23))—1{; I = agzazn;
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