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ABSTRACT
A new three-dimensional element with two-dimensional kinematic constraints is used for the linear analysis of laminated composite
plates. The element can represent plates with variable number of layers and thickness, including ply drop-off problems. The element
is validated by the "Patch test" for the case ofisotropic and laminated plates. In particular a refined computation ofstresses is performed
by integrating the equilibrium equations through an assembly of elements that represents the laminate. Some examples are reported to
show the capability ofthe element topredict the mechanical behaviourofthis kind ofstructures. An interface with theNISA commercial
program is developed and used for the pre- and post-processing of the results.

1. INTRODUCTION

Multilayered composites are appropriate structural materials in weight sensitive aerospace applications where high
strength-to-weight ratios are needed. A large body of technical literature has been published on the subj~ct. Ml1ch,of the
analysis tools were originally developed for thin plates, based on Kirchhoff-Love kinematic assumptions. As itis well
known, the classical laminate theory underpredicts the deformation energy because transverse shear strains are neglected.

i~lpfact as the plate becom.es thicker compared to its in-plane dimensions, the transverse effects become more pronounced,
'~especially in the case of laminated composite plates because of their low transverse shear moduli compared to their

longitudinal moduli. .
Reissner studied these effects on elastic plates [1] and on sandwich type shells [2], while Mindlin included rotatoryiner.tia

terms in the dynamic analysis of plates [3]. Reddy [4] applied the First Shear Deformation Theory (FSDT) for the analysis
of laminated. composite plates and shells.· The FSDT produces excellent results (e.g. deflections, fundamental vibration
frequencies, etc.) but the accuracy of the stress distribution does not improve significa.ntly over the Kirchhoff-Love Theory
(Classical Plate Theory - CPT) and is not satisfactory. The determination of the stresses is very important for the solution
ofcrucial aspects in the optimal design ofcomposite laminates, like the determination ofthe ultimate load carrying capacity'
obtained by the application of one of the anisotropic failure criteria or by the application of continuum damage mechanics
theories. Higher Order Theories have been proposed in attempt to improve the prediction of the stresses.

All of the equivalent single-layer theories share a common characteristic: the assumed distribution of the displacements
through the thickness is continuous with the derivative with r~spect to the thickness coordina:tes. This implies> that the
out-of-plane shear strains are continuous across the material interfaces. As a result of the different material properties, the
out-of-plan~stress components are discontinuous at the interfaces betweenlayers, thus violating theequilibriumconditions.

To overcome the limitations of the ~quivalentsingle-layer theories and to obtain a good evaluation of the stresses, a class
of theories were develop·ed. These theories are based on a distribution ofdisplacements which is continuous in the thickness
ofthe plate but with derivatives with respect to the thickness coordinates that are not necessarily continuous at the interfaces
between layers. Layer-Wise Constant Shear (LCS) Theories were proposed by several authors [5-15]. The Finite Element
implementation of these theories is not simple because they imply a large number of degrees of freedom (dot) per node.
Moreover, the physical interpretations ofthe dof and the large number ofstress resultants and displacements is not intuitive
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2. KINEMATICS AND CONSTITUTIVEEQUATIONS

Consider a laminated plate composed of n orthotropic laminae, each arbitrarily oriented with respect to the. elemental
cOQrdinate(;, 11, ~). In particular ; and 11 are two elemental coordinates in the middle plane of the plate element and ~ a
linear coordinate in the thickness direction.

Each layer (or subset of layers) of the plate is discretized bythe 3D elements. Pairs ofpoints, itop and ibottom' each given

in.Cartesian coordinates, prescribe the shape of the element (Figure 1). If(;, 11, ~) vary between - 1 and 1 on the respective
faces of the element, a relationship between the Cartesian co-ordinat~ofany point ofthe plate and the elemental co-ordinate
can be written in the form:

Ix) ~ -. (1 + ~){Xi} ~ - (1 ~ ~){Xi}
.~ = ~ Nj (;. 11) 2 ~: + ~ Nj(~. 11) 2~: (1)

~ , ~wm

where'Ni (;, 11) is a function taking a value of unity at the node iand zero at all other nodes.

The displacement tu} = {u, v, w}T inside-an element is given by:

f u } = [N] { 3 } (2)

where { 3 }is .the collection of the nodal { 3; }that in this formulation is { 3; }= { ui; vi; wi }T. The interpolation functions

.are equal for U,v and w:

as in the CPT and FSDT. 'LeS Theories, for example, 'have not been used for shells because of the complexity of the
formulation, except for the case of cylindrical shells '[8].

Barbero [161 developed'a new' element for the analysis of laminated'plates starting from the formulation done for
three-dimensional shell elements by Ahmad et al.ll?] and using the kinematic constraints of LCS Theories. In particular
he noted.,thatwith the use of a 3D element, it is possible to analyze laminated composite plates overcoming the difficulties
ofLCSTheoriesbut retaining the precise stresses calculation. However, in [16] the stresses were calculated by using only
the constitutive equations. Here a procedure for the refined calculation ofinterlaminarstresses is developed along the lines
of previous work [18-19]. The procedure requires computation of higher order derivatives of the shape functions. These
derivatives are presented here in the context of the isoparametric formulation of three-dimensional problems.

The main disadvantage of conventional 3D continuum,elements when utilized in the analysis of Composite Laminates
Structures it is the large numberofdofinvolved,. The formulation presented here is based on the fact that certain assumptions
made in the plate theories are quite valid fora broad class ofproblems ofmoderately thick laminates. The proposed element
has a small number of dof per node and produces results as accurate as conventional 3D continuum elements for a large
range of problems. With this element, the imposition of the boundary conditions, loads, etc., has a very simple physical
interpretation and is identical to the conventional 3D continuum elements.

It is important to note that, because in this element the position of the middle surface is irrelevant, it is possible to model
problems with a variable number of layers (ply drop-ot), variable thickness (e.g.tapered glued-laminates, timber beams, etc.).

The objective of this work is to demonstrate the applicability ofLCS Theories [5-15] to complex analysis problems of
laminated structures (e.g., ply-drop-oft).Specifically, this work is ,concerned with the development and validation of a
3-Dimensional Layer-wise Constant Shear (3DLCS) elements. From a designer's point of view, an important feature of
the formulation presented here is' that the loads, boundary conditions, and degrees of freedom have the,same physical
interpretation as in three-dimensional continuum elements~Aninterfacewith a commercial Finite Element Analysis (FEA)
package (NISA) [20] was developed to further facilitate the ,. interpretation of the, results. Previous finite element
implementations ofLCS Theories, could nothe efficiently incorporated in commercial FEA packages because of the large
number ofdof per node associated with two dimensional LCS Theories. The present three-dimensional formulation solves
this problem completely. The interface with NISA demonstrates the case of implementation of the proposed element in
commercial packages. Maximum accuracy in the computation ofstresses is achieved in this work by postprocessing the
stress results from constitutive equation with the aid ofthe equilibrium equation. The ideaintroduced in. [18,19] for two
dimensional elements is generalized here for three~dimensional ,elements. Validation of the present formulation is
accomplished by the application of the patch test to laminated composites subjected to both in-plane loads and bending.
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Figure 1. Plate geometry
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where n is the number of the nodes and Ni = Ni (;, 11, ~).

The order of interpolation functions Ni along the two directions on the surface of the plate can be chosen independently .of the order thro~gh the thickness. Linear or quadratic interpolation of the displa.cements (u, v) and the geometry (x, y) arecommonly used. The order of approximation in the thickness direction corresponds to different kinematical assumptionsin LCS Theory. Here a linear variation is used. The quadratic element has 18 nodes. Nodes 1 to 9 have 3dof (u, v and w),nodes 10 to 18 have 2 dof (u and v) as shown in Figure 2. The variables u and v correspond to the in-plane displacementsat the interfaces between elements (layers). The transverse deflection w is constant through the thickness.·Therefore, asingle global node connects to all the local w-nodes that lie on a line perpendicular to the middle surface. The quadraticelement has 45 dof.
The constitutive equations for the k-th layer made in orthotropic material arbitrarily oriented with respect to the globalcoordinates is similar to the equations for a monoclinic material [21].
Then we have, with reference to the local reference system (1,\2, 3) (Figure 3):

0'1 c11 c12 c13 0 0 0 £'t

o'~ c12 c12 c13 0 0 0 £,~

o'~ c13 c13 c13 0 0 0 £,~

o'~
=

ci4
2 ,k ~ . (4)0 0 0 0 0 £4

o'~ 0 0 0 0 ~5 0 2£'~
a'~ 0 0 0 0 0 ~6 2£'~

dimensional reduced stiffness matrix for an orthotropic material subjected to plane stress in local reference
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To overcome the locking effect that awm$hing'tfans:vetse;;~~&~~=0) would have, eqs. (4). and (5) are combined as

follows,
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(7)

(8)

(9)

(10)

Qk Gk.
66 = 12,~5 = G13;

{ ok} = [Dk ] { ek }

£x u'x

£y V'y

{ e} = i 'YyZ = W,y + v'z ~ (11)

'Yxz w'x+ u'z

'Yxy U,y +v'x

c"44 = G~3 ;

k k d 0 0 0Q}l QI2 13

k k d 0 0 0QI2 Q22 23

-k I et3 c13 c13 0 0 0
[0 ] = 0 0 0 KZ ci4 0 0 I (6)

0 0 0 0 K2~5 0

0 0 0 0 0 Q~

k k
I- v 12 V21

ci3 = E1~ f!.k

The explicit expressions, in function of the Engineering constants, for the [D] matrix coefficients are:

k _ E1 . r>k _ v1z~ _ V~I E1 . r>k _ ~
QII - k k' ~12 - k k - k k' ~22 - k k

1 - v12 v21 1 - v12 v2l 1 - v12 v21 1 - vl2 v2l

k kk k k k k k k k k kd - v3I + vZI v3Z _ vB + VIZ vZ3 . d _ v32 + VIZ V3I _ VZ3 + VZI Vl3
13 - ."..k ...,k Ak - ."..k~ Ak' 23 - ~ ...,k Ak - ~ ...,k Ak

~2 ~3 L1 ~'i 2 L1 1 ~3 1 ~2

The components in directions of orthogonal axes related to the surface ~ = constant are essential if account is to be taken
kinematic assumptions of LCS Theory. The strain components of interest are:

where K2 is the shear correction factor fixed at the value of 5/6. In contracted notation we have:

{ a,k } = [Dk ] { e,k }

where:

where:

[ Dk ] = [Tk ]- 1 [ Dk ] [ Tk ]
...

cos2 ek sin2 ek 2 sin ek cos ek0 0 0
sin2 ek cos2 ek 0 0 0 - 2 sin ek cos ek

[Tel = I 0 0 1 0 0 0
0 0 0 cos ek - sin e~ 0
0 0 0 sin ek cos ek 0

- sin ek cos ek sin ek cos ek 0 0 0 cos2 ek
- sin2 ek

k k k k k k k k k
k 1 - v12 v21 - v23 v32 - v31 v13 - 2 v21 v32 v13

~ = ------------------
E1~E1

The relationship between stress and strain written with reference to the global coordinate (x, y, z), and the rotation matrix
for the lamina k is:
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(12)

with the strain in direction z neglected so as to be consistent with the plate LCS Theory assumption of incompressibility
of normals. Here and in the following, comma indicates a derivative with respect to the indicated coordinate.

3. INTEGRATION OF THE PLATE STIFFNESS MATRIX

The total potential energy IT, can be expressed as:

IT = ~ f {('J }T { £ } dV - f {u}T { P } dV - f {u}T { q } dS

V v S

where { 0' } and { £ } are the stress and the strain vectors respectively, { u } the displacements at any point, { p } the body
forces per unit volume and { q } the applied surface tractions. Integrations are taken over the volume V of the structure
and loaded area S. The first term on the right hand of (12) represents the internal strain energy and the second and third
terms are, respectively, the work of the body forces and distribute surface loads. Replacing eqs. (2) and (8) into (12) and
considering that with the Finite Element Analysis (FEA) the total potential energy of a continuum will be the sum of the
energy contributions of the individual element in which the structure has been divided, we can write the total potential
energy of the element e as follows:

ITe = i f {fl}T [B]T [D] [B] { fl } dV - f {Se}T [Nf { P } dVe - f {Se}T [Nf { q } dSe (13)

~ ~ ~

where Ve is the element volume, Se the elemental loaded surface area, { 'Of } is the vector of nodal displacements of the
element and [B] is the strain matrix, composed of derivatives of the shape functions written with respect to the coordinates

(x, y, z) and correlating strains and { 'Oe }as:

{ £} = [B] { 'Of }

The minimization of the Total Potential Energy, with respect to the nodal displacements { 'Of } results in:

(14)

dVe ] { 'Of} -1 f [Nf { p } dVe + f [Nf { q } dSeI= [
Ve Se

] { 'Oe} - {Fe} = 0

(15)

where { Fe } is the equivalent nodal force vector and [Kf
] is the stiffness matrix period.

The stiffness matrix is written as (with third row and column of [D] deleted):

] = f [Bf [D] [B] dx dy dz

v
The matrix B can be written explicitily as:

...Ni,x 0 0...

...0 Ni,y 0...

[B] = ...0 Ni,z Ni,y···

...Ni,z 0 Ni,x···

...Ni,y Ni,x 0...

(16)

(17)

The layer-wise constant shear constraint is satisfied by virtue of the linearity through the thickness of the displacements
u and v in eq. (2) (Figure 2). The incompressibility of the normals is imposed by omitting Ez in eqs. (11) and (17).

The derivative of the displacements with respect to the global axes (x, y, z) are obtained in the standard way· as:
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[

U.,x

U'y

U.,z

The Jacobian matrix is defined as:

V.,x w.,x] [ U., ~ v., ~ w., ~ ]
v.,y w.,y = [J]- 1 u., 11 v., 11 w., II

V.,z W.,z u., ~ v., ~ w., ~

(18)

(19)
[

x, ~ y., ~ Z., ~ ]

[ J] = x, 11 y., 11 Z., 11

x,~ y.,~ z.,~

and is calculated from the coordinate definition of equation (1).
Eq. (16) can be used directly to assemble the global stiffness matrix. The assembly procedure and the boundary conditions

are described in section 4.
The numerical integration is performed by Gaussian quadrature [22]. A two point rule suffices in the ~ direction, while

a minimum ofthree or four points in both ~ and 11 directions is needed for parabolic orcubic elements respectively. Reduced
integration is used in the ~ and 11 directions for the shear terms.

The loads can be defined in the global coordinate system. If pressure is applied the calculation of the loaded area in the
global coordinate is necessary and the nodal forces can be obtained by the knowledge of the Jacobian and the element
thickness., by the following relation:

where:

J
Px ngp ngp

{ Fp } = [N] Py dA = L
A P r=ls=l

z

NjPx 2

N· P IWJ: Wn I J I ~ 11 THI y "', "Us , S A J

N;PZ

(20)

Pi is the component of the distributed load in the direction i;
A is the area of upper., or middle or bottom surface of the 3DLCS element, depending on the position of the

loading;
TH is the thickness of the 3DLCS element of each Gaussian point (ngp =number of Gaussian points);
W is the weight at each Gaussian point;
~ is equal to 1 or - 1 or 0 respectively when the distributed loading is on upper or bottom or middle surface.

4. ASSEMBLY PROCEDURE AND CONDENSAnON OF REDUNDANT dof

The integration of the element stiffness matrix is performed as a standard I8-node element with 3 dof per node (u, v, w)
but with the appropriate shape functions N; described previously (Figure 2).

The transverse deflection w is constant through the thickness of the element by the incompressibility assumption made
omitting t z in eqs. (11) and (17). Therefore., the dofoftwo nodes aligned through the thickness ofan element can be reduced

to a single dof (w in the bottom for example). If this is not done the stiffness matrix present a singularity and the solution
cannot be· reached.

Then., at the element level the stiffness matrix is rearranged so that the dof corresponding to the displacement u and v on
the surface of the plate for all nodes (e.g. 18 nodes) are considered first.

The remaining dof corresponding to w-displacements are assigned to a new set of nodes (e.g. 9 nodes) called w-master
nodes in this work. The w-master nodes are independent ofthe original nodes to facilitate the assembly procedure. However,
they can be any set of nodes located at one of the interfaces of the laminate. The location of the w-nodes through the
thickness of the laminate does not affect the results. At the element level, the resulting element has 18 nodes with 2 dof (u

v) per node plus nine additional nodes with 1 dof (w) per node.
than one layer is present in the laminate, another condensation procedure must be done for each vertical in which

assume that the w-displacements are equal, due to the incompressibility condition, and then only one w-master node
· the w-master node at the bottom of the laminate) must be taken into account, connecting the remaining node to this
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master node. This·has' been easily achieved through the usual assembly by assigning the same global node number of the

w-master node to all the w-nodes located'on its·normaI.

The technique adopted has the following advantages:

(a) eliminates the need for complex bookkeepingto~dentify'individualsets of elements stacked to form a laminate.

(b) allows the front-width of the band-width optimization algorithm to take into account the thickness directio'nas well

as the surface direction iilthe search for the optimum element or node assembly order.

(c) eliminates the need for elements with a large dof number thatotherwise results if the assembly through the thickness

is performed' a priori. This is particularly useful for implementation in commercial FEA codes [23].

The constitutive equations (7) are usecl to obtain all six components of stress at the reduced Gauss points. The distribution

of in-plane stresses crx' cry and O'X)' is linear through the thickness. The distribution of jnter.;.laminar stresses O'xz and O'yz is

layer-wise constant. All components of stress obtained at the integration points can be extrapolatedto the nodes using the

procedure described by Cook in 1974 [22]. This is done to facilitate the graphic output using pre- and post- processing

package [20].
Selectiyereduced integration is used on the shear-related terms. The new element (3DLCS) reduces to FSDT when only

one element'is used through the thickness. Therefore, the behavioufof the 9-node L3:grangian FSDT element with selective

reduced integration, free ofshear locking, is also present in the proposed element. Furthermore, Reddy and Barbero [23]

successfully used selective reduced integration on their LCST element that has the same kinematic as a stack of 3DLCS

elements. As shown by Averil [24], the 9-node Lagrangian element with selective reduced integration does not exhibit

locking as the plate (or, in this paper, layer) becomes verythin. This is a remarkabl~ advantage of the proposed element

over conventional 3-D continuum,elements with full integration. ,

The 3l?LCSelement gives a very good representation of all the stress components except Gz without the aspect ratio

, limitations of conventional 3-D continuum elements. When transverse stress,O'z is needed, either conventional 3-D

continuum elements can be used or further postprocessing can be done by using the third equilibrium equation:

a0xz " aO'yz aO'z
T + ay + a; + Pz = 0 (21)

qu~dratic interlaminar stresses-thatsatisfythe shear boundary conditions at the top and at bottom surfaces of the plate

are obtained in this work for laminated plates modelled with 3pLCS elements. An approximation of the shear stress

distribution through each layer with it quadratic function requires 3n~quations for each of the shear stresses (O'xz,O'yz),

where n is the number of layers. To obtain these 3nequations: Chaudhuri [18] propo'sed that n equations can be used to

satisfy the n average shear stresses on each layer, two equations can be used to impose v'anishing shear stresses at the

surface of the plate (top and bottom), (n -1) equations are needed to satisfy ~hecontinuiiy ofthe shear stresses at the

interfaces between layers and the remaining (n - 1) equations has to be used to compute the jump in O'xz,£ (orcryZ, z),at

each interface.
The average shear stresses on each layer are computedfrom the constitutive equations andthe displacement field obtained

intheFEA.
In this work, the following equilibrium,equations

.. a~xz = _ (aa:X + a~xy ): a~yZ = _ (a~xy + aa:Y ) (22)

a~e used to compute O'xz, z and O'yz, z directry from the FEA approximation in the proposed element.

The procedure-requires computation of second ,derivatives of the displacement (u, v, .w). In this work, the second

..-derivatives are obtained'from the shape functions used in the isoparameteric formulation (Appendix II).

Using eqs.(8), (14)and (17) we can write:
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and similarly:

~,x

~,x

~z,x
k

O'xz,x

~,x

...Ni,xx 0 0 .

...0 Ni,yx 0 .

= [Ok] I ...0 Ni, zx Ni, yx'" I{rl} = [Ok] [Bx] { ae
}

...Ni, zx 0 Ni, xx· ..

...Ni, yx Ni, xx 0...

(23)

~,y

~,y

~Z,y

~Z,y

~y,y

...Ni,xy 0 0 .

...0 Ni,yy 0 .

= [Ok] I ...0 Ni,l:Y Ni,yy'" I{ae
} =

...Ni, zy 0 Ni, xy. ••

...Ni, yy Ni, xy 0...

[By] { (24)

where the matrices [B,,] and [By] are used for the computation of the second derivatives of stresses in the same way as the
strain-displacement matrix [B] is used for the computation of stresses. With the second derivatives of stresses, the parabolic
shape of O'xz and O'yz through the thickness with respect to the local axes can be obtained. Then, by the knowledge of the

angle ebetween the local axes and the natural directions (1, 2, 3) (Figure 2) it is possible to calculate the stresses in direction
of the fibres and normal to them, which are needed to study the failure or damage of laminated, composite plates.

6. VALIDAnON

6.1. Patch tests

As originally conceived by Iron [25, 26], the patch test simply verifies that an arbitrary patch of assembled elements
reproduces exactly the behaviour of an elastic solid material when subjected to boundary displacements consistent with
constant straining.

By numerous publications it was shown that:

(a) the patch test still remains a necessary condition for the finite element form;
(b) it can be readily extended to check sufficient requirements for convergence;
(c) is an assessment of the asymptotic convergence rate of a particular finite element form;
(d) is useful to check the robustness of the appropriate algorithm which violate in their formulation the compatibility

(continuity) requirements.

Figures 4 and 5 show acceptable patch test [25, 26] meshes to validate the proposed element. Boundary nodes of the
patches are loaded by consistently derived nodal loads appropriate to state of constant strain/stress. Internal nodes are
neither loaded nor restrained. The patches are provided with enough support to prevent a rigid-body motion. The standard
finite element procedure is executed and the computed stresses, strains and the displacements are compared with the exact
solution. If these values are the same or the difference is an acceptable tolerance then the patch tests are passed. Application
to laminated composites under traction and bending is shown -ne~t.

6.1.1. Patch test on an isotropic plate under in-plane loading

An isotropic plate under in-plane loading was analysed with the five element mesh depicted in Figure 4.
The in-plane stress is taken to be unity and the material adopted has these mechanical parameters:

E =29000 K si ; v =0.294
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Figure 4. Patch for an isotropic plate under in-pl~e loading
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Then the exact solution for the stress arid the strain is:

The results are shown in Tables 1 to 6.

In all the five elements and in each Gauss point the values computed by the FEA coincide with the expected solution.

The same patchtest was performed by applying the specified displacements u at the free face (1 =10.00'') calculated by

the relation:
1

u = f Ex~dx = Exl = 10 x 3.44827 x 10- 5 = 3.44827 x 10- 4

o

and the same results are reached.

6.1.2. Patch test on a composite laminated plate under in-plane loading

A second patch test, similar to the previous, but on a three layers laminate (0°/90°/0°), is performed to check the proposed

3DLCS·element. The material adopted has these mechanical Parameters:

E1 = 3.0 GPa; E2 = E3 = 1.0GPa; G12<=G13=G23 = 0.5 GPa; v12 = vI3= v23 =0.25

The patch is firstly loaded by consistently derived forcesto have a unitary distributed load onthe loaded faces. Then the

same patch is subjected to the uniform displacement on the free faces I = 10.0" in a way to ,produce the same unitary

distribution on the loaded face. The dimensions and labels of the elements and layers are' shown in Figure 5 while the

boundary conditions are the same asexample 6.1.1.

The exact solution is obtained by a simple computer program based onthe Classical Laminate Theory [211. In particular,

the displacements ui and vi atthe nodal points are calculated by:
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Table 1. Stresses and Strains·at the .Gauss Points of the element no. 1 • Specified displacements

G.P. I ax (GPa) cry· 10 (GPa) Ex £y.l0

C.P.T 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS

1 1.290 1.288 0.436 0.463 0.426 0.426 -0.640 -0.610

2 1.290' 1.288 0.436 0.435 0.426 0.426 -0.640 -0.638

3 1.290 1.288 0.436 0.392 0.426 0.426 -0.640 -0.680

4 1.290 1.289 0.436 0.435 0.426 0.426 -0.640 -0.639

5 1.290 1.289 0.436 0.444 0.426 0.426 -0.640 -0.629

6 1.290 1.289 0.436 0.435 0.426 0.426 -0.640 --0.638

7 1.290 1.289 0.436 0.449 0.426 0.426 -0.640 -0.624

8 1.290 1.289 0.436 0.434 0.426 0.426 -0.640 -0.639

Table 2. Stresses and Strains in· the·Gauss Points of the element no. 6 .'Specified displacements

Ox (GPa) cry . 10 (GPa) Ex Ey.l0

C.P.T 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS

0.419 0.418 -0.871 -0.902 0.426 0.426 -0.640 -0.649

0.419 0.418 -0.871 -0.902 0.426" 0.426 -0.640 -0.649

0.419 0.419 -0.871 -0.824 .. 0.426 0.426 -0.640 -0.623

0.419 0.419 -0.871 -0.824 0~426 0.426 -0.640 -0.623

0.419 0.419 -0.871 -0.878 .' 0.426 0.426 -0~640 -0.642

0.419 0.419 -0.871 -0.878 0.426 0.426 -0.640 -0.642

0.419 0.419 -0.871 -0.890 0.426 0.426 -0.640 -0.646.

0.419 0.419 -0.871 -0.890 0.426 0.426 -0.640 -0.646
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Table 3. Stresses and Strains at the.Gauss Points ofthe element no. 1 - Patch subjected to forces

G.P. O'x (GPa) cry· 10 (GPa) Ex Ey.l0

num. C.P.T 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS

1 1.290 1.288 0.436 0.457 0.426 0.425 -0.640 -0.616

2 1.290 1.292 0.436 0.429 0.426 0.427, -0.640 -0.647

3 1.290 1.290 0.436 0.394 0.426 0.427 -0.640 -0.680

4 1.290 1.291 0.436 0.431 0.426 0.427 -0.640 -0.645

5 1.290 1.281 0.436 0.424 0.426 0.423 -0.640 -0.644

6 1.290 1.298 0.436 0.442 0.426 0.429 -0.640 -0.639

7 1.290 1.282 0.436 0.438 0.426 0.425 -0.640 -0.630

8 1.290 1.297 0.436 0.442 0.426 0.429 -0.640 -0.639

Table 4. Stresses and Strains in the Gauss Points of the element no. 6 • Patch subjected to forces

G.P. O'x (GPa) O'y . 10 (GPa) Ex Ey.l0

num. C.P.T 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS

1 0.419 0.420 -0.871 -0.926 0.426 0.427 -0.640 -0.640

2 0.419 0.420 -0.871 -0.926 0.426 0.427 -0.640 -0.640

3 0.419 0.420 -0.871 ::-0.847 0.426 0.428 -0.640 -0.560

4 0.419 0.420 -0.871 -0.847' 0.426 0.426 -0.640 -0.560

5 0.419 0.424 -0.871 -0.854 0.426 0.428 -0.640 -0.600

6 0.419 0.424 -0.871 -0.854 0.426 0.426 -0.640 -0.600

7 0.419 0.424 -0.871 -0.869 0.426 0.425 -0.640 -0.590

8 0.419 0.424 -0.871 -0.869 0.426 0.429 -0.640 -0.590

Table S. Stresses at the centre of the elements

Appliedforces Specified displacements

Element ax (GPa) Oy . 10 (GPa) ax (GPa) O'y . 10 (GPa)

num. C.P.T. 3DLCS C.P.T. 3DLCS C.P.T. 3DLCS C~P.T. 3DLCS

1 1.290 1.289 0.436 0.436 1.290 1.289 0.436 0.432

2 1.290 1.289 0.436 0.416 1.290 1.289 0.436 0.421

3 1.290 1.289 0.436 0.436 1.290 1.283 0.436 0.417

4 1.290 1.289 0.436 0.395 1.290 1.291 0.436 0.396

5 1.290 1.289 0.436 0.399 1.290 1.291 0.436 0.400

6 0.419 0.419 -0.871 -0.873 0.419 0.422 -0.871 -0.874

7 1.290 1.289 0.436 0.436 1.290 1.290 0.436 0.432

8 0.419 0.419 -0.871 -0.831 0.419 0.422 -0.871 -0.828

9 1.290 1.289 0.436 0.416 1.290 1.289 0.436 0.4.21

10 0.419 0.419 -0.871 -0.873 0.419 0.437 -0.'871 -0.854

(Conld.)
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Table 5 ~ Contd.)

11 1.290 1.289 0.436 0.436 1.290 1.282 0.436 0.417

12 0.419 0.419 - 0.871 - 0.791 0.419 0.421 -0.871 -0.791

13 1.290 1.289 0.436 0.395 1.290 1.291 0.436 0.396

14 0.419 0.419 - 0.871 -0.800 0.419 0.420 - 0.871 - 0.795

15 1.290 1.289 0.436 0.399 1.290 1.291 0.436 0.400

Table 6. Displacements at the nodes Ex (Cp.n = 0.426 Ey (c.p.n = -

Coordinate C.P.T. Appliedforces Specified displace.

node x y u v u v u v

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 2.000 1.667 0.852 -0.107 0.859 -0.103 0.852 -0.104

3 3.000 3.333 1.278 - 0.213 1.284 -0.220 1.278 -0.217

4 0.000 5.000 0.000 -0.320 0.000 -0.342 0.000 -0.340

5 1.000 0.833 0.426 -0.053 0.421 -0.060 0.426 -0.058

6 2.500 2.500 1.065 -0.160 1.054 -0.160 1.065 -0.160

7 1.500 4.167 0.639 -0.267 0.636 -0.267 0.639 -0.265

8 0.000 2.500 0.000 -0.160 0.000 - 0.157 0.000 -0.156

9 8.000 1.667 3.408 -0.107 3.408 -0.103 3.407 -0.104

10 7.000 3.333 2.982 -0.213 2.964 -0.220 2.981 -0.217

11 5.000 1.667 2.130 -0.107 2.133 -0.107 2.130 -0.103

12 5.000 3.333 2.130 -0.213 2.136 -0.219 2.130 -0.218

13 10.000 0.000 4.260 0.000 4.224 0.004 4.260 0.003

14 10.000 5.000 4.260 -0.320 4.220 -0.342 4.260 -0.339

15 9.000 0.833 3.834 -0.053 3.847 -0.059 3.835 -0.059

16 10.000 2.500 4.260 -0.160 4.168 -0.155 4.260 -0.156

17 8.500 4.167 3.621 -0.267 3.643 ~- 0.269 3.621 -0.265,

18 5.000 0.000 2.130 0.000 2.143 0.025 2.130 0.026

19 5.000 5.000 2.130 -0.320 2.142 -0.344 2.130 -0.341

20 1.250 2.500 0.533 -0.160 0.536 - 0.161 0.533 - 0.158

21 8.750 2.500 3.728 -0.160 3.757 -0.163 3.727 - 0.159
.....

22 5.000 0.833 2.130 -0.053 2.134 -0.056 2.130 -0.054-
23 5.000 4.167 2.130 -0.267 2.133 -0.264 2.130 -0.262--
24 5.000 2.500 2.130 -0.160 2.143 -0.164 2.130 -0.160---
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The remaining boundary conditions are the same of example 6.1.3.

Ex = Xx . zG = 1 x 10- 6 x (± 0.289) x t =± 0.289 x 10- 6

6.1.3. Patch test on an isotropic plate under constant curvature

A patch of an isotropic plate with material properties of example 6.1.1 is ·subjected to a constant curvature Xx = 10- 6 along

the x axis. Figure 6 shows dimensions, labels and boundary conditions of this patch test. The strains Ex at the Gauss points

can be calculated by:

Ui = Ex • Xi = Xx · zi · Xi

where the coordinate z is zero at the middle surface of the plate. The FEA solution perfectly reproduces the C. P. T. values.
The values of YXl are zero everywhere in perfect agreement with the hypotheses of the C.P. T.

6.1.4. Patch test on a composite laminated plate under constant curvature

The same patch used in example 6.1.2 (Figure 5) is now subjected to a constant curvature Xx fixed at the value of

1 x 10- 6 as in the previous example. The curvature has been obtained fixing, at the side x =± 5.0" (origin of the axes fixed
at the centre of the middle plane), the nodal displacements given by:

1= 1(1'

Figure 6. Patch for an isotropic plate under constant curvature

The comparisons between the results obtained by the proposed 3DLCS element and the C.P.T are shown in Table 7 and
8. The shear strain Yz.x obtained by the FEA is zero in each Gauss Point as hypotized in the C.P.T. By the comparison of

the results obtained, shown in table 1 to 8, we can affirm that the patch test is passed. The differences. regarding the effects
in direction yare indicative of a better representation by the 3DLCS element of the real 3D state of stresses and deformation
as compared to C.P.T. and not a deficiency of the element in passing the patch test.
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Table 7. Stresses Ox at the nodes •Tl (T2) Top of layer 1 (2) -- Bl (B2) Bottom of layer 1 (2)

Element 1 ax· 105 (GPa) Element 6 ax· 105 (GPa)

node pOSe 3DLCS C.P.T pOSe 3DLCS C.P.T

1 Bl 0.153 0.150 B2 0.017 0.016

2 Bl 0.153 0.150 B2 0.017 0.016

3 Bl 0.153 0.150 B2 0.017 0.016

4 Bl 0.153 0.150 B2 0.017 0.016

5 Bl 0.153 0.150 B2 0.017 0.016

6 Bl 0.153 0.150 B2 0.017 0.016

7 Bl 0.153 0.150 0.017 0.016

8 Bl 0.153 0.150 B2 0.017 0.016

10 Tl 0.051 0.050 T2 -0.017 -0.016

11 Tl 0.051 0.050 T2 -0.017 ~ -0.016

12 Tl 0.051 0.050 ~··.0.017 -0.016

13 Tl 0.051 0.050 T2 -0.017 -0.016

14 Tl 0.051 0.050 T2 -0.017 -0.016

15 Tl 0.051 0.050 T2 -0.017 -0.016

16 Tl 0.051 0.050 T2 -0.017 -0.0.16

17 Tl 0.051 0.050 T2 -0.017 -0.016

Table 8. Strains Ex • 10' at the Gauss Points ofelements no.l.andno. 6

Elementno. 1 Element no. 6

G.P. 3DLCS C.P.T. 3DLCS C.P.T

1 0.42956 0.42955 0.09622 0.09623

2 0.23710 0.23711 -0.0962Z -0.09623

3 0.42956 0.42955 0.09623 0.09623

4 0.23711 0.23711 -0,,09623 -0~09623

5· 0.42956 0.42955 0.09623 0~09623

6 0.23711 0.23711 .... 0.09623 ..... 0.09623

7 . 0.42956 0.42955 0.09623 0.09623

8 0.23711 0.23711 -0.09623' -0.09623

Refined computation of stresses

we consider a case of a simply-supported (0°/90%°) square (I· I} plate under uniformly distributed transverse load.
The material properties are:

£1 = 19.2 X 106 psi; £2 = £3 = 1.56 x 106 psi ; GI2 = G13 =0.82 X 106 psi

G23 = 0.523 X 106 psi,; v12 = vl3 = 0.24 ; v23 = 0.49
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Figure 7 - Scheme used for the computation of the stresses
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The plate is sirpply-supported on all four sides. Owing the symmetry, only a quarter of the plate is modelled by a
4 x 4 x 3 mesh of 3DLCS elements. Figure 7 shows the dimensions and tqe boundary conditions adopted.

The through-the-thickness distribution of the in-plane normal stress O'x' for aspect ratio l/h = 10, is shown in Figure

8(a). The stresses are computed at the nodes with coordinates x =y =0. Figures 8(b) and 8(c) contain similar plots of the
interlaminar shear stresses O'yz and O"xz' respectively. The stresses are normalized bythe relations:

_ _ h _ h2

(O'xz' O'yz) =~ (oxz' O'yz); O'x = 20'x'
q ql

In Figure 8(b) O'yz is computed at the point x =°and y =a and in Figure 8(c) O'xz is computed at the point x =a and y =
O. In these plots, broken lines represent the stresses obtained by the constitutive equations, while the smooth solid lines
represent the stress distribution obtained using the equilibrium equations. The difference between the results is very clear
and the excellent representation of the shear stresses demonstrated.

The s,ame scheme, but with the sinusoidal distributed load ( q":: qo cos ~ ~ cos~ ) on the plate, is used ~o mak~ a

companson between the shear and normal stresses calculated by\he proposed element and the analogous detemnned USIng
. the three-dimensional exact solution of Pagano [27, 28]. The positions in·which the stresses are calculated and the mesh

adopted on only a quarter of the plate are the same used in the previous .example. Observing the plots reported in Figures
9 we can say that the results compare very well, especially for O'yz and O'x.x-

6.3. Ply drop-off beam problem

Ply drop-off is an important problem in the study of structures made ofcomposite materials. A part of a layer of a composite
laminate is removed in a transition fromthick to thin laminates. Obtaining an exact solution or a finite element analysis of
these irregular structures is a major problem. This is because the thick part has its middle surface at a different location



LAMINATED COMPOSITE PLATES WITH THREE-DIMENSIONAL LAYER-WISE CONSTANT SHEAR ELEMENTS 205
1.00 <:

0.80

0.60
....c
~

N

1.00
-0.50 0.00 0.50
Norrnal stress (xx)

Figure 8(a). Normal stresses

0.00 I' i , I I 'ii Ii 1 j j 1 II j Iii 1 1'1 iii i I-1.00

0.20

0.40

Figure 8(b) and 8(c) - Shear stresses: comparisons between equilibrium and constitutive equations

through the thickness than the thin part. By using the 3DLCS element this problem is overcome because, in comparisonto the two-dimensional analysis, the position of the middle surface is not important for the use of this element.Before considering the drop-off problem itself, the deflection obtained from 3DLCS for a cantileverbeam subjected totip load and considering the shear effect is checked. A unitary load (P =1.0) was applied in the transverse direction. Thedeflection is calculated at two points a and b as shown in Figure 10 together with the dimensions, the labels and the boundarycondition~. The material is isotropic and has the same mechanical parameters 9f example 6.1.1. The total deflections arecalculated by adding the bending displacements wb at the shear effects W s (Timoshenko beam theory).
. Pi3 Pipomt A = Wt = Wb + Ws = 3 EI + XGA (X = 5/6)
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Now the ply drop-off beam is modeled removing one element (el. num. 2) as displayed in Figure 10. In order to calculate
the exact solution, the structure has to be considered in two parts. The thicker is referred to by a subscript 2 and the section
with the drop-off, referred by a subscript 1.
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Figure 10. Ply·drop-offproblem

23
6P12 Pl1 12 .. ..• . Pit ... ... . Pl192 =2£/2 + £/2; WI = 3E/

I +5QA
I

;

W2tip = W2 + 92 .12 ; Wt(pointA) = W2tip +WtFor the example depicted in Figure 10 the totaltransverse displ~Ille~t(analytical) is equaJto 0.03393" While the FiniteElement result is O.034846'~. It can be noted that the 3DLCSresult is larger than the analytical solution. This is becausethe analy~ical solution assumes the two middle 'surfaces coincide, which is not the case in this example. It is interesting tonote that at the drop-off point the normal is not straight, consequently the displacement calculated by the Finite Elementmodel·is larger than predicted analytically.

•4. Central d~flectionsof plates
simply supported square plate with point load and aclamped square platesubject to uniformly transverse load are analysedshow the results making comparisons. with the analogous. results obtained running the commercial program NISA II0]. The structures are made in isotropic material with the same mechanical pa:rameters of example 6.1.1 ,the scheme ofe structures, the boundary conditions and the loads are reported in Figure> 11 ..The results are reported in tables 9 and 10r two ratios of a/h.

The elements used in NISA II are described by these parameters:NISA 3D: brick elements with 20 nodes, NKTP =4, NoRDR = 2,ISA 2D: two dimensional thick and thinshellelementswith8 nodes,~J{TP=20, NORDR= 2.he exact solution, obtainedbyusingthe Classical Plate Theory, is alsoreponted [29]. It is clearthatth.e proposed solutionnearest solution when the structure is thin and this theory is valid. It is also very worth noting that, when the plate isthe solution obtained using the brick elements ofNISAl1 is very differentfrom the other two solutions. This denotes
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Qamped: u=v=w=O on all sides

Figure 11. Isotropic plates used in the comparisons between NISA II and 3DLCS

the well known effect of the ill-conditioned equations discussed by Ahmad [17] due to the £z different from zero. The

proposed element, instead, is a solid element but the condition that £z is omitted in the equations (11) and (17). Then the

problem of the ill-conditioned equations is overcome. When the structure became thick the three solutions are not very

different, and the proposed element shows that is the more deformable taking in better account the shear effects.

Table 9. Central deflections of simply supported isotropic plate under point load

C.P.T. solution [29]:0.OOI159(pa2)1D; D =(Eh3)/12 (1 ..... v2»

a/h NISA3D NISA2D 3DLCS C.P.T.

100 4.06331 4.36106 4.3919 4.38133

10 5.01545e-3 5.0579ge-3 5.4028e-3 -

Table 10. Central deflections of clamped isotropic plate under uniformly distributed load

C.P. T. solution [29]: 0.OO126(Po a4)1D; D = (Eh3)/(12(1 ..... v2
)

a/h NISA3D NISA2D 3DLCS C.P.T.

100 0.36866 0.45717 0.48006 0.47631

10 5. 13700e-4 5.68437e-4 5.6896e-4 -

7. THE PRE- AND POST-PROCESSOR

The computer program has been implemented by including a subroutine to useful input the data from NISA or ABAQUS

pre-processor commercial programs.

The 3DLCS model requires 18 nodes per element with 2 dof (u and v) and 9 nodes with 1 dof (w). The twenty nodes of

NISA or ABAQUS are used to produce directly the first 16 nodes of 3DLCS with 2 dof and the first 8 nodes with 1 doff

The ninth and the eighteenth nodes of 3DLCS are produced by using the interpolation functions of the serendipity elements
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(2 dimensional 8-node elements). This can be better understood by considering at Figure 12. Here we outline how to obtain
the connectivities of the 3DLCS elements starting from the NISA elements. The.connection with theABAQUS elements
is equivalent.

When all the structures has been discl~tizedby running the pre-processor of NISA II (Display III) we can connect. the
NISA connectivities to the 3DLCS connectivitiesby an array, called G. The i - th components of the G array has the value
of the corresponding nodein the NISA connectivities correlates with the i -th node in the 3DLCS connectivities. Explicitly
we have:

The connectivities of the NISA element which appears in the input file, is read by the element number (IEL), followed by
th.e arrayL (l), where 1goes from 1 to 20 (note that NISA element has twenty nodes). No"Y the integer1 is made to gofrom
one to eight first. For each 1 from 1 to 8 we have

AN=G(I);. GN=L(AN)

The nodal coordinates of each GN is found and, with the use of the serendipity element interpolation functions, over these
first eight nodes the position of the ninth node is appropriately calculated. Although this node appears in the array of nodal
_coordinates, it is not part of any element at this point. So, it is very important that the coordinate of the ninth, eighteenth
and twenty seventh nodes are made by using the serendipity interpolation functions, because the procedure can be used
also for the shell elements. In fact, for plates it is sufficientto use the average of the coordinates. Now, this new node is
labeled as L (21). This process has to be repeated with 1going from 10 to 17, producing a new node labeled as L (22).
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where C is the connectivity array of the 3DLCS elements with L being the element number and [ the node. Thus for [ going
from 1 to 18 ANgoes from 1 to 22 and the connectivities of the 3DLCS elements are written completely.
For~es and boundary conditions are read directly from the NISA inputfile.
To use of the post-processor of NISA is only needed to extrapolate the 'results (the stresses for example) fromthe Gauss

points to the nodal points or in the centre of each element, as described by Cook [22]. Then it is only necessary to write
the opportune files with the formats prescribed by theNISA post-processor (DISP-POST).

Some notes arerelevant on this new elements; in particular the linear variation through the thickness of the-element presents
several advantages as follows:

(a) it. reproduces the FSDT kinematic assumption when a single element is used to model the entire thickness of the
laminate. The numerical integration must be performed layer by layer;

(b) it reproduces the LCS Theory kinematic constraints when the element is used to model a single layer ofIaminate. It
was demonstrated (Barbero [7])by comparison with exactsolutions that the layer-wise linear distribution is the most
efficient one. Therefore, more refined approximations through the thickness (e.g. quadratic, cubic spline) are usually
not n~cessary. However, they .can be easily implemented;

(c) the computational co'st is reduced with respect to three-dimensional quadratic finite elements (20 or 27 node brick
elements). '
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C (L, /) = L (AN)

Appendix I. List of Symbols

Global coordinates

Lamina natural directions ( 1 = fibre direction)

Elemental coordinates

Interpolations functions in global coordinates

Interpolation functions for the global coordinate definitions

Displacement vector

Nodal displacement vector

Elemental displacement vector
Number of nodes in the mesh and in the element, respectively

Stress vectors in global and local coordinates, respectively
Strain vectors in global and local coordinates, respectively
Three dimensional stiffness matrix

Two dimensional stiffness·matrix

, 3DLCS stiffness matrix

Shear correction factor
Young's moduli in direction 1,2, and 3, respectively

Shear moduli

Poisson coefficients

rotation matrix for the generic lamina k
Total potential energy
Equivalent nodal forces due to applied pressure

Body forces per unit volume

x,y,z

1,2,3

~,11, ~

Ni

N;

n, ne

{ a }; {a'}
{ £ }; { £' }

[Cij]

[Qij]

[Dijl

K
E1, E2, E3

GI·2' G13, G23

"i2' v13' v23

[Tkl
n
{Fp }

{p} = {Px,py'Pz}T

T{ u } = {U, v, w}

{ OJ } = { Ui' vb wi } T

{oe }

-Finally we go over a·loop of [from 1 to 18 and:

AN = G (/);
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{q }

[K]
{F}
[J]
[ ], [

A

TH
W
ngp

Applied surface tractions
Strain matrix in global coordinates
Plate stiffness matrix in global coordinates
Equivalent nod,J forces
Jacobian matrix
Matrices of second derivatives of interpolation functions with respect to x and y co-

ordinate, respectively
Component of the distributed load in direction i

Area of upper, middle or bottom surface of the 3DLCS element, depending on the
position of the loading
Thickness of the 3DLCS element at each Gaussian point
Weight at each Gaussian point
number of Gaussian points

Annendix II.. .n....-_" ... 4-~4-;.n._ of hi1!her-order derivatives

The computation of the second derivatives of the interpolation functions with respect to the global coordinates involves
additional computations.

The first order derivatives with respect to the global coordinates are related to those with respect to the elemental
coordinate according to:

aNi ax ay az - 1 aNi aNi

ax ~ as as as aS
aN· ax ay az aN· 1 aN·

I = - __ __ I = [J]- _I ( (All-I)

ay a" a" a" a11 a"
aN· ax ay dZ aN· aN·

I - - I I

az as as as ~ ~

where the Jacobian [J] is evaluated using the approximation of the geometry (1).
The second derivative of Ni with respect to the elemental coordinate (x, y, z) are given by:

a2N. a2N.
I I

-

aS2 ax2

a2N. a2N.
I I

a,,2 ay2
aNi

a2N. a2N.
I I ax

aS2 az2 aN·
= [ ] + [ ] _l( (All - 2)

a2N. a2N. ay
I I-- aNiaTlas ayaz

a2N. a2N.
az

I I-
asas axaz
a2N. a2N.

I I

asa" axay

Then the second derivative respect to the global coordinate are given by:
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a2N.
l

aX2

a2N.
l

ay2

a2N.
l

aZ2
a2N.

l

ayaz
a2N.

I

axaZ
a2N.

l

axay

a2N.
l

a~2

a2N.
l

a,,2
a2N.

l

a~2

a2N.
l

a"a~

a2N.
l

a~a~

a2N.
l

a~a"

aNi

ax
_ [J2] aNi

ay
aNi

az

(All - 3)
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2 a2
X 2 _h. 2 a2

Z
J 21 = -2; 122 - 0112' 123 = 0112 ;art

2 a2x J2 ~h. J2 _ 02Z •
hI = 0 l;2; 32 - a~2 ' 33 - a~2 '

a2x 2 a2y a2zJ2 · 142 = 011 0 l; ; 1~3 = 011 0 l; ;41 = a11 a~'

a2x 2 _ --.i!L. 2 iJ2zJg I = a~ 01;; 152 - 0 ~ 0 I; , 153 = o~ol;;

a2x . 2 ~ iJ2zJ2 •
162 = 0 ~ 0 11 ; 1~3 = 0~011 ;61 = iJ ~ iJ 1]'
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