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Lateral and distortional buckling ofpultruded
I-beams
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The elastic buckling modes of pultruded I-beams subjected to various loading
conditions are studied. The coupling of lateral and distortional buckling, very
likely to appear in thin-walled cross-sections, is investigated. Plate theory is
used to allow for distortion of the cross-section. Shear effects and bending­
t\\isting coupling are accounted for in the analysis, because of their significant
role. The effect of fiber orientation in the matrix and volume fraction is investi­
gated by a parametric study. Pultruded cross-sections are always.thin-walled
due to constraints in the manufacturing process. Hence, the buckling strength
determines the overall strength of the member. The results presented
correspond to actual pultruded cross-sections being used in civil engineering
types of structure.

INTRODUCTION plate. The coupling of the local buckling of flanges
and web may also occur. In the case of lateral

Various pultrusion manufacturers proQuce on an buckling" there is a lateral displacement and twist
industrial basis beams with a variety of cross- of the cross-section without local changes in the
sectional shapes and dimensions (e.g. I-beams, cross-section geometry.
wide flange I-beams, box-beams, angle beams, The most general case is when coupling
tubes, etc.). These products are made from poly- between local modes and lateral modes of buck-
mers (usually called resin in the uncured state and ling occurs. This is called distortional buckling
matrix in the cured state) with fiber reinforcement. and in many cases of beams with certain dimen-
Polyester, vinylester or epoxy are used as a matrix sions, distortional buckling can result in a signifi-
to hold together E-glass, S-glass, Kevlar or carbon cant lowering of the critical load. 1-3

fibers used as reinforcement. Fibers and polymer Many studies have been done separately on the
are joined through the pultrusion process to form local buckling~-9 and lateral buckling of I-beams,
the desired cross-section. The present study is but only a fe\\' on a combination of the buckling
concerned with the stability of I-beams and wide- modes (distortional buckling).3 The material used
flange I-beams under bending loads. in previous studies on lateral and distortional

An I-beam can buckle with various modes buckling is steel (homogeneous and isotropic)
depending on the geometry of the cross-section, with the exception of Mottram10. II who con-
the material properties, and the boundary and sidered lateral buckling of an orthotropic
loading conditions. The beam can buckle either material. Pultruded cross-sections are thin-walled
locally, or laterally, or with a combination of local and each part of the cross-section is treated in this
and lateral modes. Local buckling is defined as the work as a laminated plate. Each lamina can be
instability mode when changes in the geometry of either specially orthotropic or generally ortho-
the cross-section occur, but not accompanied by tropic. The stiffness coupling terms are important,
lateral displacement or twist. Each part of the especially when bending-twisting coupling terms
cross-section (flanges and web) may buckle as a are present because they produce higher instabil-
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ity. The results presented correspond to existing
pultruted cross-sections.

THEORETICAL APPROACH

sical Lamination Theory I 3 as
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Similarly, the bending and tWIstIng moments
M.pMy and Mxy can be expressed as

where A ij and D ij are the extensional stiffness
matrix and the bending stiffness matrix respec­
tively. These matrices can be derived using the
Classical Lamination Theory l3 for a layered plate.
For an N-Iayered laminated plate the stiffness
terms are given by

where Qij are 'rotated~ stiffness quantItIes cor­
responding to the global coordinate system (Fig.
1).

Substituting eqns (4) and (5) into eqn (3) we get
an expression for the total potential energy for the
web in terms of displacements. The second varia­
tion of the total potential energy for the web is
obtained by performing the following substitu­
tions (eqn (6) into eqn (3))

u-'u+<5u

and collecting the second order terms. The mem­
brane forces Nx ' N\' and N.n . can be expressed in
terms of strains as follows .

(1 )

(4)

~v=o

where Pk are the externally applied forces and q k

are the corresponding displacements.
Considering first the energy terms correspond­

ing to the web for the coordinate system shown in
Fig. 1, we use the von-Karman non-linear strains
in terms of displacements to describe the kine­
matics of the system

e =au+! (aw)2
x ax 2 ax

As a first step, we formulate the total potential
energy of the system

v=-2
1J 0ijCij dV- L: Pkqk (3)

v k

The energy criterion for equilibrium of a structure
is that the first variation of the total potential
energy is zero

The state of equilibrium when the· system loses its
stability is characterized by the vanishing of the
second variation of the total potential energy 12

~2V=O (2)

The constitutive law for the web considered as
a layered plate (laminate) is given from the Clas-
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Fig. 1. Coordinate system and geometry of the cross­
section. (a) Coordinate system, (b) cross-section, (c) flange.
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)Dij = L: (Qij)k Zilk+~
k= 1 12

Performing the integration over the thickness and
identifying the ter~s corresponding to the exten­
sional stiffness A ij and bending stiffness D ij' \\-e

obtain the following expression for the second
variation of the total potential energy for the wep
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and collecting second order terms "oe obtain an
expression for the second variation ·of the total
potential energy for the flanges bending as beamS,

()~~ =! b JNf(adWf)~ d
f 2 f x ~ X

uX T.B

where A is dermed in eqn (14). T and B in eqn
(17) indicate top and bottom flange energy terms
respectively. The extensional stiffness terms omit­
ted in eqn (17) because they are positive defmite.

When the flanges bend and twist as plates, the
expression for the second variation of the total
potential energy is similar to the one for the web,

()~V!'=!JJNf(adl'f)~ dxdz
f ") .t ~

- uX T.B
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Substituting the expressions (12) and (14) into eqn
(11) we obtain the potential energy in the flange
due to lateral bending. Performing the following
substitutions.

II f .... li f + aIIr

( 10)
... a1

OK' a~ow]
+4D16 a/ ax ay dx dy

The term l:Pkd~qk does not appear in the above
expression, because qk can be expressed as linear
functions and hence d1qk vanishes. The terms
involving the extensional stiffnesses A ij have been
omitted· from the above expression because they
are related to the second variation of the displace­
ments that are always positive definite.3

Considering now the flanges. they can bend
and twist as plates and also bend laterally as
beams. When the flange bends as a beam. the total
potential energy is

V"=JOxExdl/-IPkqk (11)
k

The non-linear axial strain Ex in terms of displace­
ment is

"'here I\~ and .i\.~\' are zero because only axial
forces aci on the flange.

For the flanges we assume no distortion (i.e. the
displacements are assuJ11ed to be linear in z).
hence

E
r
= dUf+! (dwr)~ (12)

. d.\" 2 d.x

For a flange in pure bending about the strong axis
of the flange (Fig. 1)

Nz = Nxz = M z = Mxz=O

Nx=AEx ; J/x=DKx (13)

For a laminate without bending-extension coup­
ling, the beam extensional and bending coeffi­
cients are l6

1 1
A=-; D=- (14)

all . all

where the compliance coefficients are obtained by
inversion of the stiffness matrices eqn (7) and (8)

Df
a~bl t

f a~allr+4 If\--~-­a.x- ax ay

f a~bl'f a~dvr]
+4D~~ -a,~-aa d.td:

..\ x y T.B
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and the compatibility equations at the flange-web
connections are

Since the flange cannot distort, there is no bend­
ing-twisting coupling present in eqn (21). Finally,
the complete expression for the second variation
of the total potential energy for the beam is

ply supported and free to warp at both ends and
subjected to two loading conditions: (1) a trans­
verse load applied at the centroid, and (2) bending
moments at both ends of the beam (Fig. 2). The
stacking sequence for the 110 x 10 x 0·635 em,
115 x 15 x 0·635 cm. 115 x 15 x 0·953 em,
120 x 20 x 0·953 cm and 120 x 10 x 0·953 em
beams is given by the manufacturer. 16 In Fig. 3 the
stacking sequence for the 115 x 15 x 0·635 cm is
presented. Classical Lamination Theoryl3 pro­
vides all the stiffness properties for flanges and
webs that need to be considered in the analysis.
The beams have been analyzed for various lengths
and cross-section geometry. For the web we allow
a cubic-shape distortion and for.the flanges we do
not allow any distortion.

A parametric study of the critical buckling load
as a function of lamination angle is also carried
out, where 0 the continuous strand mat (CSM)
layers of the commercial shapes l6 have been
replaced bOy angle-ply layers (+ 8, - 8) to investi­
gate if this lay-up, which is possible to manufac­
ture by pultrusion, gives better lateral-torsional
buckling resistance. Bending-twisting coupling
terms now playa significant role in the analysis.

(20)

(21 )3 J ( )'1 b f f d aw -+-- N --- dx
2 12 x dx ay T.B

aw
(Orh-= ay (x, 0)

(Wfh-= w(x, 0)

where Of is the angle of rotation of the flange.
Introducing eqn (19) into eqn (18) we get

b2Yr=! hi D f J.( d
2

aW)2 dx
f 2 12 11 dx 2 ay T.B

(22)

and the critical condition (buckling instability) is
given by eqn (2).

NUMERICAL RESULTS AND DISCUSSION

I-beam subjected to uniform moment Mo at the
ends

The prebuckling solution can be easily derived for
this case using the Laminated Beam Theory. 14

The beams in our case are symmetric and the

The solution of the problem is attempted by the
Rayleigh-Ritz method. We select a displacement
function for the web as follows

This function can represent a simply supported
beam, the web of which can distort when buckling
laterally. Introducing eqn (23) into eqn (2) we
produce an eigenvalue problem of order p x q.
Hence the critical buckling load can be computed
as a function of the prebuckling solution for the
stress resultants N;, N: and N;\. in the web and
lv~ in the flanges. . .

A variety of lateral-distortional buckling c~es

for pultruted structural shapes are next investi­
gated. More specifically, five types of different
geometry I-beams have been considered, all sim-

p q • (m7CX) (y)ndw= I I amnsm -- -
m= 1 n= I a b

(23)

Mo z Me z

(c web f1n
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Fig. 2. Loading conditions.
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Fig. 3. Lay-up for the flange of the 115 x 15 x 0·635 cm
I-beam.
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Fig. 4a. Critical load ratio PolPL versus ratio I Ir for load
applied at the centroid.
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Fig. 4b. Critical load ratio MolML versus ratio I /r for
moment couple applied at the ends.

Figures 4a and 4b show the critical load ratios
(Po/PL ) and (MollvfL ) plotted versus the ratio Ilr,
where I is the span, r is the radius of gyration of
the cross-section, Po and Mo are the critical load
and moment for lateral-distortional buckling (Fig.
2), and PL and ML are the load and moment that
produce flange local buckling only.4,S The critical
load ratio decreases for high aspect ratios Ilr and
lateral buckling becomes the governing mode of
instability; while for shorter beams the buckling
mode is distortional.

In Figs 5a and 5b, the critical load ratios are
plotted versus the width-height ratio bflbw (Fig. 1)

P
N';' = -- for

xy 2b
w

a
-<x<a
2

(25)

for constant length. More specifically, the flange
which bf is varied while the height of the web bw

remains constant. One can see that for low
width-height ratio (Figs 5a and 5b) there is a
reduction in the critical load ratio due to an
increased local buckling strength PL and a
reduced lateral buckling strength Po. In Figs 6a
and 6b, the critical load ratios are plotted versus
the height-width ratio bwlbf and for constant
length. In this case, the height of the \\'eb increases
while the width of the flange remains constant. It
is shown that as the height of the web increases.
the buckling strength becomes higher and the
mode changes from pure lateral buckling to dis­
tortional buckling.

Figure 7 shows the finite difference solution by
Mottram10 (curve 7 on Fig. 2 of Ref. 10), the
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Fig.6b. Critical load ratio Mo/ML versus ratio bwlbf for
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moment couple applied at the ends and fixed web depth bw •
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Fig. 6a. Critical load ratio PolPL versus ratio bw/bf for load
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experimental data of Ref. 10 (average, minimum
and maximum values of Table 4 of Ref. 10) for the
case of a load applied at the top flange, free warp­
ing and fixed rotation at both ends, and the pre­
sent solution that includes shear deformation and
distortion of the '\leb. As expected, the distor­
tional theory with shear -deformation predicts
lower buckling loads.

To investigate the effects of angle-ply fiber
systems on buckling behavior, the CSM layers
(Fig. 3) were replaced by (+ (J / - (J) layers. Since it
is not possible to predict the value of fiber volume
fraction achievable in pultrusion before actual
production, three values (15%

, 30% and 50°0)
were used in the analysis. The fiber volume frac-
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CONCLUSIONS

For the thin-walled pultruted I-beams considered,
coupling of local and lateral buckling modes

always occurs due to the low stiffness of the
material in the direction perpendicular to the axis
of the beam. For I-beams with high depth-width
ratios, lateral buckling is the governing mode of
instability. For low height-width ratios, coupled
local and distortional buckling results in a reduc­
tion of the critical load compared to pure local, or
pure lateral buckling loads.

The fiber volume fraction is of significant
importance for the critical buckling load determi­
nation because higher fiber volume fraction leads
directly to higher critical buckling loads and
hence to more stable structural members, but the
optimum"angle is independent of the fiber volume
fraction, with few exceptions. For the cases of dif­
ferently oriented layers (+ (), - 8), there is a sig­
nificant ·increase in the critical buckling load for
an optimum angle of () = + 30/- 30, with the
exception of the case of low fiber volume fractio~

(15%) and concentrated load at the centroid.
Although only the specific cases of simply sup­

ported beams with free warping at both ends and
concentrated load applied at the centroid or
moments applied at the ends have been con­
sidered, the theoretical formulation and the solu­
tion methodology presented herein can be easily
applied for any case of boundary conditions or
loading by simply choosing a different shape func­
tion and/or computing a new set of p"rebuckling
membrane forces.

--
-- so~ vol. frQctlon
. - - - 30~ vol. frQctlon
- - lS~ vol. f'rQctlon

15 30 45 60 75 90

LClMlnCltlon Clngle (+8/-8)
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(a)
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0:'1.00

"~O.90
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tion on the remaining roving layers (Fig. 3) is kept
unchanged. Figures 8a and 8b show the critical
load ratios plotted versus the lamination angle
(+fJ, - ()). A significant increase of the buckling
load ratio can be observed for () = + 30/- 30 with
the exception of the case of low fiber volume frac­
tion (15%

) and concentrated load at the centroid.

Fig. 8a. Critical load ratio PolPL versus the lamination
angle ( + (J, - ()) for load applied at the centroid.
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