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Abstract-Finite element stiffness and consistent mass matrices are derived for helically wound,
symmetrical composite tubes. The tubular element is considered to have constant cross-section and small
deformations restricted to a plane. Each node has three degrees of freedom: axial and transverse
displacement and rotation (slope of transverse displacement). Shell theory and lamination theory are used
to formulate element stiffness matrices. The stiffness and mass matrices derived from the helically wound
tubular composite material are reduced to symmetrically laminated composite beam. The free vibration
and natural frequency are investigated for five different materials: steel, aluminum, carbon/N5280,
Kevlar-49/epoxy and graphite/epoxy composites and various layup configurations. One application of a
rotating flexible beam is investigated. The dynamic model of the flexible rotating beam includes the
coupled effect between the rigid body motion and the flexible motion. The inverse dynamic simulation
is performed by a prescribed driving torque in the numerical simulation. The influence of flexibility on
rigid body motion are presented and discussed. From the numerical results, the composite material
strongly possesses the lower power consumption and the passive control in damping the vibration of the
structure.

INTRODUcnON

The dynamic modeling of structures with beam or
rod elements has been well developed in the past,
especially the area of dynamic analysis of multibody
mechanism systems, such as four-bar mechanism,
crank--slider mechanism and robotic manipulator.
The rigid body assumption in the analysis of multi
body systems is not adequate due to high operation
speeds, large external load and high precision require
ments. The analysis of flexible links in the multibody
systems has been developed in the past two
decades [1-5]. Generally speaking, research in this
area can be divided into two categories: The first
treats the elastic links of the mechanical system as a
continuous system [6-10]. The equations of motion
for these continuous systems are derived with the help
of certain simplifying assumptions and solved to
obtain the system response. In the second category,
the elastic links of the system are modeled as discrete
systems via finite element formulations [II-IS]. The
advantages of the finite element formulations are
that they provide an easier and systematic modeling
technique for complex mechanical systems. The
drawback of the second method is the requirement
of substantial computer time simulation due to the
many degrees of freedoms in the system. However,
modal synthesis can be utilized to reduce the degrees
of freedom. In addition, the accuracy of the dynamic
response depends on the selection of the modal
degrees of freedoms [16, 17]. Furthermore, most of

the work in this area considered flexible bodies
made of isotropic materials. Recently, an alternative
philosophy has been proposed for the design of
flexible multibody systems which requires the
members to be fabricated with advanced composite
materials [18-24]. Generally speaking, composite
materials possess much higher strength-to-weight
ratios and stiffness-to-weight ratios than metals. Con
sequently, the systems experience much smaller
deflections when subject to load.

Thompson [18, 19] used an elastic continuous
model for a fibrous composite material to predict the
global features of the dynamic response of a four
bar mechanism fabricated from a graphite/epoxy
material. The results of the study demonstrate
how vibrational activity in high-speed machinery
can be reduced by fabricating members from a
composite laminate rather than commercial metals.
Shabana [22] presented a finite element scheme for
studying the dynamic response of crank-slider and
Peucellier mechanism with components manufac
tured from orthotropic material. They concluded that
composite materials can be treated as an effective
passive control system. D'Acquisto [23] developed a
finite element model for the preliminary design of a
helically wound tubular composite structure which
can be used as links of high-speed mechanisms.
Krishnamurthy et al. [24] investigated a dynamic
model for single-link robdtic arms from or~hotropic

composite materials. Chen and Yang [25] presented a
finite element model for anisotropic symmetrically
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(I)

QI6 =(QII - QI2 - 2Q66)sin 6 cos] 6

where t/J is the polar coordinate. [Q](k) is the trans
formed reduced stiffness matrix and is given by

for a particular layer k in local coordinate can be
expressed as

laminated beam including the effect of shear defor
mation and torsional deformation.

The main objective of this study is to fonnulate the
mass and the stiffness matrices of laminate tubular
beam element to conduct the dynamic analysis of
composite laminate beam structure with future appli
cation to the flexible multibody systems. The mass
and stiffness matrices of a tubular beam derived
in this paper are also reduced to fiber-reinforced
orthotropic material with a symmetrically laminated
composite rectangular cross-section. Validation of
the element with· the existing analytical solution for
a rectangular cross-section is presented. The free
vibration of natural frequency is analyzed in terms of
five materials: steel,aluminum, carbon/N5280 com
posite, Kevlar-49/epoxy and graphite/epoxy com
posite. Various layups of each composite material are
considered. A flexible rotating beam is considered
as one application based on the matrices developed
in this. study. The coupled effect between the
rigid body motion and the ftexiblemotion is included.
The inverse dynamic simulation is performed by a
prescribed .driving torque in the numerical simu
lation. The influence of flexibility on rigid body
motion is presented and discussed. It can be shown
that the composite material strongly possesses the
passive control in damping the vibration of the
structure.

LAMINATE SHELL THEORY

where 6 is the angle from the x -axis to the I-axis and
Qij are the so-called reduced stiffnesses and can be
expressed in terms of engineering constants [26]
where "Ix. = 2lx4J" Neglecting the high order terms, the

In a laminated on composite material, a lamina is
a single layer with thickness h, with a unidirectional
or woven fiber orientation at angle 8 from a
local coordinate· axis as shown in Fig. 1. A laminate
is a stack of laminae with various orientations
of principal material directions in the laminae. In
combining shell theory with lamination theory,
the assumption is made that each composite lamina
can be analyzed as a thin cylindrical shell and
elastic deformations are assumed to be small within
the linear range. The relation of stress and strain

(2)

x

Fig. 1. Schematic of the k th ply in the tubular element.
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Fig. 2. Laminated helically wound beam configuration.

kinematic equations of a cylindrical element can be
expressed by [27]

where the membrane strains in the reference surface
of the shell are

(7)

(6)

(5)

f
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/2 ( z)M x = Ux 1 +- z dz.
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where a is the average radius of the cylinder; u, v, and
ware the deformations associated with x, t/J and r
axes, respectively. The resultant force N and moment
M are obtained by integration of the stresses in each
lamina through the laminae thickness as shown in
Fig. 2. For example

(4)
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and the changes in curvature and twist of the refer
ence surface are

Substituting eqn (1) into (6) and (7) and integrating
through the laminae thickness, the final result can be
written in a compact form as

(8)
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where

N

Aij= L Q~~(h(k)-h(k-1)
k=1

B - ~ 1 ?i(k)(h 2 h2 )
ij - i..J 2\!ij <k) - (k - I)

k=1

C. I. CHEN et af.

~ the nondimensional parameter defined by ~ = xl/.
The generalized coordinates e l , e2' e3' e4,eS and e6

represent elastic deformations at -the nodal points.
The deformation at an arbitrary point in the element
is approximated in terms of el' e2' e3' e4, es, and e6
and the shape functions as

D - ~ 1 n(k)(h 3 h3 )
ij - i..J -3. \:!ij <k) - (k - I) • (9)

k-I

For the classical lamination beam theory, we as
sumed that the laminate consists of perfectly bonded
laminae, bonds are infinitesimally thin, and shear
deformation is negligible. The displacements are con
tinuous across lamina boundaries so that no lamina
can slip relative to another. Furthermore, only small
deformations are considered· in the. context of thin
plate theory. A line originally straight and perpen
dicular to the middle surface of the laminate is
assumed to remain straight and normal when the
laminate is extended and bent. Due to the assumption
ofaxisymmetry with respect to the neutral axis of the
beam and neglecting Poisson effects, eqn (8) can be
simplified to [23]

el

e2

{u(e, t)} = [N1 0 0 N2 0

~J
e3

w(~, t) 0 N'j N4 0 Ns e4

es
e6

(11)

where Ni are the shape functions and are given by

{Z:}= {i}, (10)

(12)

where £~ = au/ax, Kx = -C 2W/CX 2 and u and ware
the axial transverse deformations, respectively. For a
rectangular beam, a approaches infinity and eqn (10)
reduces to the well known expression for laminated
beams if all Poisson ratios~re taken to be zero [29].

EQUATION OF MOTION

The equations of motion for a typical element are
derived using the Lagrangian function. A typical
element configuration and coordinate system are
shown in Fig. 3~ with I the length of the element, and

z

The kinetic energy of the beam element is given by

where Pm, A, and / are the density, the cross-sectional
area,_ and the length of the beam, respectively.

The potential energy stored in the laminated beam
is given by

x
Fig. 3. Generalized coordinates of the beam element.
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Table 1. Material properties

CarbonI Kevlar-49/ Graphite/
Steel Aluminum N5280 epoxy epoxy

£, (Msi) 30.0 10.6 26.25 11.02 20.0
£2 (Msi) 30.0 10.6 1.49 0.798 1.40
G12 (Msi) 11.81 3.98 1.04 0.334 0.8

#12 0.27 0.33 0.28 0.34 0.3
h (in) 0.25 0.25 0.005 0.005 0.005

£/p (107 in) 10.6 10.6 45.25 20.8 33.33
Pm (lb m/in3

) 0.283 0.1 0.058 0.053 0.06

Substituting eqn (10) into (14) yields

v = xal LI(All +~IX::Y

- 2(BII +~I):: ~:~+DII (~:~Y de. (15)

The equations of motion of the element can be
obtained by Lagrange formulation as follows:

(16)

where L = T - V is the Lagrangian. Substituting
eqns (13) and (15) into (16), the element equation of
motion can be obtained as

NUMERICAL RESULTS

Both rectangular and tubular cross-sections are
considered in this section. The material· properties
and the geometry parameters are listed in Tables I
and 2, respectively. Two types of laminates are
considered, a[±tx] angle ply and repeated clusters of
[tx/O/-tx]N, where N is the number of clusters and
is taken to be 17 in the numerical results presented.
All numerical results illustrate the first five modes.
Natural frequencies for all material and both cross
sectional shape (rectangular and tubular) in different
layups are shown in Figs 4-11. It can be concluded
that the natural frequency depends on the layup and
the stiffness-to-weight ratio. The natural frequency of
the composite material in a certain fiber angle layup

In eqn (17), [M] and [K] are the mass and the
stiffness matrices, respectively, and they are given
in the Appendix. The stiffness matrix in eqn (17)
can be ·reduced to the case of a rectangular cross
sectional beam element by assuming a approaches
infinity and 2na is replaced by the width of the
beam. In this case, they coincide with the expressions·
presented by Cleghorn and Chao [13]. The overall
equation of motion is assembled on each element
basis with adequate boundary conditions which
yields

[M]{q} + [K]{q} = o. (17)
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Fig. 4. Frequency variation of fiber angle for carbon/N5280
composite material, with a rectangular cross-section.

where [MG ] and [KG] are the global mass and stiffness
matrices, respectively, and {qG} is the global general
ized coordinates. The free vibration of the system
with harmonic frequency co, eqn (18) becomes

Table 2. Geometry parameters

Rectangular Tubular

Length (in) 48.00 48.00
Width (in) 0.75

Thickness (in) 0.25 0.25
Outer diameter (in) 0.75
Inner diameter (in) 0.25

8......- ----,
I .....-e [OJ

- (22.5J
-- [45J
--- (67.5)

H8 -- (90)

=-§ ::::::: ~~~76J!452l·5]
~ •.••.•• [67.5/0/-67.5]
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='
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&:-

·f3
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Fig. 5. Frequency of carbon/N5208 composite material, in
a different layup, with a rectangular cross-section.
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Fig. 9. Frequency of graphite/epoxy composite material, in
a different layup, with a rectangular cross-section.
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Fig. 6. Frequency variation of fiber angle for Kevlar-49/
epoxy composite material, with a rectangular cross-section.
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Fig. 10. Frequency variation of fiber angle for car·
bon/NS280 composite material, with a tubular cross·section.
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Fig. 7. Frequency of Kevlar-49/epoxy composite material, in
a different layup, with a rectangular cross-section.
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Fig. II. Frequency of carbon/NS208 composite material, it
a different layup, with a tubular cross-section.
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Fig. 8. Frequency variation of fiber angle for graphite/epoxy
composite material, with a rectangular cross-section.

is less than that of the steel material. Natural frequen
cies of carbon/N5280 are less than the steel material
when the fiber angle is greater than 500 as shown
in Fig. 4. The more 00 layers, the higher natural
frequency of the system. The 00 fiber angle in all
layers provides the highest natural frequency as
shown in Figs 5, 7, 9,11,13 and 15. Carbon/N5280
provides the highest natural frequency due to the
highest stifTness-to-weight ratio as shown in Figs 16
and 17. The thickness of the layers does not influence

the natural frequencies due to the symmetry 0

the cross-section with respect to neutral axis, a
can be seen from eqn (7). The natural frequencies 0

steel and aluminum beams are the 'same due to tb
same stiffness-to-weight ratio of both materiah
However, the equivalent extemalload (load/density
to the system with aluminum material is greate
than that with steel material. For this reason
the aluminurn material system experiences large
deformations.
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Fig. 12. Frequency variation of fiber angle for Kevlar-49/
epoxy composite material, with a tubular cross-section.
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Fig. 1S. Frequency, of graphite/epoxy composite material,
in a different layup, with a tubular cross-section.
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Fig. 13. Frequency of Kevlar-49/epoxy composite material,
in a different layup, with a tubular cross-section.
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Fig. 16. Natural frequency of different materials with rec
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Fig. 14. Frequency variation of fiber angle for graph
ite/epoxy composite material, with a tubular cross-section.
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Fig. 17. Natural frequency of different materials with
tubular cross-section.
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Validation of the present formulation is presented
by comparison with the analytical solution for the
transverse vibration of the beam structure [28]. An
approximation to the governing equation of a rec
tangutar laminated beam in transverse vibration can
be derived from the traditional isotropic material
problem by substituting Elwith bD•• [28] (see [29] for
an exact formulation)

04W 02W

bDIl ox4 + pA arr =O.

The natural frequency and the mode shape
depend on the boundary condition of the beam.
The comparison between the analytical and the
finite element solution in this paper is given in
Table 3 for fixed-free ends. A total of five linear
elements was used to model the length of the
beam with 0° layup. The material properties and
geometrical parameters are given in Tables I and 2.
The numerical solution validates that the fonnulation
of the mass and the stiffness matrices developed in
this paper.

CAS 49/l-B
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Table 3. Comparison results of analytical method and FEM

CarbonfN5280 Kevlar-49/epoxy Graphite/epoxy

Present Present Present
Node An~lytica1 analysis Analytical analysis Analytical analysis

1 7.34638 7.34661 4.98922 4.98931 6.31053 6.31264
2 46.03922 46.06278 31.26706 31.28269 39.54763 39.56743
3 128.91107 129.37574 87.54862 87.86316 110.73446 111.13215
4 250.91829 255.57972 170.40857 173.57235 215.53852 219.53982
5 417.59052 424.19880 283.60230 288.08681 358.70978 364.38143

APPLICATION

In this section, a flexible rotating beam is con
sidered in the application of the matrices developed
in this study. Figure 18 shows the configuration
in finite element model of a flexible rotating beam
system. The finite element method in this type of
problem has been well developed and the approach
can be referred to in [5].

Based on the small linear deformation, the
equations of motion can be expressed in matrix forms
as follows:

theory, the coupled effect neglects such that the
forward dynamics analysis can be applied to a specific
prescribed motion. However, this simplification can
cause inaccuracy in simulating the dynamic behavior
of the system. In order to maintain the equations of
motion with the time variation of the mass matrix
and the coupled effect, the inverse dynamic procedure
is performed without any simplifications. The beam
rotates under a prescribed torque in horizontal plane
without any other external load. The prescribed
torque is given

[
1Ds6 IIIsfJ{Ii} [0 0]{8} {Fdl

} {Qve}
m"m mff ijf + 0 K.u: qf = F~f + Q"f'

(21)
{

41 (Ib-inch) 0 ~ 1 ~ 2
T(/) = 8 (lb-inch) 2 < 1 ~ 4

8 - 41 (Ib-inch) 4 < 1 ~ 6.
(23)

where 8 is the rigid body motion generalized coordi
nate; Clr are the overall elastic generalized coordinates
of the nodes; m.o- and Kff are the global mass and
stiffness matrices; Ft6 and F~ are generalized forces;
and QIl6 and Q"f are the quadratic velocity vectors
resulting from differentiating the kinetic energy with
respect to time and with respect to the body coordi
nates. Equation (21) can be-expressed in a concise
form

[M]{ij} + [K]{q} = {F~} + {Q,,}. (22)

Due to the coupled effect between rigid body
motion and elastic deformation, the equations of
motion are nonlinear; the nonlinearity being at
tributed to the time dependency of the mass matrix.
The time-dependent mass matrix contains the gener
alized elastic coordinates. In linear elastodynamics

y

(qf}·(q~,~,~)

x

Fig. 18. General finite element configuration of flexible
beam.

In this numerical simulation, a total of three linear
elements were used to model the length of the beam
with a 0° layup. A small integration time step musl
be selected in order to obtain the accurate solution
for' such type of stiffened system. The pre
dict-eorrector Adams-Moulton algorithm is used
in this example [30]. However, the carbonfN528C
material cannot converge no matter how small the
time step due to the high stiffness-to weight ratio
The material and geometry parameters are given ir.
Tables 1 and 2 for a rectangular cross-section and fOJ

a length of 60 in.
Four materials are selected in this simulation: steel

aluminum, Kevlar-49/epoxy, and graphite/epoxy
The major difference relies on the stiffness-to-weigh1

ratio of each material. The responses of angulaJ
displacement and acceleration of the isotropic bean
in rigid body motion are shown in Figs 19 and 20
respectively. The corresponding responses of the
composite beam are shown in Figs 22 and 23. It i:
observed that, as shown in Fig. 19, the total angulaJ
displacement of the steel beam is about one and a

half revolutions. On the contrary, the total angula:
displacement of the graphite beam is about seve)
revolutions. Lower power consumption is require(
for the beam with a higher stiffness-to-weight ratio i
the same angular displacement occurs. Although thl
steel and the aluminium have the same stiffness-to
weight ratio, the aluminium material has a highe
equivalent external load (load/density) so that tb
aluminium material experiences larger deflection
compared to the steel material. The influence 0
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..... Steel (ri,id motion)

........ Steel (nexible motion)

....... Aluminum (rield motion)

........... Aluminum (fiexible motion)

Fig. 19. Angular displacement of the rotating isotropic material beam.
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Fig. 20. Angular aCceleration of the rotating isotropic material beam.
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Fig. 21. End point displacement of the rotating isotropic beam.

flexibility on the angular displacement is minimal.
The flexibility effect on the angular acceleration is
important for all selected materials.

As in Figs 21 and 24 show the transverse defor
mations are dominated by the angular acceleration.
In Fig. 20 the steel beam subjected to a maximum

angular acceleration of 0.8 (rad/sec/sec) experiences
a maximum deformation of 0.28 in as shown in
Fig. 21. However, as shown in Figs 23 and 24, the
correspondence of angular 'acceleration and maxi
mum deformation are 4 (rad/sec/sec) and 0.45 in with
graphite/epoxy material. The angular acceleration
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Fig. 22. Angular displacement of the rotating composite material beam.
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Fig. 23. Angular acceleration of the rotating composite material beam.
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Fig. 24. End point displacement of the rotating composite beam.

with graphite/epoxy material is five times higher than
that of steel material but the maximum deformation
is about two times greater than that of the steel
material. On the other hand, the composite material
can be subjected to higher inertial forces. This can be
attributed to the high performance of the stiffness-to-

weight ratio in composite materials. The maximum
deformation in the linear deformation model is about
50% greater than that of geometry nonlinearity de
formation for both materials. Therefore, the correc1
mathematical model is indispensable for more accu
rate analysis of realistic flexible structure systems.
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CONCLUSIONS

The free vibration natural frequency analysis of a
helically wound tubular and laminated beam com
posite material has been investigated in this paper.
Based on the shell lamination theory and small
deformation assumption, the mass and stiffness finite
element matrices of a helically wound tubular be~m
have been derived. Each element has three degrees of
freedom: axial, transverse, and rotation. The mass and
the stiffness matrices derived from the helically wound
element are also reduced to the orthotropic fiber
reinforced symmetrical laminated composite beam.
These matrices can be used for the dynamic analysis
ofmultibody flexible systems with composite material
links. The natural frequency of the beam element
depends on the layup and the stiffness-to-weight ratio.

A flexible rotating beam is investigated in this
application. The dynamic model of the flexible rotat
ing beam includes the coupled effect between the rigid
body motion and the flexible motion. The equations
of motion of the flexible rotating beam are nonlinear
with time-dependent coefficients and are expressed in
terms of the elastic generalized coordinates and the
large angular displacement of the beam. The inverse
dynamic simulation is performed by a prescribed
driving torque in the numerical simulation. The re
sponses of the transverse deformation and the influ
ence of the flexibility on the rigid body motion are
evaluated and discussed. For the composite material
it is shown that it strongly possesses .lower power
consumption and the passive control in damping the
vibration of the structure.

In future work, shear deformation and geometrical
nonlinearity will be considered for more accurate
modeling of realistic system such as robotic manipu
lators, rotating blades and mechanisms, built with
composite materials.
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