LocaL BuckLING OF FRP BeEamMs AND COLUMNS

By Ever J. Barbero' and Ioannis G. Raftoyiannis?

ABsTRACT: Fiber-reinforced plastic (FRP) structural members with open or closed
thin-walled sections are being used as beams and columns for structural applications
where buckling is the main consideration in the design. Analytical models for several
local buckling modes under axial and shear loading, taking the flange-web inter-
action into account, are developed. Experimental data correlating predicted and
observed behavior are presented for some commercially available structural shapes.
Failure envelopes are developed for box- and I-shape FRP columns and beams.
The analytical models presented can be used to predict the behavior of any new
pultruted material. The Rayleigh-Ritz method is used in this work to analyze
anisotropic flanges of box and I-beams. The anisotropy of the material is introduced
by +45° angle-ply layers introduced recently by pultruted manufacturers to improve
the buckling strength of columns as suggested by this investigation.

* INTRODUCTION

Fiber-reinforced plastic (FRP) beams and columns are being used for civil
engineering structural applications. They have many advantages over con-
ventional materials (including steel, concrete, and wood), such as light weight
and high corrosion resistance. Mass production of composite structural
members (e.g., by pultrusion) makes composite materials cost-competitive
with conventional ones.

In the pultrusion process, fibers are pulled through a heated die that
provides the shape of the cross section to the final product. Pultrusion is a
continuous process of prismatic sections of virtually any shape (Creative
Pultrusions 1988). Other mass-production techniques, like automatic tape
layout, can also be used to produce prismatic sections.

Pultruted structural members have open or closed thin-walled cross sec-
tions. For long composite columns, overall (Euler) buckling is more likely
to occur before any other instability failure, and the buckling equation has
to account for the anisotropic nature of the material. For short columns,
local buckling occurs first, leading either to large deflections and finally to
overall buckling or to material degradation due to large deflections (crip-
pling). Because of the large elongation to failure allowed by both the fibers
(4.8%) and the resin (4.5%), the composite material remains linearly elastic
for large deflections and strains, unlike conventional materials that yield
(steel) or crack (concrete) for moderate strains. Therefore, buckling is the
governing failure for this type of cross section, and the critical buckling load
is directly related to the load-carrying capacity of the member (Barbero et
al. 1991).

Analytical solutions for the problem of local buckling of the flanges and
the webs of pultruted composite beams and columns, taking into account
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the flange-web interaction, are developed herein. Experimental data cor-
relating predicted and observed behavior are presented.

The problem of local buckling of thin-walled members can be solved by
modeling the entire member with finite elements as was done by Vakiener
et al. (1991) for orthotropic flanges, by the finite strip method (Cheung
1976), or by coupling the response of flanges and webs individually modeled
as plates (Galambos 1988). The coupling of flanges and webs must consider
the flexibility of the flange-web connection (Galambos 1988), resulting in
a very complex system of equations. In this work, each part of the cross
section (flanges and webs) is analyzed independently. The flange-web in-
teraction is modeled as elastic supports on the part being analyzed. The
resulting analysis is simple, efficient, and accurate.

An extensive review of analysis techniques for plate buckling is presented
by Leissa (1987). Solution techniques for orthotropic flanges, elastically
supported on both sides (in the case of the box beam), were presented by
Galambos (1988). The solution for an orthotropic plate with one side elas-
tically supported and the opposite side free (case of the I-beam) was pre-
sented by Shuleshko (1957). The Rayleigh-Ritz method is used in this work
to analyze anisotropic flanges of box and I-beams. The anisotropy of the
material is introduced by two thick +45° angle-ply layers introduced recently
by pultruted manufacturers to improve the buckling strength of columns as
suggested by this investigation [see also Birsa and Taft (1984)].

GOVERNING EQUATIONS

A structural member can be subjected to axial compression, bending,
and shear loading. In the case of a beam subjected to bending and shear
loading, the flanges are assumed to be under in-plane axial loading and the
web under shear loading (Fig. 1). In the case of a column of thin-walled
cross section under axial compressive load, it is assumed that the load is
uniformly distributed over the cross-section area and that all parts (flanges
and webs) are under compression. Under any of these load conditions, the
thin walls may buckle locally and can be analyzed as plates with the appro-
priate boundary conditions. The governing differential equation for buckling
of the symmetric anisotropic plate, where no bending-extension coupling
exists, under in-plane axial loading and shear loading is

I-beam

compresslon flange
shear —===—_

e
stresses ——

normal

e — stresses

FIG. 1. Representation of I-beam as Separate Flanges and Web
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where D;; = the plate stiffness coefficient; N, = the in-plane stress resultant;
N,, = the shear resultant; and w(x,y) = the buckled shape of the plate.
Eq. (1) can be used to solve the local buckling of flange and web under
various types of loading by a Levy-type method if no bending-twisting cou-
pling exists (D), = D,, = 0). In this work, the Rayleigh-Ritz method is
used to solve the problem including bending-twisting coupling (D,, # 0,
D,s # 0) but is restricted to symmetric laminates. This situation is very
common in modern pultruted products (Birsa and Taft 1984). In the Ray-
leigh-Ritz method, the following energy equation is used instead of (1):

I (b
dV = J:)L (Dyw o dw,, + 2Dew 3w, + 2Dyw W

+ Dpw  dw,, + Dipw 3w, + 4Dgw . ,dw , + 2D,ew 3w,
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1
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0 0

Setting (2) (first variation of the total potential energy) equal to zero, an
eigenvalue problem is obtained for the determination of the critical load
N,. Numerical examples are presented later.

I-BEAMS

The flange of an I-beam can be considered an anisotropic plate connected
to the web. The flange-web connection plays significant role in the deter-
mination of the critical buckling load. Three cases of flange-web connection
shall be considered here: rigid flange-web connection with rigid web (clamped);
rigid flange-web connection with flexible web (elastic); and hinged flange-
web connection. Previous work (Shuleshko 1957; Holston 1969; Lee 1978;
Webber et al. 1985; Raftoyiannis 1991) is based on a Levy-type solution,
which is appropriate for materials without bending-twisting coupling terms
(D6, D,). For sections that contain *0 layers, it is necessary to use all
terms in (2). A Rayleigh-Ritz solution is presented here to determine the
critical buckling load for the flange local buckling of I-beams and columns.

The boundary conditions along the flange-web connection are

W, 0) = 0 Lo (3a)
Myx,0) = —dw (x,0) ... 3b)

where d, = the stiffness of the web and the flange-web connection combined
(Fig. 2). Taking d, = 0 simulates a hinged flange, which gives a lower bound
for the critical load. As d, approaches infinity, a clamped flange is simulated,
which gives an upper bound for the critical load. A more realistic case for
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pultruted materials is to have a stiff connection and a flexible web. This
case can be simulated by d, = DY*5, with the bending stiffness of the web
in the transverse direction D%EZ computed by classical lamination theory
(Jones 1975). Computation of the coefficient of restraint (Galambos 1988),
taking into account the axial load on the restraining plate (the web for the
case of an I-section), is not available for anisotropic materials. Furthermore,
the analysis presented by Galambos (1988) for isotropic materials assumes
rigid connection to the restraining plate (flange-web connection). This may
not be the case for pultruted sections that are mainly reinforced along the
axis of the beam and have a resin-rich flange-web connection. Measurement
of the flange-web connection stiffness, to be added to the coefficient of
restraint, is very cumbersome. Based on these considerations, it was decided
to conduct the analysis for the limiting cases (hinged and clamped) and for
a more realistic case with d, = d, = DY¥E®. Finally, buckling-load data
obtained experimentally is used to guide the selection of the coefficient of
restraint. As shown later using the experimental results for an I-beam, the
assumption d, = d, = DYE® gives slightly conservative predictions, which
indicates that there is some flexibility of flange-web connection and some
influence of the compression load on the web.

On the free edge, the following conditions on the bending moment M,
and shear force V, must be satisfied:

M, b)Y = V, (6, b) = 0 oo ()

They do not need to be imposed on the approximation functions of the
Rayleigh-Ritz method. However, for faster convergence, quasi-comparison
functions (Meirovich and Kwak 1990) are recommended. The following
approximation function is used in this work:

wix, y) = > > A, sin 2’:__". (%) ............................ )

Numerical results and correlations with experiments are presented later.

BOX BEAMS

For the case of the box beam, only one half-wave along the width (y-
direction, Figs. 2-3) is expected. The boundary conditions that must be
satisfied along edges AD and BC (Fig. 3) are

wx,0) = wlx,b) = 0 .. e (6a)
My(x,0) = —dw(x,0), My(x,b) =dw,(x,b) ............... (6b)
where d, and d, = constants representing the stiffness of the web and the
flange-web connection on side AD and BC (Fig. 3), respectively.
SELECTION OF APPROXIMATION FUNCTION

In the Rayleigh-Ritz method, the solution is approximated by a linear
combination of coordinate functions and coefficients. It is well known that
the coordinate functions should satisfy the following conditions (Reddy
1984):

1. Satisfy the essential (geometric) boundary conditions but not neces-
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FIG. 2. Equivalent Model of Flange-Web Connection

FIG. 3. Equivalent System and Boundary Conditions for Flange of Box Beam

sarily the natural (force) boundary conditions since these are included in
the variational statement. However, the linear combination of the coordi-
nate functions should not identically violate the natural boundary conditions.
The coordinate functions that satisfy this property were called quasi-com-
parison functions by Meirovich (1990).

2. Be continuous as required by the variational principle used, which
means that the derivatives of the coordinate functions in the variational
principle should not identically vanish.

3. Be complete (see Reddy 1984; 1986; Mikhlin and Smolitskiy 1967).

Satisfaction of conditions 1-3 is not enough to guarantee convergence
when bending-twisting coupling is present (D, # D,s # 0), as shown
next.

Consider the flange of a box beam, supported by the two webs with
boundary conditions given by (6a) and (6b). An upper bound for the critical
load can be found by assuming a clamped boundary (d,, d, — ©). The
following approximation function satisfies all requirements of the classical
Rayleigh-Ritz method. ,
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w(x,y) = >, >, a,, sin Ln%r <1 - €os Z_P_‘[}j) ................... @)
m p

The coordinate functions in (7) satisfy all the boundary conditions in (6a)
and (6b) (where d,, d, — » is a complete set), and none of the derivatives
in (2) vanish. Even more elaborate (but equivalent) requirements spelled
out by Mikhlin and Smolitskiy (1967) are satisfied. Among them, it is worthy
to note that the energy integral in (2) obtained using (7) has a finite value.
However, all the terms related to D,s and D, vanish after integration of

(2) if (7) is used. The following function also satisfies conditions 1-3 with
dh d2 —> %,

w(x.y) = 3 aysin m—;'i‘ [(,{) - (%) + (%) ] ............. ®)

where the polynomial is the solution of a clamped-clamped beam. None-
theless, all terms with D, and D,¢ vanish after integration.

For the case of the elastically supported flange, the following approxi-
mation function satisfies conditions 1-3.

w(x, y) = ; a,, sin %‘E [(i—;) - (}E})] ....................... O]

but all the terms representing bending-twisting coupling vanish after inte-
gration of (2). This would seem to imply that D,, and D,, have no influence
on the buckling load, which is unreasonable, as demonstrated by the use

of the following two equations. A doubly sinusoidal approximation of the
form

wx,y) = > 3 a,, sin 1;3 sin’—"l‘:—y ........................... (10)
n p

or a combination like

w(x, y) = 2'; %‘, a,, sin ﬂ:—r [(%) - (i)jl ................... (11)

satisfy all the conditions, and the bending-twisting terms are not canceled
after integration. Both (10) and (11) converge to the solution of the elas-
tically restrained boundary, but the convergence of (11) is much faster.
As an specific example, consider an off-the shelf 10-cm by 10-cm by 0.635-
cm (4-in. by 4-in. by 1/4-in.) box beam produced by Creative Pultrusions
Inc., Alum Bank, Pa. The material properties are given in Appendix 1. The
material does not have off-axis layers (D,, = D,, = 0). Therefore, the local
buckling load can be determined by a Levy-type solution (Shuleshko 1957).
To improve the buckling strength of this section, Barbero and Raftoyiannis
(1990) proposed replacing all of the randomly oriented, continuous-strand
mat layers by angle-ply layers while leaving the unidirectional fiber layers
unchanged. The buckling load, as a function of the fiber orientation and
the fiber volume fraction of the replacement layers, is shown in Fig. 4. The
two solution methods, Levy and Rayleigh-Ritz, are compared. The effect
of the bending-twisting coupling is minimal for practical purposes. Further
increasing the amount of angle-ply layers would reduce the amount of uni-
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FIG. 5. Failure Envelope for 15-cm by 15-cm by 0.635-cm I-beam including Shear
Buckling of Web, Local Buckling of Compression Flange, and Euler Buckling

directional layers, which is unacceptable due to the consequent undesirable
reduction of bending stiffness of the member. However, the use of cloth
angle-ply layers does allow pultrusion manufacturers to increase the fiber
volume fraction of the angle-ply layers without reducing the amount of
unidirectional rovings [see also Birsa and Taft (1984)]. In this case, the
Rayleigh-Ritz analysis presented elsewhere in this paper becomes necessary.

WEB-SHEAR BUCKLING

Local instability may occur in the web because of shear loading due to
bending. When the web is thin or deep, local instability due to shear loading
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FIG. 6. Interaction Diagram for 15-cm by 15-cm by 0.635-cm I-beam
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FIG. 7. Interaction Diagram for 10-cm by 10-cm by 0.635-cm Box Beam

may be governing (i.e., occur before flange buckles). The critical shear
buckling load for the web can be easily related to the total applied bend-
ing load, and the failure envelope for a cross section can be completed
(Fig. 5).

In the case of pure bending, the web is subjected to pure shear loading.
Presently, the more general case where the edges are elastically supported
and a combination of axial and shear loading is applied shall be considered.
The governing differential equation for the buckled shape is given by (1).
The boundary conditions of the problem are

w@0,y) =0; w(l,y)=0; wx,00=0 ..................... (12a)
wx,b) =0; M0,y) =0; M(Ly)=0 ................... (12b)
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FIG. 9. Experimental Setup Showing Failure of Box Beam

My(x, 0) = ‘—dlw‘yI),:(); M}.(x, b) = dzw‘}"}':/) ................. (12C)

The first variation of the total potential energy (Rayleigh-Ritz formula-
tion) is given in (2). The approximate shape function selected for this case
is

w(x, y) = 2 Z a,,, sin <m;rx) sin <EEX> ..................... (13)

m p b
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This shape function satisfies all boundary conditions except for the case
where the boundaries are perfectly clamped (i.e., d, and d, approach infin-
ity). A linear eigenvalue problem is obtained by introducing (13) into 2).
Hence, the critical shear buckling load is determined. By specifying the ratio
of axial stress to shear stress, the critical load can be found as a single value.
Then, both axial and shear critical stresses can be found.

While the depth of the web is known, the length to consider in the analysis
needs further consideration. Beams in real structures may be subjected to
a variety of shear, bending, and axial stress distributions, which makes the
analysis of all possibilities extenuating. A fixed length was assumed and a
parametric study was performed to evaluate the effect of the length on the
critical load. The results are invariant for a ratio length (a) to width b)
greater than 5. Axial load produces a repeating buckling pattern with an
asymptotic buckling strength as shown in Fig. 5. Shear buckling strength
decreases as the length increases, as shown in Fig. 5, but the rate of change
is very small and an asymptotic value can be assumed for a/b > 5.

The appropriate approximation shape function must be carefully selected.
A simply supported boundary condition at (x = 0, a) properly accounts for
the repeating nature of the buckling pattern.

The connection of the web to the flange is properly modeled as a simple
support for an I-beam where the flanges are free to rotate (Fig. 2). For a
box, a linearly elastic spring representing the bending stiffness of the flange
in the transverse direction is more appropriate (Fig. 2). However, the con-
nection between the web and flange may add additional flexibility (partial,
composite action) approaching a hinged boundary.

The buckling shape given by (13) approximates well the buckling mode
under shear load. All possible values of buckling of the web under combined
shear and compression are given by interaction diagrams, shown in Fig. 6
for an I-beam and in Fig. 7 for a box beam with elastic support. Significant
improvement of buckling strength can be obtained by replacing continuous-
strand mat layers with angle-ply layers. Furthermore, the optimum angle
depends on the shear to compression load ratio. In Fig. 6, a +60° angle
produces maximum buckling strength near the pure shear region of the
diagram. A +45° angle gives maximum improvement of buckling strength
for members primarily loaded in the longitudinal direction (columns) with
low shear stresses.

CORRELATION WITH OBSERVED BEHAVIOR

Verification of the predicted critical buckling loads has been carried out
through a series of buckling tests described in detail by Raftoyiannis (1991).

Protective
/ Grid
Be——T—8 /
W Specimen
]

—
\ Base plote/

FIG. 10. Experimental Setup Showing Base Plate and Protective Grid
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FIG. 12. Correlation between Experimental and Theoretical Resuits for 10-cm by
10-cm by 0.635-cm Box Beam

Column buckling tests were performed on a universal testing machine of
890-kN (200,000-1b) capacity. Specimens were obtained from pultruted
structural shapes produced by Creative Pultrusions. The stacking sequence
and fiber volume fractions and properties obtained with the methodology
introduced by Barbero (1991) for pultruted materials, are given in Appendix
I. Two sections were tested as columns: a 15-cm by 15-cm by 0.635-cm)-
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FIG. 13. Bending Test Showing Local Buckling of Compression Flange

FIG. 14. Close-up of Fig. 13, Showing Measurement of Postbuckling Wavelength

(6-in. by 6-in. by 1/4-in.-) wide flange I-beam (Fig. 8); and a 10-cm by 10-
cm by 0.635-cm (4-in. by 4-in. by 1/4-in.—) box beam (Fig. 9). The ends of
the columns were clamped to flat plates using 2.5-cm (1-in.) square bars as
a safety measure and to ensure proper alignment (Fig. 10). Significant de-
flections and loss of stiffness were observed (Fig. 8) for wide-flange I-beams.

Box beams show minor deflections and negligible loss of stiffness until
failure (Fig. 9), but the failure is clearly of the local buckling type. The
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surface of the specimens was marked at 2.5-cm (1-in.) intervals to facilitate
measuring the wavelength after buckling. The wavelength can be easily
measured during the test. The analytical results (Figs. 11-12) show that the
local buckling load is independent of the length for moderate mode number.
That is, the local buckling occurs at a constant load with a wave number
that accommodates to the actual length of the column. This is confirmed
by the experimental data presented here for box and I-columns as well as
by the experiments conducted by Yuan et al. (1991) on refrigeration tower
columns. The sample size is four, in Figs. 11-12, including the bending tests
that give identical results.

Experimental data for the I-beams are shown in Fig. 11 along with the-
oretical curves. The local buckling curves correspond to three different
assumptions about the stiffness of the web and the flange-web connection.
A hinged flange [d = 0 in (3)] assumes that the flange-web connection is
very flexible. Elastic (d = D3F?) assumes that the flange-web connection
is rigid but the web is flexible. Clamped (d — =) assumes that both the
connection and the web are rigid. Small deflections were observed at low
levels of loads. Then, for a wide range of load, no deflections were obscrved.
Finally, significant deflections were observed (Fig. 8) for small increments
in the load. At this point the load was recorded, and it is reported in Fig.
11. The data correlate well with the theoretical predictions for elastically
supported flange. Buckling occurs with a wavelength shown with triangular
symbols in Fig. 11.

Experimental data for the box beams are shown in Fig. 12 along with
theoretical curves. The local buckling curves correspond to three different
assumptions about the stiffness of the web and the flange-web connection.
Hinged flange [d = 0 in (6)] assumes that the flange-web connection is very
flexible. The experimental data clearly indicate that this is not the case for
the specimens tested. Elastic (d = D33*") assumes that the flange-web
connection is rigid but the web is flexible. Clamped (d — =) assumes that
both the connection and the web are rigid. The experimental data corre-
spond to the failure load since, for the case of the box beam, it is very
difficult to detect the bifurcation load. Therefore, all experimental values
are higher than the predicted values. Buckling occurs with a wavelength
shown with triangular symbols in Fig. 12.

A 15-cm by 15-cm by 0.635-cm (6-in. by 6-in. by 1/4-in.) wide-flange I-
beam was tested in bending (Fig. 13) and buckling of the compression flange
was observed. The three-point—bending test was performed using steel roll-
ers to simulate the simply supported boundary conditions. The load was
applied with an hydraulic jack and measured with a load cell and a strain
indicator. The center deflection was measured with a dial gage. Lateral-
torsional buckling was presented by a wooden frame as shown in Fig. 13.
The transverse load at which local buckling of the compression flange oc-
curred is used to compute the compressive stress on the top flange at buck-
ling. The equivalent axial load that would produce the same value of buck-
ling stress is reported in Fig. 11. The wavelength measured during the
experiment (Fig. 14) corresponds to mode 1, as can be seen in Fig. 12.

CONCLUSIONS

The analytical solutions developed here have been used to predict critical
buckling loads as well as the buckling mode. In the case of thin-walled
beams and columns, local buckling must be considered. Instability failure
of a part of the cross section is important because it initiates a process that
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TABLE 1. Micromechanical Data for 10-cm by 10-cm Box Beam®

| E, E, G\ v,

Layer (MPa) (MPa) Vi (MPa) (%)

(1) (2) (3 4) (5) (6)

Nexus . 6,187 6,187 0.40 2,214 10
57-g (2-0z) continuous-strand mat 9,925 9,925 0.42 3,490 23
85-g (3-0z) continuous-strand mat | 13,194 13,194 0.43 4,607 34
Roving 32,754 5,725 0.26 2.331 43

“The information shown corresponds to material produced in 1989, and is not repre-
sentative of current structural shapes.

TABLE 2. Micromechanical Data for 15-cm by 15-cm I-beam®

E, E, G, v,

Layer (MPa) (MPa) Vi, (MPa) (%)

(1) (2 () 4 (5) (6)

Nexus 6,187 6,187 0.40 2,214 10
42.5-g (1.5-0z) continuous-strand

mat ’ 9,925 9,925 0.42 3.490 23

57-g (2-0z) continuous-strand mat 9,925 9,925 0.42 3,490 23

Roving 1 15,808 4,076 0.25 1,662 18

Roving 2 39,278 6,704 0.27 2,724 52

Roving 3 24,781 4,793 0.26 1,952 31

Roving 4 37,209 6,338 0.27 2,579 49

Roving 5 35,140 6,021 0.27 2,448 46

*The information shown corresponds to material produced in 1989, and is not repre-
sentative of current structural shapes.
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APPENDIX I. MATERIAL PROPERTIES

The material properties of pultruted materials can be predicted from the
processing information used by the manufacturer (Creative Pultrusions 1988),
according to the procedure developed by Barbero (1991) and Raftoyiannis
(1991). The internal composition of a box beam is shown in Fig. 15, and
the resulting properties are given in Table 1. The stacking sequence of an
I-beam is shown in Figs. 16—17, and the resulting properties are given in
Table 2.
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APPENDIX lll. NOTATION

The following symbols are used in this paper:

a = length of specimen;
b = width of flange or web;
Dy, Dyy, Dy, Dyg, Dy, and Dgg = plate stiffness coefficients;
d,, d, = elastic constants representing web-
flange interaction;
E,, E, = modulus of elasticity in local (mate-
rial) coordinates;
G\, = shear modulus in local (material) co-

ordinates;
M., M, M,, = bending moments;
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in-plane stress resultants (forces);
fiber volume fraction;

shear forces;

transverse deflection; and

Poisson ration in local (material) co-
ordinates.
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