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sible to optinlize the material itself by choosing among a variety of resins, fiber
systems, and fiber orientations. Changes in the geometry can be easily related to
changes in the bending stiffness through the moment ofinertia. Changes in the
material do not lead to such obvious results, because composites have properties
that not only depend on the orientation of the fibers but also exhibit modular
ratios that could differ considerably from usual values in conventional isotropic
materials (Barbero [2]).

Although beams and columns are the most commonly used structural ele­
ments, the theory of laminated beams has been less developed than the theory of
laminated plates. Laminated beam theories were initially derived as extensions of
existing plate or shell theories. Bert and Francis [3] presented a comprehensive
review of the initial beam theories. Berkowitz [4] pioneered a theory of simple
beams and columns tor anisotropic 1l1aterials. Vinson and Sierakowski [5 J ap­
plied classical lamination theory along with a plane strain assumption to obtain
the extensional, coupling and bending stiffness for an Euler-Bernoulli type lami­
nated beam (All,B•.,Dtt ). A theory for orthotropic thin-walled composite beams
was proposed by Bank and Bednarczyk [6], where the in-plane material proper­
ties were obtained using classical lamination theory or coupon tests. A Vlasov
theory for thin-walled open cross sections conlposed of plane symmetric lami­
nates was proposed by Bauld and Tzeng [7] disregarding shear strains in the mid­
dle planes. Massonnet [8] addressed the problem of warping in a transversely iso­
tropic beam by complementing a mechanics of materials approach with
corrective terms derived using theory of elasticity. Bauchau [9] and Bauchau et
al. [10] provided a more comprehensive treatment to the problem of warping by
using variational principles to model anisotropic thin-walled bealTIs with closed
cross sections. A general finite element with 10 degrees of freedom per node was
derived by Wu and Sun [11] for thin-walled laminated composite beams by modi­
fying the assumptions of the Vlasov theory. Skudra et al. 112] proposed a theory
for thin-walled symmetrically laminated beams of open profile, and they illus­
trated the distribution of forces in a flat homogeneous anisotropic strip. Tsai [13]
defined engineering constants from the laminate compliances, and employed
them to obtain deflections for laminated beams. He further employed lanlinated
plate theory to determine ply stresses. In the present work, kinematic assump­
tions consistent with the Timoshenko beam theory are employed in order to gen­
erate beam stiffness coefficients. A distintictive feature of the present approach
with respect to existing formulations [7,9,10,12] is the possibility of considering
not only membrane stresses but also flexural stresses in the walls. This assunlp­
tion seems to be more appropriate for moderately thick laminated beams
enlployed in civil engineering-type structures.

The bending extension coupling that may result froln material and/or geomet­
ric asymmetry is usually taken into account by bending-extension coupling
stiffness coefficients. In this work, the position of the neutral axis is defined in
such a way that the behavior of a thin-walled beanl-column with asymnletric
material and/or cross-sectionaJ shape is conlpJetely described by axial, bending,
and shear stiffness coefficients (Az,D.v,F.v) only.

While the importance of considering a consistent shear coefficient in theJournal a/COMPOSITE MATERIALS, Vol. 27, No. 8/1993
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1. INTRODUCTION

A DVANCED MATERIALS. MAINLY fiber' reinforced plastic (FRP) composites,
will partially replace conventional materials in civil engineering type struc­

tures (Barbero and GangaRao [1]). Most recent applications in transportation
systenls, offshore structures, chemical facilities and communication systems,
show the usefulness of composite structures like thin-walled beams and columns.
COlllpared to standard constructionlnaterials, conlposite nlaterials present nlany
advantages, e.g.. light weight, corrosion resistance, and electromagnetic trans­
parency. Most prominent is the property of tailoring the material for each partic­
ular application. Structural properties like stiffness, strength, and buckling re­
sistance depend on the material system (composite) and the shape of the
cross-section of the member. Like with steel structural shapes, it is possible to
optinlize the section to increase the bending stiffness without compromisi.ng the
nlaximunl bending strength. Unlike steel shapes, with composite beams it is pos-
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ABSTRACT: A f()nnal engineering approach of the mechanics of thin-walled laminated
beanls based on kinenlatic assumptions consistent with Timoshenko beam theory is pre­
sented. Thin-walled composite beams with open or closed cross section subjected to bend­
ing and axial load are considered. A variational formulation is employed to obtain a com­
prehensive description of the structural response. Beam stiffness coefficients .. which
account for the cross section geometry and for the material anisotropy. are obtained. An
explicit expression for the static shear correction factor of thin-walled composite beanls is
derived from energy equivalence. A numerical example involving a laminated I-beam is
used to demonstrate the capability of the nlodel for predicting displacements and ply
stresses.



808 EVER 1. BARBERO, ROBERTO LOPEZ-ANIDO AND JULIO F. DAVALOS On the Mechanics of Thin-Walled Laminated Composite Beams 809

Considering symnlctrical bending normal to the x axis results u(z) = O.
Assunlptioll 2. A plane section originally l10rnlal to the beam axis remains

2.2 Kinematic Assumptions

Following Timoshenko beam theory. the basic assumptions regarding the pres­
ent mechanics of thin-walled lalninated beanls are introduced.

ASsUlnption 1.. The contour does not defornl in its own plane. The motions u
and v along the Si and ni directions respectively, at a point on the middle surface
of the ith wall. can be expressed in terms of the rigid body nlotions u(z) and v(z)

in the x and y directions respectively (see Figure 2).

The transverse loads are applied through the shear center and are contained in
a plane nornlal to one of the principal axes (x,y). Under this loading condition the
beam is subjected to synlmetrical bending decoupled from torsion. The present
derivation is restricted to symmetric bending for sake of brevity but could be
easily extended to non-synlmetric bending. The joints of the cross section are
nlodelled at the intersection of the walls' nliddle surfaces. This assumption, as
stated by Ng, Cheung, and Bingzhang [21], is amply justified due to the small
strain energy contribution of the joints in thin-walled hcanls.

V(Si, z) = - u(z) sin cP; + v(z) cos cPi

(1)

(2)

dy
dS

i
= sin cPi

U(Z) cos <Pi + v(z) sin <PiU(Si, z)

2. STRUCTURAL MODEL OF THE BEAM SUBJECTED TO FLEXURE

Timoshenko beam theory for anisotropic beams was recognized early [4], a com­
prehensive treatment in the framework of a formal mechanics approach is not
available. Cowper [14] derived a shear coefficient for isotropic materials from the
elasticity solution of the classical Saint Venant flexure problem under the
assumption of linearly varying shear force. While flexure functions are available
for regular sections (Love [15]), in the case of thin-walled sections this approach
requires the evaluation of the shear stress distribution from. mechanics of
materials methods. Dharmarajan and McCutchen [16] extended the formulation
of Cowper for orthotropic beams without addressing the case of thin-walled sec­
tions. Bank [17], applying the same equations as those proposed by Dharmarajan
and McCutchen [16], presented a derivation based on the work of Cowper [14] for
the case of thin-walled beams restricted to assemblies of horizontal and vertical
orthotropic panels. Bank and Melehan [18] further extended the fornlulation to
multicelled thin-walled sections. Bert [19] presented a derivation of the static
shear factor for beams of nonhomogeneous cross section. He considered rectan­
gular beams with layers perpendicular to the plane· of bending. Tsai et ale [20]
derived a shear correction factor for rectangular laminates subjected to torsion.
In the present work, the shear correction factor is obtained from energy equiva­
lence as in References [19] and [20]. The derivation of the shear factor is based
on computing the shearing stress distribution in the cross section.

The objective of this article is to present the derivations of the Mechanics of
thin-walled Larninated Beams (MLB) for open and closed cross sections. A
variational tormulation is employed to obtain a comprehensive description of the
structural response of composite beams subjected to bending and axial load. The
example presented, involving a laminated I-beam, illustrates the capability of the
model for predicting displacements and ply stresses, while envisioning the poten­
tial of the approach for the design optimization of new structural shapes.

2.1 Geometry and Loading Definition

A straight thin-walled composite beam-column with one axis of geometric and
material symmetry will be considered. We define a Cartesian coordinate system
(x,y,z), with the z-axis parallel to the axis of the beam and one of the other trans­
verse axes orthogonal to the plane of symmetry. The beam, made of assembled
flat walls. could have either an open or closed cross section. The middle surface
of the beam cross section is represented by a polygonal line called the contour.
We introduce for each wall a local contour coordinate system (Si,fli,Z) placed on
the middle surface of the wall, where the axes Si and ni are tangent and nornlal
to the contour respectively (see Figure 1). The contour is defined parametrically
by the step-wise linear functions X(Si) and y(s;). The orientation of the ith wall is
characterized by the angle cPi as foHows

y

n
2

dx
dSi = cos cPi

x

Figure 1. Cross-section geometry and reference systems.
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The expressions for the stiffness submatrices [A], [B] and [Dj are defined in
Jones (23). By full inversion of the stiffness matrix, Equation (4) results in

tions for a laminated wall with respect to the local contour coordinate system
depicted in Figure 2 are

and the lalninate strains and curvatures are

(5)

(7)

(6)

(4)

(13)] {I~l 1
(0) IMI}

l.B.I] {If} 1
[DJ Ix) J

{
I€") 1_ [[ex )
Ix) J -IJ3lr

{I~ll = [lAJ
IMI} [B)

IfI = r;: ] Ix} = !;:lly" "

IN} = [~] IMI = r~:]
N" lM"

where the laminate resultant forces and moments are
x, u(z)

. th II
1 wa

y, V(Z)

Figure 2. Motions and applied loads.

L

plane. but not necessarily normal to the beam axis due to shear defc)rnlation. The
axial displacement of the contour can be expressed as

W(Sj.Z) = \rv(z) - [y(s;) - Yn]l/t.v(Z) (3) where the cOlllpliance subnlatrices are

Tsai [13] employed the elements of the compliance matrices presented in these
equations to define in-plane and flexural engineering constants. In this work the
matrix Equation (7) for general laminates is reduced for the case of laminates that
are components of thin-walled beams. Consistent with beam theory and based on
Assumption I we consider that for a laminated wall the resultant force and mo­
ment originated by the transverse normal stresses (in the Sj direction) are negligi­
ble, then

[a) = [[AJ - [B][dHB]]-1

raj = (At l

where w(z) represents the axial displacement of the beam in the z direction at the
position of the neutral axis of bending -"n. The kinematic variable t/!y(z) 111easures
the rotation in the plane of bending. This assumption could be modified to ac­
count for residual displacements or warping of the cross section by considering
additional corrective terms. The out-of-plane warping could be expressed as a
series expansion in terms of a set of orthogonal functions which depend upon the
cross-sectional geonletry and the composite lay~up, and a set of new kinematic
variables that account for the loading and the boundary conditions. In this sense,
Hjelmstad [22J obtained the warping functions for isotropic materials from the
exact solution of the Saint Venanfs flexure problem through the application of the
Gram-Schnlidt orthogonalization process. Bauchau [9] derived from energy prin­
ciples the eigenwarping functions for the case of curvilinear orthotropic
Inaterials.

3. ANALYSIS OF A FLAT LAMINATED WALL AS A
BEAM COMPONENT

and

[oj

[13]

[[Dj - [B][a][B]]-1

11311' = - laJ(B][ol

[e/) = [D)-I

- [d)[BJ[ex)

(8)

3.1 Constitutive Equations

Employing Classical Lamination Theory (CLT), the general constitutive rela- N.~=Ms=O (9)
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Wu and Sun [II] showed that for slender thin-walled laminated beams without ribs
Equation (9) yields more accurate natural frequencies than the alternative plane
strain assumption (Es = )(sz = 0). For bending without torsion we can further
state that

Equation (5) we obtain the stiffness matrix of the ith wall of a thin-walled lami­
nated beam as follows

Msz = 0 ( 10) Ii:! [
ii
Bi

o
Ii; 0 ·]1 €z I15i 0 )(z

o "F.. :Yu
(16)

Incorporating the conditions (9) and (10) into Equation (7) yields for the i th wall where

It is convenient to derive the governing equations for a thin-walled lanlinated
beaOl froIII energy principles. The strain energy per unit length considering the
beaol as an assctllbly of n walls results in

[i(z) = ~ t r,'2 [(CXII),N~ + 2({JII),N,M, + 2(cx,.),NR"
I-I J-h;,2

(
all )

15; = alloll - (3~1 ;

Fi = (-t-),

is the bending stiffness

is 'the shear stiffness

is the bending-extension coupling stiffness

is the extensional stiffness

(
-(311 )

alloll - {3~1 ;

(
011 )

altOl1 - 13~1 i
Ai

Ii;

( ) I)a
16

] [NzI{316 Mz

(~66 i N.~z

E
zI [all {311

)(z = {311 b••
;Ysz alt> 1316

+ (bl.)JVl~ + 2({316);M)Vsz + (a66)j\l~z]dsi (12)

For each wall the position of the middle surface is defined by the function

Therefore the strain energy per unit length [Equation (12)] expressed in terms of
the wall stiffness coefficients [Equation (16)] simplifies as follows

Y(Si) = Si sin cP,. + Yi for
hi h;

- '2 :5 S,. :5 2" ( 13)
II Jh,l2 I

V(z) = ~E. (Ai€~ + 2Bi€,Ji, + 15iJi~ + Fi;Y:,)ds,
i= I -h;l2

( 17)

These conditions are satisfied by laminates with off-axis plies that are balanced
symmetric. Hence Equation (11) reduces to

where hi is the wall width and Yi is the position of the wall centroid (see Figure
1). We observe frotn the expression (12) that the coefficients (XI6 and {316 are
responsible for the shear-extension and shear-bending coupling respectively. In
order to decouple the variational problem. and within the scope of the engineer­
ing applications, we restrict our formulation to latl1inates that satisfy

3.2 Strain-Displacement Relations

The wall strains are derived from the kinematic relations (2) and (3)

d~'
dz - (y(s,) - YH) d1/;,

dz
(18)

1/;, ) sin <Pi(
dV

dz

ow
oz~(Si'Z) =

ail ow
- ( z) - - + -
'Ysz S;,. - GZ as,.

(14)al.6 = (316 - 0

The motions of a point away from the middle surface of the wall follows from
Assumption 2. Consequently the wall curvature results in

!~zI [a11 1311
)(z = 1311 bl.
;Yn 0 0 cx~.H~:! (15)

_ dt/;.v d.x dl/;.v
)(z(s;,z) = - -d -d' = - -d'" cos cP;z .\,. ~.

( 19)

where the compliance coefficient 1311 accounts for bending-extension coupling
due to unsymnletric orthotropic layers. By inverting the compliance nlatrix in Equation (19) implies that flexural strains, which vary linearly in the direction of
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the wall thickness, will be generated in addition to the typicaily predominant
membrane strains [Equation (18)]. Thus, this kinematic model can be applied
either to thin or thick laminated walls. Using the strain-displacement relation­
ships (18) and (19), and the parametric definition of the contour [Equation (13)],
the strain energy per unit length [Equation (17)] becomes

4. DERIVATION OF THE BEAM GOVERNING EQUATIONS

4.1 Beam Stiffness Coefficients

The total potential energy to be minimized follows from Equation (20), with
the introduction of beanl stiffness coefficients, yielding

U(Z) = ~ thi {A; (tlw) 2

1=1 tlz
- dl-t'd1/;y

2[A.(v. - VII) + B; COS c/>;l -d
7

-:-,..
' ." . ~ "..., !

L
I dw 2 dM-' d1/;y d1/;y 2

n ="2 JA'(dZ) - 2By dz dz + DY(dZ)

[- ( bf) - -]+ Ai (:Vi - y,,)2 + 12 sin2 c/>; + 2B;( Yi - Yn) cos c/>i + Di cos2 c/>i

3.3 Ply Strains and Stresses

The axial and shear strains evaluated through the thickness of the i th wall result
in

where L is the length of the beam, and qy and qz are the applied transverse and
axial loads respectively (depicted in Figure 2). The beam stiffness coefficients are
defined by

+ KyFy (~~ - 1/;y) 2]dZ - !~ (qyv + q.w)dz (23)

EA;b;A z

(20)(
dl/;y) 2 _. (til,' )2}

x dz. + [F; ~ln2 c/>,.J dz - l/;y

Ez(S;~~~Z) = Ez(S;~Z) + ~j(z(s;,z)
i=1

(21 )
1'...z(S;~Z) = ;.ysz(s;~z)

1/

By =' E[A;( y; - Yn) + Ii,. cos c/>;]b;
i=l

The shear correction factor Ky is introduced in order to account for the actual
shear stress distribution in the cross section. An expression for Ky based on en­
ergy equivalence is derived in this article. The set of equations obtained for the
beam stiffness coefficients [Equation (24)]~ reduces for the case c/>; = 0 to the
parallel axis theorem presented by Tsai and Hahn [24]. A reduction to a pure
membrane case~ where the flexural strains in the wall are negligible, is obtained
by setting Ii,. = 15; = O.

where ~ is the thickness coordinate (in the 11,. direction). Although the laminae in
a lanlinated wall are constrained and interact with one another~ in order to obtain
an approximation, for the ply stresses and following Equation (9)~ we further
assume that the transverse normal stresses are insignificant as ~ O. This condi­
tion yields the following expressions for the axial and shear stresses in the kth
layer.

fa.} [QII An}QI6 Ez (22)
asz = QI6 Q66 'Y.~z

where

A - Q;2Qlj
for i.) = 1.6Q;} = Q;J - --0-

22

and Q;} are the transformed reduced stiffness coefficients employed in CLT
(Jones [23D. For the particular case of a layer with fibers oriented in the direction
of the beam axis. the nlodified stiffness co~fficients of Equation (22) reduce to the
corresponding lanlina elastic constants: Ql1 = £1. 066 = G12~ and 016 = O.

~ [_ ( bf)Dy = ~ Ai (Yi - Yo)2 + 12 sin2 t/Ji

+ 2Bi(Yi - Yo) COS t/Ji + 15i COS
2</>i] hi

"
Fy = EF;b; sin2 c/>;

i=l

(24)
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4.2 Equilibrium Equations

We define the position of the neutral axis of bending of the cross section by set­
ting By = 0, which yields

4.3 Constitutive Equations

Expressing the total potential energy Equation (26) in terms of the wall stress
resultants leads to the following definitions for the beam resultant forces and mo-
ments

II

E(y;A; + cos </>J{)b;

v =~ n

;=1

Az

(25) Nz(z)
" f h;l2

~ j -b;12 N,ds i

Introducing the coordinate y' = y - Yn, we are able to decouple the extensional
and bending responses in Equation (23), as follows.

This is done to simplify the formulation along the lines of classical structural
analysis as used by the majority of structural engineers. The Timoshenko beam
solution is obtained by minimizing the total potential energy [Equation (26)] with
respect to the functions w, v, l/;yo Integrating by parts and applying the fundamen­
tal lemma of calculus of variations we obtain the equilibrium equations

(31 )

(30)

(29)

dl/;y
dz

dw
€~(z) = dz

}(y(Z) =

Nz(z) = Az€~

dv
l'yz(z) = dz - l/;y

II f ",/2

~ j -bJ2 [N,y' (s,) + M, COS t/>,]ds,

" rh;l2

V,(z) = K,t j -b;/2 N., sin t/>,ds,

My(z)

My(z) = Dyxy

Vy(z) = KyFyl'yz

For the ith wall, the strains [Equation (18)] and the curvature [Equation (19)] in
terms of the beam resultant forces and moments become

Therefore the beam constitutive equations can be expressed as

and for the generalized beam strains(26)

(27)~ [K,F, (~; - 1/;,)] + q, = 0

d (dl/;y) (dV )dz DydZ + KyFy dz - l/;y = 0

d ( dW)dz Az dz + qz = 0

- JL (q,v + q,w)dz
o

1 fL [ (dW) 2 (dl/;y) 2 (dV )2]n = "2 j 0 A, dz + D, dZ + K,F, dz - 1/;, dz

and the boundary conditions of the system

dw
Az-owlk = 0

dz
_ Nz , My
€z(s;,z) = -A + Y (05;) D

z y

D dl/;y ~.I, IL - 0
Y dz U'l/y 0 - (28) _ My

x z(s;,z) = D cos cP;
y

(32)

K,F, (~; - 1/;, )ov I~ = 0 v
;Y.n;(Si,Z) = K ~ sin <Pi

y y
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Given the bending and axial stress resultants for a certain axial position z of the
beanl, the neutral axis of combined bending and axial force, i.e., the axis for
which €: is zero, follows from Equation (32)

For a cross section having a free edge, or having some other point such that
N.~( -b./2,z) = 0, we can integrate over the contour up to the rth wall, yielding

Y~(Z) = Yn
Dy Nz(z)

Az My(z)
(33)

-* ..,. _ _ Vy
[y ! - " ( 2 _ b~)

N.~l.(.5n4.) - D
y

S r + 2 A r SIn $r Sr 4

- - ( br
)]+ (Ary: + Br cos $r) Sr + 2 (38)

,.-1

S~ = E [A;y: + Ii; cos $;]b;
;=1

5. EVALUATION OF SHEAR STRAIN EFFECTS

5.1 Shearing Stress Distribution

The shearing stress distribution (shear flow) in the cross section of the thin­
walled beam is obtained herein from equilibrium in each wall, in terms of the ax­
ial stress resultant Nl. . Thus the shear flow evaluated in each wall (f£~) consti­
tutes a refinement over the laminate shear stress resultant (N.~l.) calculated from
constitutive Equations (16). From Equations (16) and (32) follows

where

for
hr· br- 2 ~ Sr ~ "2

The in-plane equilibrium equation for the ith laminated wall, in the absence of
body forces, in the z direction is

- Nl. - My - , -
Nz(Si,Z) = -A Ai + D [A,)' (s;) + Bi cos $;]

z y

N l. .l. + Ns~.s; = 0

(34)

(35)

is the weighted static moment of the portion of the cross section corresponding
to the first r - I walls, and y: = Yi - Yn. However, for a general closed cross
section the shearing stress distribution cannot be obtained employing Equation
(38) alone, since we do not know a priori where N'!z vanishes. The procedure for
a one-cell cross section is to generate free edges by introducing a slit in the com­
partment, and then close it again by obtaining the shear flow in the compartn1ent
that produces zero unit angle of twist. Applying Bredt's formula for thin-walled
hollow beams (Cook and Young [25]), we can write for a compartment composed
of n' walls

Furthermore, in beam theory the following resultant equilibrium equations are
employed

II' I J";I"1-EF
i

N"f,(Si.Z)dsi = 0
1= 1 -b;/2

(39)

dMy = V
vdz .

(36)

dNz = 0
dz

The net shear flow is N.~(Si'Z) = [N~(si,z)l'JX'n + N~l. where [N.~l'JX'n is the vari­
able open-cell shear flow obtained from Equation (38), and N~z is the uniform
closed-cell shear flow released by the slit. For multicell cross sections the above
procedure has to be repeated by satisfying Equation (39) for each compartment.
Therefore, the corresponding shearing strain distribution in the i th· wall is

Substituting Equation (34) in the wall equilibrium Equation (35), and accounting
for the beam equilibrium conditions (36), we obtain the shear flow variation in
the ith wall

I ­
:V*(l' ~) - - N*,n Ji,~ - F

i
n (40)

N'fz,S,(Si,Z)

.~

Vv - -- D·[Aiy'(Si) + Bi cos $i]
y

(37)

5.2 Location of the Shear Center

The location of the shear center S(x.~,y'~) is defined in order to decouple bending
and torsion. For a cross section having one axis of symmetry, one of the coor-
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(41)

dinates of the shear center is known. Hence the other coordinate is obtained from
the following moment equilibrium equation

n !b;/21: N;t:(Si,Z)[y(Si) - y,] cos q,idsi == 0
1= I -b;/2

" !bi/21: N;':(Si,Z)[X(Si) - x,] sin q,idsi
1= I -h i /2

(47)

(46)

[t hi sin ep,(S': + cr)]2

F ~ hi . 2
y I..J F

i
sIn cPi [(Sn2 + 2crSr + drj

1=1

Ky

where the stiffness parameters of the ith wall, cr and dr, are defined as follows

cr == ~ hi[;r.(:w - ihi sin q,i) + Bi cos q,i]

l[ - (bt bi
)dr = "3 b~ (A i )2 40 sin2 cPa - 4 Y: Sfn <P; + <y:)2

- - ( bi
) - ]+ 2A;B; cos <P; y: - 8 sin <Pi + (Bi)2 COS

2 <Pi

An explicit expression for Ky is obtained by replacing the expression for the shear
flow Equation (38) in Equation (45) and performing the integrals, yielding

(42)
n Jb;/21 _ 1

"2 1: N;t:(Si,zfy 1;(s"z) sin2 q,idsi == "2 Vy(z)-yy,(z)
1= I -b;l2

5.3 Derivation of the Shear Correction Factor

A static shear correction factor is introduced by equating the shear strain en­
ergy predicted by the present Timoshenko beam theory, and the shear strain en­
ergy obtained from the shearing stress distribution in the cross section

After substitution of the expressions for '¥yz from constitutive Equations (31), and
for ;y;,: obtained from equilibrium in Equation (40), we obtain

The variation of K.y with respect to the geometric dimensions for the case of an
I-beam composed of homogeneous walls is' shown in Figure 3.

bJ/b~ =

bl/b~ = 1/4
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Introducing this expression in Equation (43), we arrive at

where the beam shear force resultant (Vy ) can be expressed as

432
h./h2

0.80 I J

o

Figure 3. Variation of the shear correction factor with respect to the geometric dimensions
for an homogeneous J·section with a web height to thickness ratio b2/h 2 = 16.
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Figure 4. Cantilever I-beam subjected to tip-shear force.
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6. NUMERICAL EXAMPLE

A clamped-free I-beam of length L subjected to a tip-shear force p.l' = - 100
lbs is analyzed (see Figure 4). The dimensions of the beam are defined relative
to the beanl height H = 1 in. The material employed is aralnid (Kevlar 49)­
epoxy with the following elastic constants, £1 = 11.02 X 106 psi (76.0 GPa),
£2 = 0.80 X 106 psi (5.50 GPa), G12 = 0.33 X 106 psi (2.30 GPa) , and
\'11 = 0.34. The lay-up sequence is [ ± O/O]s, where the ply angle 0 is selected as
the design variable. The tip deflection is obtained from the solution of the govern­
ing Equation (27) for the specified boundary conditions.

The tip deflection is evaluated applying MLB for two different aspect ratios:
L/H = 6 (Figure 5). and L/H = 12 (Figure 6). The results are cOlnpared with
the values obtained from a refined Finite Element (FE) analysis with ANSYS [26]
enlploying 8-node isoparametric laminated shell elements. The minimunl tip
deflection tor L/H = 6 is obtained for 0 = 16 0

• and for L/H = 12 is exhibited
t()r 0 = 9 0

• The ratio between the tip shear deflection (\'s(L» and the tip bending
deflection (vb(L» is depicted in Figure 7. The results obtained with MLB (Figure
7) provide insight into the deflection components (bending and shear). that is not
available from the FE solution. Ply stresses are computed based on the ply strains
obtained from Equation (21) following two different approaches. The first ap­
proach considers the stiffness coefficients Qi). and the second approach employs
the modified stiffness coefficients Qi} introduced in Equation (22). Ply axial
stresses in the top flange calculated at a distance z = L/48 of the fixed end are
presented in Figures 8 and 9. Average ply shear stresses in the web evaluated at

Figure 6. Variation of the tip deflection with respect to the ply angle for a cantilever I-beam
with a span to height ratio L/H = 12.
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Figure 5. Variation of the tip deflection with respect to the ply angle for a cantilever I-beam
with a span to height ratio L/H = 6.

(48)
P LJ PyL

v(L) = vb(L) + v.~(L) = 3~.v + K.l'F.v

823



Ply angle e [deg]

Figure 7. Variation of the ratio between the tip shear deflection and the tip bending deflec­
tion with respect to the ply angle for a cantilever I-beam.
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Figure 9. Variation of ply axial stresses at a +0 layer in the top flange with respect to the
ply angle, measured at z = U48, for a cantilever I-beam with L/H = 12.
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Figure 8. Variation of ply axial stresses at a 0 layer in the top flange with respect to the ply
angle, measured at z = U48. for a cantilever I-beam with L/H = 12.

Figure 10. Variation of ply average shear stresses at a 0 layer in the web with respect to the
ply angle, measured at z = U2, for a cantilever I-beam with L/H = 12.
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~3000

7. CONCLUSION

Ply angle e [deg]

Figure 11. Variation of ply average shear stresses at a +() layer in the web with respect to
the ply angle, measured at z = U2, for a cantilever I-beam with L/H = 12.

a distance Z = L/2 are shown in Figures 10 and 11. The axial and shear stresses
at the 0° layer (Figures 8 and 10) obtained by both approaches coincide with the
FE results. At the +0 layer (Figures 9 and 11), the stress .computation with the
OiJ coefficients follows approximately the trend of the FE solution. The
difference observed is due to the limitation of a beam theory to nl0del the fully
anisotropic response at the lamina level. Nevertheless, we notice that the pro­
posed approach employing the Qi} coefficients yields a better approximation to
the FE solution than the classical approach with the Q;J coefficients.

.V/'

[A), [B). [D]
Ai •iii ,D,. •F;

warping effects in the design of innovative composite structural shapes. Warping
was not included in this work to limit the conlplexity originated by additional
kinematic variables.

8. NOTATION

laminate stiffness submatrices
stiffness coefficients of the ith wall of a thin-walled
laminated beam

Az • B.v • D.v , F.., = stiffness coefficients of a thin-walled laminated beam
[aJ,[dJ = symmetric laminate conlpliance submatrices

h; = width of the i th wall
E..E2 .GJ2 , ~'12 = lamina elastic constants

K.v = shear correction factor
L = length of the beam

tNt = tNz.f£,N.nl = laminate resultant forces
IMt = (M%'M.nlVl.~zJ = laminate resultant moments

Nz(z). M.v(z), ~v<z) = beam resultant forces and moment
N.~ = shearing stress distribution (shear flow)
N~z = uniform closed-cell shear flow

n = nunlber of walls in the cross section
11' = number of walls in a closed cell

Qij = transformed reduced stiffness coefficients
o.il = modified stiffness coefficients for laminated beams

qy, qz = transverse and axial applied loads
S(x.~ •yJ = location of the shear center

Sr = weighted static moment
(s; .11;. z) = local contour coordinate system for the ith wall

U(z) = strain energy per unit length
u(z). v(z) = rigid body motions in the x,y directions

w(z) = motion of the neutral axis in the z direction
u(s;. z), v(s;. z). W(Si, z) = motions of the contour in the (si,n;,Z) directions

(x.y•.::) = Cartesian coordinate system
x(s;) •.\'(s,-} = parametric functions that define the contour

y' = coordinate with respect to the neutral axis
y" = coordinate of the neutral axis of bending
y:r = coordinate of the neutral axis of combined bending

and axial force
5\ = centroid coordinate of the i th wall

centroid coordinate of the ith wall with respect to the
neutral axis

(aJ.[IJJ.(oJ = laminate conlpliance submatrices
IfI = Ifz•fso ;Y.~zl = lanlinate strains

(xl = p(z.x.nx~zl = laminate curvatures
€~(.::), }( .•.(z).l'yz(z) = beam strains and curvature

;Y.~ = shearing strain distribution from equilibrium
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The mechanics of laminated beams presented herein intends to bridge a gap be­
tween sophisticated existing models and the requirement of a simple but consis­
tent tool tor engineering design. For the example presented. the performance of
the proposed beam model compared satisfactorily with shell finite elements. In
particular. the prediction of deflections. which typically control the design in
many civil engineering applications, is remarkably accurate. This approach
allow's the designer to optimize both the cross-section geometry and the material
system for a given objective function. The present formulation could be im­
plemented as a specialized beam finite element, providing a preprocessor to com­
pute the beatn stiffness coefficients, and a postprocessor to calculate ply stresses.
Further research is advisable in ordet to evaluate the importance of including
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