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Abstract—In this paper, a new 3-D element (3DLC) is presented for the analysis of laminated composite
shells. The new clement expedites the modeling process by presenting the designer with an intuitive
physical interpretation for the different components of the model. The element s compatible with
conventional 3-D continuum elements. It can represent arbitrarily curved shells with variable number of

layers and variable thickness. Each clement has a small number of

L. INTRODUCTION

Modeling of laminated composites is usually per-
formed using plate and shell elements. These elements
are based on plate and shell theories which are
simplifications of the three-dimensional (3-D) elas-
ticity. The basic simplifying assumptions involve
the approximation of the distribution of the dis-
placements through the thickness of the laminate by
a known function. While only kinematic assumptions
are needed to develop plate theories, additional
assumptions are required to deal with the curvature
effects in the analysis of shells.

Most plate and shell theories assume transverse
incompressibility and a state of plane stress through
the thickness of the laminate. Classical plate theory
(CPT) assumes that no out-of-plane shear defor-
mation occurs through the thickness of the plate ).
This is a very restrictive assumption for the analysis
of laminated composites since they usually have very
low out-of-plane shear stiffness. For this reason, CPT
bas been virtually abandoned in favor of first-order
shear deformation theory (FSDT) for the analysis of
laminated composite shells. In this refined theory,
out-of-plane shear strains are assumed to be constant
through the thickness of the laminate [2] and a shear
correction factor is used to compute the shear strain
toergy accurately [3-5]. FSDT produces excellent
global results (c.g., deflections, fundamental vi-
bration frequency, etc.) but the accuracy of the
stress distributions does not improve significantly
over CPT. Post-processing techniques can be used
to obtain refined values of the out-of-plane shear

1 Part of the material in this paper was presented at the
Engincering Mechanics Speciality Conference 1991,
Columbus, OH.

of freedom which facu:liutes

stress components through integration of the 3-D
equilibrium equations [6].

Higher-order theories have been proposed in an
attempt to improve the prediction of stresses, Third-
order theories are capable of representing a quadratic
shear distribution through the thickness of an homo-
gencous shell. They satisfy the traction-free boundary
conditions at the surface of the shell and there is no
need for shear correction factors. All third-order
theories can be derived from a common set of
kinematical assumptions (7). Higher than third-order
theories have been proposed. Excellent reviews of
these theories are presented by Noor[6] and
Reddy [8-10). All of these equivalent single-layer
theories share a common characteristic: the assumed
distribution of displacement through the thickness is
not only continuous but the derivatives with respect
to the thickness coordinate are also continuous, This
implies that the out-of-plane shear strains are con-
tinuous across the material interfaces and, as a result
of material property discontinuities, the out-of-plane
stress components are discontinuous, thus violating
equilibrium. The result is a limited representation of
out-of-plane stresses as observed in CPT and FSDT.

The equilibrium equations can be used with all
the equivalent single-layer theories to post-process
the in-plane stresses and obtain a refinement of the
out-of-plane stresses, but this involves considerable
complexity in terms of the finite element formulation.
Post-processing with the equilibrium equations
requires computation of derivatives, thus requiring
high-order interpolation functions to be used in the
element (at least quadratic to obtain out-of-plane
shear stresses and cubic to obtain. transverse normal
stress). An alternative solution for low-order el-
ements is to use a finite difference scheme involving
several clustered elements, but this adds significant
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complexity to the program and requires an increase
in the mesh refinement, which is equivalent to the
use of clements with higher-order interpolation
functions.

Another class of theories are based on local layer
approximations and they are called layer-wise 2-D
theories. These theories are based on a distribution of
displacements which is continuous through the thick-
ness of the shell but with derivatives with respect to
the thickness coordinate that are not necessarily
continuous at the interfaces between layers. All
these theories can be derived using a displacement
formulation from the generalization presented by
Reddy [11]. Perhaps the best compromise between
computational cost and accuracy is accomplished by
layer-wise constant shear theories (LCST) like those
proposed by Srinivas[12], Seide [13], Epstein et al.,
(14, 15], Murakami (16}, Hinrichsen [17}, Owen (18],
Reddy [19,20] and Barbero(21,22). The finite el-
ement formulation of these theories result in elements
with a large number of degrees of freedom (DOF)
per node [20, 21] which makes the element difficult
to incorporate in commercial finite element pack-
ages [23]. The physical interpretation of the DOF and
a large number of stress resultants is quite difficult. So
it is the imposition of boundary conditions (b.c.) and
loading, since the stress resultants and displacements
cannot be immediately associated with the traditional
bending moments, in-plane tractions, curvatures, and
in-plane displacements of the conventional theories
(i.c., CPT, FSDT). The resulting elements are incom-
patible with other elements like 3-D solids which are
usually necessary in finite element analysis (FEA).
Existing finite element formulations [20, 23] are re-
stricted to flat plates and the extension to curved
shells is not simple.

Despite all the developments in the area of plate
and shell theories, there is considerable interest on
performing more refined FEA using 3-D elements
based on continuum mechanics [24). A number of
important engineering problems (Fig. 1) are quite
difficult to model accurately with plate elements for
which the geometry of a solid plate is idealized by the
middle surface. In bridge-and-deck monolithic con-
struction, the intersection between thick plates and
beams (Fig. 1a) can only be approximately modeled
with plate elements due to the resulting overlap [25).
In folded-plate structures, intersection of plates at
an angle not only introduces overlap (Fig. 1b) but
also requires an additional DOF to be added to the
plate element called drilling rotation. The analysis of
tapered glued-laminated timber beams (Fig. Ic) is a
problem of variable thickness plate. Since layers have
constant thickness, the number of layers is variable
and the thickness of the outer layers vanishes at
certain points. Therefore, the variation of thickness
cannot be simply introduced in the standard plate
formulation. Ply drop-offs are discontinued layers in
laminated composites (Fig. 1d). This is another prob-
lem with variable number of layers with the added
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complexity that the position of the middie surface
varies across the drop-off. Link elements are necess.
ary to model ply drop-offs, lap-joints, and a variety
of structures where the position of the middle surface
varies from point to point.

The main advantages of conventional 3-D contin-
uum elements are: accuracy, ease of FEA mode|
formulation (i.e., mesh, b.c., loads, etc.), and ease of
interpretation of results. The main disadvantages of
conventional 3-D continuum elements are the large
number of DOF involved and the aspect ratio limi-
tation due to shear locking of fully integrated 3-D
continuum elemenzs when used for bending prob-
lems. In this paper. a new 3-D element is introduced
for the analysis of laminated composite shells. The
formulation is based on the fact that certain assump-
tions made in the plate and shell theories previously
described are quite valid for a broad class of prob-
lems of moderately thick laminates. By introducing
those assumptions in the formulation of a 3-D
element, it is possible to obtain a less expensive 3-D
element while retaining its versatility and compatibil-
ity with conventional 3-D continuum elements. This
is quite important from the point of view of im-
plementation on commercial finite element packages
and use for FEA in combination with other elements
already available on those packages. The proposed
element is compatible with conventional 3-D contin-
uum elements, it has a small number of DOF per
node, and it produces results as accurate as conven-
tional 3-D continuum elements for a broad range of
problems. Mesh generation, imposition of b.c. and
loads, and interpretation of results are identical to
those used along with conventional 3-D continuum
clements.

Although based on kinematical assumptions first
introduced for 2-D equivalent single-layer elements,
the new element is in the group of 3-D continuum-
based clements according to the classification
introduced by[10. The proposed element can be
considered the coctinuum-based implementation of
LCST by analogy o the work of [26) who developed
the continuum-based implementation of FSDT for
laminated compos::es.

2 FORMULATION

The new 3-D laminated composites element .
(3DLC) addresses the shortcomings of higher-order
plate theories and introduces additional advantages-
Selected kinematical constraints are introduced on 3
continuum based Enite element to reduce the number
of DOF while retzining the desired accuracy for 3
class of problems. namely moderately thick lam
nates. The formulz ion uses the degenerate shell finit¢
element concept [>7). The element can be used o
model one or more layers of the laminated composit¢
shell with arbitrary curvature and orientation. If all
the all layers through the thickness of the laminat¢
are modeled with a single element, the mode!
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Fig. 1. Special applications for the new 3-D clement compared to the approximations introduced by
standard shell elements.

is equivalent to FSDT and is the least expensive
and least accurate of all the possible models of
a laminated composite that can be obtained with
this element. If one element per layer is used, the
model is equivalent to LCST and in the most accurate
and expensive although less expensive than a model
constructed with conventional 3-D continuum
clements. Any number of elements through the thick-
ness can be used, each representing clusters of layers.
This approach leads to significant savings while
retaining accuracy if an intelligent choice of clusters
is made based on the stacking sequence and the
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type of results desired (¢.g., maximum interlaminar
stresses).

Unlike plate elements based on LCST formulation,
the position of the middle surface is irrelevant. There-
fore, variable number of layers and thicknesses can be
modeled (e.g., ply drop offs, lap joints, etc). The
modeling process is very similar to the modeling
using conventional 3-D continuum elements. The
connectivity array is used to tic together all the
clements through the thickness at a particular
location and to enforce the incompressibility of the
transverse nomals. The aew 3DLC element with this

.
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peculiar assembly process does not interfere with the
host program (e.g., ANSYS, ABAQUS) in the sense
that front-width optimization routines can be used
in all three directions (in-plane and through the
thickness).

The quadratic element, for example, has 27 nodes.
Nodes 1-18 for the variables « and v. Nodes 19-27
for the tranverse deflection w only (Fig. 1). The
variables u and v correspond to the in-plane displace-
ments at the interfaces between elements (layers). The
transverse deflection w is constant through the thick-
ness. Therefore, a single global node connects to all
the local w-nodes that lie on a line perpendicular to
the middle surface. The quadratic element has
45 DOF. The host program calls the element sub-
routine for cach element in turn and assembles their
contribution. The host program optimize the calling
sequence to the elements to reduce the front width for
frontal solvers or the band width for band solvers.
The host program treats the 3DLC element as a
regular 45 DOF element. The 3DLC element is in
turn independent of the front with optimization
algorithm, solver, etc. These characteristics are strik-
ingly different from LCST elements which due to the
large number of DOF per node are difficult to
implement in commercial packages.

The nodal coordinates alone dictate the orientation
of the 3DLC element in space as in standard contin-
uum clements or degenerate shell elements. Since
quadratic interpolation functions are used in this
isoparametric element to model the surface geometry
(Fig. 2), doubly curved shells can be modeled (Fig. 3).
The element has only two DOF per node, in contrast
to continuum elements that have three, plus an
additional w-DOF at each location on the surface of
the shell.

The displacement {u} = (4, v, w) inside an element
is given as

{u} =[N){6}, m
whered ={3,)7,{8,)7, ..., {6} (8.} = {u,, vy, w,}

n is the number of nodes, and [N] is the shape
function array
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Fig. 2. Different order of interpolation through the thickness
to appropriately account for the kinematic constraints.
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Fig. 3. Curvature as represented by the isoparametric for-
mulation.
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The order of the interpolation functions N, along the
two directions on the surface of the shell can be
chosen independently of the order through the thick-

placements (u, r) and the geometry (x, y; Fig. 3) are

commonly used. The order of approximation in the

thickness direction corresponds to different kinemat- i
ical assumptions in GLPT [11). A linear variationis |
used in this paper (Fig. 2), but higher-order approx-
mation functions can be easily implemented. The
linear variation through the thickness of the element
presents several advantages as follows: {

E
ness. Linear or quadratic interpolation of the dis- (
{

(a) It reproduces FSDT kinematic assumptions
when a single element is used to model the
entire thickness of the laminate.

(b) It reproduces LCST kinematic constraints
when the element is used to model a single layer .
of a laminate. It was demonstrated [21, 23] by {
comparison with exact solutions that the layer:
wise linear distribution is the most efficient
one. Therefore, more refined approximations

through the thickness (e.g., quadratic, cubi [

spline) are not usually necessary. However.
they can be easily implemented.

(c) The computational cost is reduced with respect
to three-dimensional quadratic finite elements
(20- or 27-node brick elements).

The order of the interpolation functions M, alon$
the two directions on the surface of the shell ca®
be chosen independently of the order through th
thickness. Linear or quadratic interpolation of th¢
displacement (w) and the geometry (z; Fig. 3) ?"
commonly used (Fig. 2). The order of approximatio®
in the thickness direction must be chosen according
to the kinematic constraints used, reflecting different
assumptions in GLPT [11]. The incompressibility 9
normals to the middle surface is obtained in th

! -f'%
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fig. 4. Assemblage of 3DLC elements to form a laminated

ure. Quarter plate, simple-supported, under concen-

gated load modeled by a 2 x 2 mesh on the x-y surface and
two clements through the thickness.

r by using a constant interpolation through
the thickness (Fig. 2). Other options can be easily
implemented but they increase considerably the com-

wational cost. In this paper, the resulting element
atisfies the incompre S sibility of normals to the
middle surface of FSDT and other theories. Further-
more, the computational cost is significantly reduced
gnce all nodes through the thickness have the same
* wransverse deflection which can be represented as a
single degree of freedom for cach location on the
qurface of the shell (Fig. 4).
The equilibrium of the shell occupying a volume Q
is represented by the virtual work expression

L{ds}f{a}dv - j' {du}T(q) do + L (du)"{p) dd.
‘ 3)

The virtual displacement {du} are expressed in terms
of the nodal virtual displacements {dd} as

{du} = [N]{dé}. @

The strain tensor is written in contracted form in
terms of nodal displacements {6} as

{e} =1B){s}, ®

where the strain matrix contains the cartesian deriva-
tives of [N]

€,

N, 0 0 - {‘51}
“Sl=lo N, 0 K} ©
zé" N'J Nl.x 0 {6:1} '

The first variation of the strain tensor is
{de} = [B}{db)}. M

The left-hand side of eqn (3) represents the internal
work. The external work is due to {du} acting on the
surface tractions {P}={P,,P,, P,} and the body
forces per unit volume {q} = {g,,4,,¢.}" with Q the
volume and 30 the boundary of the body. The virtual

work expression feqn (3)] is approximated by the
finite element idealization as

(dem'{o} dv = (5" Lm’{q} o

+{ds)r mepw. ®

Since the nodal virtual displacements are arbitrary,
the equilibrium equations are given by

J'[B]’{a}dv=J‘ [N]’(q}dv+J’ (MT{p}d4. 9)
0 0 x

When the body volume Q is replaced by the element
volume € and the body surface 0Q is replaced by
the element surface €Y, the element equilibrium
equations are obtained

L (B (o} do = L (NT(q) dv + L N)T{P} d.
(10)

Due to the compact support property of the inter-
polation functions N, and M, used, an assemblage of
clements governed by the equilibrium as stated by
eqn (10) represents the equilibrium of the entire body
as stated by eqn (9).

The constitutive equations for an orthotropic ma-
terial arbitrarily oriented with respect to the local
coordinates is similar to the equations for a mono-
clinic material [28]. These equations have to be
modified to introduce the plane stress assumption

'01 W [ Ow Qu Cs Cu Cx Qu- r‘l
9; Qu On Cy Cu Cy Qx| |e
) gy L - Csy Cs Cy Cu G Cy {Ca L.
o, Cu Cyu Cyu kCy kCy C4 | |e
gs Cis Ci Cy kCy kCys Cy | |6
L% J bQu Ox Cx Cs Cu Qud (&)
an

where C, are the components of the 3-D stiffness
matrix [28] and Q, are the components of the reduced
stiffness matrix [28). In contracted notation

{o} =[DKe}. (12)

The shear correction factor k is included as re-
quired by FSDT. The need to use a shear correction
factor reduces as the number of elements through the
thickness of the laminate increases. This can be easily
explained for the case of an isotropic plate as follows.
A assemblage of 3DLC elements through the thick-
ness represents the parabolic distribution of shear
strain by a layer-wise constant approximation

.
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Elasticity
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Fig. 5. Layer-wise constant representation of the shear
strain through the thickness of an isotropic plate.

(Fig. 5). As the number of layers increases the error
reduces and no shear correction factor is needed.

If more than one material layer are encountered in
a single element, the numerical integration of the
clement stiffness matrix is performed layer by layer.
Analytical integration of the constitutive equations,
like in classical lamination theory, is not used. There-
fore, material nonlinearities can be easily incorpor-
ated in the analysis.

The element stiffness matrix is obtained by using
the kinematic equations (7) and the constitutive
equations (12) into the equilibrium equations (10)

J' (BIT(D](B]do{5} = f (NJ"{g} do
Qe Qe

+I (NY{P}d4a (13)
ar
or in contracted form

K{s}={r}. (14)

3. ASSEMBLY PROCEDURE AND CONDENSATION OF
REDUNDANT DOF

The integration of the element stiffness matrix is
performed as for a standard 18-node element with
three DOF per node (i, v, w) but with the appropriate
shape functions N, and M, described previously. Since
w is constant through the thickness, the contribution
of w to the shear stiffness terms must be integrated
over nine nodes only (top or bottom). For the same
reason, the transverse strain ¢, vanishes. Since the
transverse deflection w is constant through the thick-
ness of the element, the DOF of two nodes aligned
through the thickness can be reduced to a single
DOF. This is done at the element level by rearranging
the element stiffness matrix so that the DOF corre-
sponding to the displacements « and v on the surface
of the shell for all nodes (e.g., 18 nodes) are con-
sidered first. The remaining DOF corresponding to
w-displacements are assigned 10 a new set of nodes
(e.g. nine nodes) called w-nodes in this work. The
w-nodes are independent of the original nodes to
facilitate the assembly procedure. However, they can
be any set of nodes located at one of the interfaces
of the laminate. The location of the w-nodes through
the thickness of the laminate does not affect the
results. At the element level, the resulting element has
18 nodes with two DOF (u and v) per node plus nine
additional nodes with one DOF (w) per node (Fig. 6).

® O u-vnodes

s wnodes

Fig. 6. Element noda! numbering. Nodes 1-18 have two
DOF (u, v) and nodes 19-27 one (w).

During the assembly process, further condensation
is required since the w-displacements of all the
elements that form a laminate are identical at a
particular position on the surface of the shell due to
the incompressibility condition. For example, the
nodes on the bottom surface in Fig. 4 were chosen to
be the global w-nodes for all the elements through the
thickness. Condensation can be efficiently accom-
plished by the usual assembly algorithms by assigning
the same global node number to all of the w-nodes
located on a particular normal to the shell. This
technique has the following advantages:

(a) It eliminates the need for complex bookkeeping
to identify individual sets of elements stacked
to form a laminate.

(b) It allows the front-width or band-width optim-
ization algorithm to take into account the
thickness direction as well as the surface direc-
tion in the search for the optimum element or
node assembly order.

(c) It eliminates the need for elements with large
number of DOF that otherwise result if the
assembly through the thickness is performed 4
priori [18, 21, 23]. This is particularly useful for
the implementation in commercial FEA codes.

4. NUMERICAL INTEGRATION AND
COMPUTATION OF STRESSES

Constitutive equations are used to obtain all six
components of stress at the reduced Gauss points.
The distribution of in-phase stresses a,, o, and 0,
is linear through the thickness. The distribution of
inter-laminar stresses o, and d,. is layer-wise con-
stant. Quadratic interlaminar stresses that satisfy the
shear boundary conditions at the top and bottom
surfaces of the shell can be obtained by postprocess-
ing [20, 21, 29). All components of stress obtained
at the integration points are extrapolated to the
nodes using the procedure described by Cook [30}
This is done to facilitate the graphic output using 3
commercial pre- and postprocessing package.

Selective reduced integration is used on the shear
related terms. The 3DLC element reduces to FSDT

- g————
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only one element is used through the thickness.
phercfore, the behavior of the nine-node Lagrangian
T element with selective reduced integration,
of shear locking, is also present in the proposed
ent when several 3DLC elements are stacked
rough the thickness. Furthermore, Barbero and
Reddy [31] successfully used selective reduced inte-
tion on their LCST element that has the same
pisematics as a stack of IDLC elements. As shown
by Averil [32], the nine-node Lagrangian element with
glective reduced integration does not exhibit locking
gsthe plate (or in this paper, layer) becomes very thin.
- This is @ remarkable advantage of 3DLC elements
over conventional 3-D continuum elements with full
iptegration.

The 3DLC element gives a very good representation
of all stress components except g, without the aspect
qtio limitations of conventional 3-D continuum el-
ements. When transverse stress o, is needed, either
conventional 3-D continuum elements can be used
(they are fully compatible with 3DLC elements) or
further postprocessing of the 3DLC results can be
done by using the third equilibrium equation

Gz, W ™2 0 o
e~

§. VALIDATION

The new 3DLC clement was incorporated into
1 standard finite element program. A few simple
examples are presented to validate the program. First,
s cantilever beam is modeled with two elements along
the beam and one clement through the thickness. The
resulting model is similar to FSDT and the numerical
results obtained with 3DLC and FSDT are identical.
The rotations in FSDT can be related to the in-plane
displacements (Fig. 6) of 3DLC as follows:

U9 — U Divo— Ui
px= ! ’ ﬂys [

v

where ¢ is the thickness of the element and
i=1,...,9. The effect of the E/G ratio is shown in
Fig. 7 where it can be scen that a large value of G

1.5
1.4 1

._1.3 4
1.2 9

~N
?L’ .
3 ‘ ,i’—a—".’"
UL ady . S=20
‘01 810 s 20 2
E/G
Fig. 7. Tip deflection of a cantilever isotropic beam under
tip load.

simulates the classical beam theory (CBT). The beam
results are obtained by setting the Poisson ratio equal
to zero. The geometry of the beam is such that

=1/h =20 and w/h = 10 where / is the length, A is
the thickness, and w is the width of the beam. For
a two-element mesh, the aspect ratio of the elements
is 14 and no locking is observed. The material
properties are E =30 x 10°psi and v =0.25. The
deflection at the loaded end is nondimensionalized
with the CBT solution.

Next, a quarter of an orthotropic rectangular plate
of side @ and thickness A is modeled with a 2 x 2 mesh
on the plane of the plate and two elements through
the thickness, with a total of eight elements (Fig. 4).
The aspect ratio of an element is r =0.707 a/h, that
for the case of thickness ratio a/h =80 gives r = 57
and no shear locking is observed. The plate is simply
supported and subjected to a concentrated load at its
center (Fig. 4). The eight-clement mesh has a total of
175 DOF before imposition of the boundary con-
ditions, 150 DOF correspond to the u and v displace-
ments at 25 locations x, y and 3 locations through the
thickness. The remaining 25 DOF correspond to the
transverse deflection w at the nine locations x, y on
the surface of the plate. The transverse deflection w
is constant through the thickness of the plate at each
particular location x, y as represented by a single
w-DOF at each node on the bottom surface (Fig. 4).
The results are nondimensionalized with the first-term
Rayleigh-Ritz approximation [2}. For homogeneous
material (not laminated) the 3DLC solution coincides
with the FSDT results.

The effect of the degree of orthotropicity E, /E, and
thickness ratio s = a/h is shown in Fig. 8 for constant
shear moduli G,; = E, /2 and Gy, = E, /5. Shear defor-
mations are correctly accounted for as shown in Fig. 9
for various values of the thickness ratio s = a/h and
aE, |E, = 30. The present formulation predicts larger
transverse deflections than CPT due to the effect of
shear deformation that is neglected in CPT. The
difference is more pronounced for small values of the
thickness ratio.

0
35
3.0 4

s 4
3
220
N
él 8
2404

$=10

0S YARAY SAAY YRR oS30

€./E,
Fig. 8. Effect of the orthotropicity ratio and thickness ratio
on the center deflection of an orthotropic, simple-supported,
square plate under center load.
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Fig. 9. Effect of the shear moduli (G,, = 0.4 G, and thick-
ness ratio on the center deflection of an orthotropic, simply-
supported, square plate under center load.

The third example has the same geometry and
boundary conditions of the previous example, but
three layers of elements are used to model a [0/90/0]
laminate loaded by a double sinusoidal load. The
exact solution to elasticity theory by Pagano [33]
for a/k =4 is compared to the distribution of the
in-plane displacement u(a/2, 0) in Fig. 10. The distri-

0.8
0.4 4
0.3 1
0.2 1
0.1 4

—0..'11'.6.... B AR At
inplone displacement u.10
Fig. 10. Distribution through the thickness of in-plane
displacement u(a/2,0) in a (0/90/0) square plate, simply-
supported under doubly sinusoidal load.
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inplane normal stress o,
Fig. 11. Distribution through the thickness of in-plane stress
o, in a [0;90/0] square plate, simply-supported under doubly
sinusoidal load.
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Fig. 12. Distribution through the thickness of in-plane stress

0, in a [0/90/0) square plate, simply-supported under doubly
sinusoidal load.

bution of the in-plane stresses at the nodes where
they are maximum are shown in Figs 11 and 12,
Interlaminar stresses obtained by postprocessing [21]
are shown in Figs 13 and 14. It can be seen that the
present formulation produces very good represen-
tation of the stresses through the thickness of highly
anisotropic laminated plates. The 3DLC element

0.8

0.3 4 N

0.1 4
z/h |
-0.14

<

—— 3-0 Bastic
=034 - == 30LC Demen

<

B XX X Tl Py oy
Shear stress o,
Fig. 13. Distribution through the thickness of interlaminar
stress o, in a [0/90/0] square plate, simply-supported under
doubly sinusoidal load.

w
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7
0.1 4
z/h |
-0.14 —— 3=0 Elosticil
. === 30LC Blemen
-0.3 4 v
Oh  on T o: 03 0.4

Shear stress o,
Fig. 14. Distribution through the thickness of interlaminaf
stress o, in a [0/90/0] square plate, simply-supported undef
doubly sinusoidal load.




nts accurately the laminated nature of com-

e shells. The results obtained from 3DLC are

tical to those obtained using LCST (obtained

gt special case of the generalized laminated plate

(21]). The versatility of the new element is

nstrated with a number of examples (Fig. 1) by
“maseshan [34}.

6. CONCLUSIONS

The continuum-based implementation of layer-
'-g,constanl shear theories for laminated composites
nted. As a result, a 3-D element is developed

gith the advantages of laminated plate formulations
the flexibility and compatibility of 3-D contin-
elements. The new element can be easily incor-

1ed into commercial FEA packages and extended

for higher-order layer-wise theories. The accuracy of
e proposed element is demonstrated by standard
aamples used to evaluate laminated composite plate

dements.
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