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Abstnd-In this paper, a new J.D element (3DLq is presented for ~e analysis ?f lami~ated co.m~~jteshells. The DeW element expedites the modeling process by presentina the deslgne~ WIth an. lntul~vephysical interpretation (or the differeDt compoaents of ~ J!1odel. The eleme~t IS c:ompatible WIthconventional 3-D continuum elements. It can represent arbitrarily curved shells With vanable number o(layers and.variable thickness. ,Each ~ment has a small Dumber 0(.~ 0.( freedom which fa~litatesits incorporation in commercial finite element codes:~ ratiO ~JtatiO~ and~ loc~lnl ofconventional 3-D continuum elements have been ebnunated by USIng the kinematic constraints oflayer-wise constant shear theories. The formulation and, simple validation problems are presented.
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1. INTIODUcnON

Modeling of laminated composites is usually per­
fonned using plate and sheD elements. These elements
are based, OD plate and sheD theorieswhicb are
simplifications of tbe three-dimensional (3-D) elas­
ticity. The basic simplifying assumptions invol~e
the approximation of the distribution of the dis­
placements through th~ thickn~s of tJ.1e lamjnat~ by
I knoYJb function. While only ktnemal1C assumptions
are needed to develop plate theories, additional
assumptions are required to deal with the curvature
dTects in the analysis of shells.

Most plate and sheD theories assume transverse
incompressibility and a state of plane stress through
the thickness of the laminate. Oassical plate theory
(CPT) assumes that no out-of-plane shear defor·
mation occurs through the thickness of the piate (1).
This is a very restrictive assumption for the analysis
of laminated composites since they usually have very
low out-of-plane shear stiffness. For this reason, CPT
has been virtually abandoned in favor of tirst-order
shear deformation theory (FSDT) for the analysis of
laminated composite shells. In this refined tbeory,
out-of-plane shear strains are assumed to be constant
through the thickness of the laminate (2] and, a shear
correction factor is used to compute the shear strain
energy accurately (3-5]. FSDT produces excellent
&lobal resuJts (e.g., deflections, fundamental vi­
bration frequency, etc.) but the accuracy of the
stress distributions does not improve significantly
over CPT. Post-processing techniques can be used
to obtain refined values of the out-of-plane shear

t Part of the material in this paper was presented at the
ASCE Engineering Mechanics Speciality Conference 1991,
Columbus, OH.

stress components through integration of 'the 3-D
equilibrium equations (6].

Higber-order theories have been proposed in an
attempt to improve the prediction of stresses. Third­
order theories are capable of representing a quadratic
shear distribution through the thickness of an homo­
geneous shell. They satisfy the traction-free boundary
conditions at the surface of the shell and there is no
need for shear correction factors. AU third-order
theories can be derived from a common set of
kinematical assumptions (7). Higher than third-order
theories have been proposed. Excellent reviews of
these theories are presented by Noor (6] and
Reddy (8-10]. All of these equivalent single-layer
tbeories share a common characteristic: the assumed
distribution of displacement through the thickness is
not only continuous but the denvatives with respect
to the thickness coordinate are also continuous. This
implies that the out-or.plane shear strains are con­
tinuous across the material interfaces and, as a result
of material property discontinuities, the out-of.plane
stress components are discontinuous, thus violating
equilibrium. The result is a limited representation of
out-of-plane stresses as observed in CPT and FSDT.

The equiJibriumequations can be used with an
the equivalent single-layer theories to post-process
the in-plane stresses and obtain a refinement of the
out-of-plane stresses, but this involves considerable
complexity in terms of the finite element fonnulation.
Post-processing with the equilibrium equations
requires computation of derivatives, thus requiring
high-order interpolation functions to be used in the
element (at least quadratic to obtain out-of-plane
shear stresses and cubic to obtain; transverse nonnal
stress). An alternative solution for low-order el­
ements is to use a finite difference scheme involving
several clustered elements, but this adds significant
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complexity to the program and requires an increase
in the mesh refinement, which is equivalent to the
use of clemen15 with higher-order interpolation
functions.

Another class of theories are based on local layer
approximations and they are called layer-wise 2-D
theories. These theories are based on a distribution of
displacements which is continuous through the thick­
ness of the shell but with derivatives with respect to
the thickness coordinate tbat are not necessarily
continuous at the interfaces between layers. All
these theories can be derived using a displacement
formulation from the generalization presented by
Reddy (II]. Perhaps the best compromise between
computational cost and accuracy is accomplished by
layer-wise constant shear theories (LCS1) .like those
proposed by Srinivas (12). Seide (13), Epstein ~I al.,
(14,15], Murakami [16], Hinrichsen [17], Owen [18],
Reddy (19,20] and Barbero (21, 22). The finite el­
ement formulation of these theories result in elements
with a large number of degrees of freedom (DOF)
per node (20, 21] which makes the element difficult
to incorporate in commercial finite element pack­
ages (23]. The physical interpretation of the OOF and
a large number of stress resultants is quite difficult. So
it is the imposition of boundary conditions (b.c.) and
loading, since the stress resultants and displacements
ann-at be immediately associated with the traditional
bending moments, in-plane tractions, curvatures, and
in-plane displacements of the conventiona) theories
(i.e., CPT, FSOn. The resulting elements are incom­
patible with other elements like 3-D solids which are
usually necessary in finite element analysis (FEA).
Existing finite element formulations (20, 23) arc re­
stricted to flat plates and the extension to curved
shells is not simple.

Despite all the developments in the area of plate
andsheJl theories, there is considerable interest on
performing more refined FEA using 3-D elements
based on continuum mechanics (24). A number of
important engineering problems (Fig. 1) are quite
difficult to model accurately with plate elements for
wbich the geometry of a solid plate is idealized by the
middle surface. In bridge-and-deck monolithic con­
struction, the intersection between thick plates and
beams (Fig. la) can only be approximately modeled
with plate elements due to the resulting overlap [25].
In folded-plate structures, intersection of plates at
an angle not only introduces overlap (Fig. lb) but
also requires an additional DOF to be added to the
plate element caned drilling rotation. The analysis of
tapered glued-laminated timber beams (Fig. tc) is a
problem of variable thickness plate. Since layers have
constant thickness, the number of layers is variable
and the thickness of the outer layers vanishes at
certain points. Therefore, the variation of thickness
cannot be simply introduced in the standard plate
formulation. Ply drop-offs are discontinued layers in
laminated composites (Fig. Id). This is another prob­
lem with variable number of layers with the added

complexity that the position of the middle surface
varies across the drop-off. Link elements are necess­
ary to model ply drop-offs, lap-joints, and a variety
of structures where the position of the middle surface
varies from point to point.

The main advantages of conventional 3-D contin­
uum elements are: accuracy, ease of FEA model
formulation (i.e., mesh, b.c., loads, etc.), and ease 0(
interpretation of results. The main disadvantages of
conventional 3-D continuum elements are the large
number of DOF involved and the aspect ratio tiJDi..
tation due to shear locking of funy integrated 3-D
continuum eJemen:.s when used for bending prob­
lems. In this paper. a new 3-D element is introduced
forthc analysis of laminated composite shells. The
formulation is based on tbe fact that certain assump­
tions made in the plate and shell theories previously
described arc quite valid for a broad class of prob­
lems of moderatel) thick laminates. By introducing
those assumptions in the formulation of a 3-D
element, it is possi~ to obtain a less expensive J.D
element while retaining its versatility and compatibil­
ity. with conventioDal 3·0 continuum elements. This
is quite important from the point of view of im­
plementation on commercial finite element p'ckages
and use for FEA in combination with other elements
already available QD those packages. The proposed
element is compatible with conventional 3-D contin­
uum elements, it has a smaJl number of DOF per
node, and it prodllOeS results as accurate as conven­
tiona·1 3-D continuum elements for a broad range of
problems. Mesh generation, imposition of b.c. and
loads, and interpretation of results are identical to
those used along ,.-.ith conventional 3-D continuum
elements.

Although based on kinematical assumptions first
introduced for 2-D equivalent single-layer elements.
the new element is in the group of )-0 continuum­
based elements according to the classification
introduced by [101-- The proposed element can be
considered the coctinuum-based implementation of
LCST by analogy to the work of(26] who developed
the continuum-based implementation of FSDT for
laminated compoS::es.

1. FOR~l:LAnON

The new )-D laminated composites element.
(3DLC) addresses the shortcomings of higher-order
plate theories and introduces additional advantages.
Selected kinematical constraints are introduced on a
continuum based Enite element to reduce the number
of DOF while retaining the desired accuracy for ~
class of problems.. namely moderately thick lanu­
nates. The formul~ :ion uses the degenerate shell finite
element concept [:7]. The element can be used to
model one or more layers of the laminated composite
shell with arbitran' curvature and orientation. If aU
the all layers thro~gh the thickness of the laminate
are modeled ~i6 a single element, the model
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Fig. 1. Special applications for the new 3-D element compared to the approximations introduced by
standard sheD elements.

is equivalent to FSDT and is the least expensive
and least accurate of alltbe possible models of
I laminated composite that can be obtained with
this element. If one element per layer is used, the
model is equivalent to LeST and in the most accurate
and expensive although less expensive than a model
constructed with conventional 3-D continuum
elements. Any number of elements through the thick­
ness can be used, each representing clusters of layers.
This approach leads to significant savings while
rttaining accuracy jf an intelligent choice of clusters
is made based on the stacking sequence and the

type of results desired (e.g., maximum interlaminar
stresses).

Unlike plate elements based on LCST formulation,
the position of the middle surface is irrelevant. There­
fore, variable number of layers and thicknesses can be
modeled (e.g., ply drop oIrs, lap joints, etc). The
modeling process is very similar to the modeling
using conventional 3-D continuum elements~ The
connectivity array is used to tie together aU the
elements through the thickness at a particular
location and to enforce the incompressibility of the
transverse nomals. The &lew 3DLC element with this
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(2) I'

The order of the interpolation functions H; along the
two directions on the surface of the shell can be
chosen independently of the order through tbe thick­
ness. Linear or quadratic interpolation of the dis­
placements (u, v) and the geometry (x, y; Fig. 3) are
commonly used. The order of approximation in the
thickness direction corresponds to different kinemat­
ical assumptions in GLPT (II). A linear variation is
used in this paper (Fig. 2), but higher-order approxi­
mation functions can be easily implemented. Tbe
linear variation through the thickness of the element
presents several advantages as follows:

(a) It reproduces FSOT kinematic assumptions
when a single element is used to model the
entire thickness of the laminate.

(b) It reproduces LCST kinematic constraints
when the element is used to model a single layer
of a laminate. It was demonstrated (21, 23] by
comparison with exact solutions that the layer·
wise linear distribution is the most efficient
one. Therefore, more refined approximations
through the thickness (e.g., quadratic, cubic
spline) are not usually necessary. Howe~.
they can be easily implemented.

(c) The computational cost is reduced with respee1
to three-dimensional quadratic finite elements
(20· or 27-node brick elements).

The order of the interpolation functions M; alon,
the two directions on the surface of the shell can
be chosen independently of the order through the
thickness. Linear or quadratic interpolation of the
displacement (w) and the geometry (z; Fig. 3) are
commonly used (Fig. 2). The order of approximati.on
in the thickness direction muSt be chosen aceord1n,
to the kinematic constraints used, reflecting different
assumptions in GLPT (II]. The incompressibility o!
normals to the middle surface is obtained in thiS

Fil. 3. Curvature as represented by the isoparametric ror­
mulatioD.
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Fig. 2. Different order of interpolation through the thickness
to appropriately account for the kinematic constraints.

where cS ={dl }T, {62 }T, ... , {6,,}T; {bl} ={ul , VI' ",ol}T;
n is the number of nodes, and [N] is the shape
function array

peculiar assembly process does not interfere with the
host program (e.g., ANSYS, ABAQUS) in the sense
that· front-width optimization routines can be used
in all three directions (in·plane and through the
thickness).

The quadratic element, for example, has 27 nodes.
Nodes 1-18 for the variables u and v. Nodes 19-21
for tbe tranverse deflection w only (Fig. t). The
variables u and 0 correspond to the in-plane displace­
ments at the interfaces between elements (layers). The
transverse deftection w is constant through the thick­
ness. Therefore, a single global node connects to aD
the local ..,.-nodes that lie on a line perpendicular to
the .middle surface. The quadratic element bas
4S DOF. The host program calls the element sub­
routine for each element in tum and assembles their
contribution. The host program optimize the calling
sequence to the elements to reduce the front width for
frontal solvers or the band width for band solvers.
The host program treats the 3DLC element as a
regular 45 DOF element. The 3DLC element is in
tum independent of the front with optimization
algorithm, solver, etc. These characteristics are stnk­
inalY different Crom LCST elements which due to the
large Dumber of DOF per node are difficult to
implement in commercial packages.

The nodal coordinates alone dictate the orientation
of-the3-BLCelement in space as in standard contin­
uum elements or degenerate shell elements. Since
quadratic interpolation functions are used in this
isoparametric element to model the surface geometry
(Fig. 2), doubly curved shells can be modeled (Fig. 3).
The element has only two DOF per node, in contrast
to continuum elements that have three, plus an
additional w-DOF at each location on the surface of
the shell.

The displacement {u} =(u, v, w) inside an element
is given as

(
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~~

iii.•..Assemblage of 3DLC elements to form a laminated
tUlJdure. Quarter plate, simple-supported, under concen­
_ted load modeled by a 2 x 2 mesh on the x-y surface and
, two clements through the thickness.

work expression [eqn (3») is approximated by the
finite element idealization as

{dISVfa (B)T{CJ} <Iv ={d15 Vfa (NjT{q} do

+ {d15 Vfc10 (N)T{P} <lA. (8)

Since the nodal virtual displacements are arbitrary,
the equilibrium equations are given by

fa (Bf{CJ} dv = fa (N)T{q} <Iv + fc10 (N]T{p} dA. (9)

where the strain matrix contains the cartesian deriva­
tives of (N)

The strain tensor is written in contracted form in
terms or nodal displacements {cS} as

(12){a} = [D]{£}.

CJI Qu Q12 en C1C C» QI6 (I

tl1 Qu Qn Cn C24 Cll Q16 (2

tI) Cu Cn Cn C~ C), C)6 £)

=
tic elc C~ C}C kC44 kC.s C46 (C

CJs CIS C1S c)S kCcs kess C" (,

CJ, Ql6 Q» C16 C46 CS6 Q66 ~

where Cij are the components of the 3-D stifTnrss
matrix (28] and Q, are the components of the reduced
stiffness matrix (28). In contracted notation

The shear correction factor k is included as re­
quired by FSDT. The need to use a shear correction
factor reduces as the number of elements through the
thickness of the laminate increases. This can be easily
explained for the case of an isotropic platt ~s follows.
A assemblage of 3DLC elements through 'the thick­
ness represents the parabolic distribution of shear
strain by a Jayer·wise constant approximation

(It)

Due to the compact support property of the inter­
polation functions Hi and M; used, an assemblage of
elements governed by the equilibrium as stated by
eqn (10) represents the equilibrium of the entire body
as stated by eqn (9).

The constitutive equations for an orthotropic ma­
terial arbitrarily oriented with respect to the local
coordinates is similar to the equations for a mono­
clinic material [28]. These equations have to be
modified to introduce the plane stress assumption

When the body volume n is replaced by the element
volume 0' and the body surface 00 is replaced by
the element surface 00', the element equilibrium
equations are obtained

(7)

(6)...

(5)

(4)

{£} = [B]{e5},

{du} = [N) {d~ }.

{til} = [B]{d~}.

{

£~ } [N 0 0 .. ']{~ }}1.% I

f., = 0 NI ., 0 : .

7; N,-¥ HI.. 0 {15.}

The first variation of the strain tensor is

The left-band side of eqn (3) represents the internal
work. 1be external work is due to {du} acting on the
surface tractions {P} = {P.r, P,t P,} and the body
forces per unit volume {q} = {q.u q" q:}T with n the
volume and on the boundary of the body. The virtual

The virtual displacement {du} are expressed in terms
of the nodal virtual displacements {db} as

i {d£ V{tr} do = fa {duV{q} dv + fc10 {du V{p} cU.

. (3)

pqer by using a constant interpolation through
tlte thickness (Fig. 2). Other options can be easily
itDp1emented but they increase considerably the com­
putational cost. In this paper, the resulting element
satisfies the incompre S sibility of. normals to the
JDiddle surface of FSDT and other theories. Further­
JDOre. the computational cost is significantly reduced
since all nodes through the thickness have the same

" uansverse deftection which can be represented as a
single degree of freedom for each location on the
surface of the shell (Fig. 4).

The equilibrium of the shell occupying a volume 0
is represented by the virtual work expression

L. ; ,<.:
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3. ASSE.\tBLY PROCEDURE AND CONDENSATION OF
REDt.:NDANT OOF

Fig. S. Layer-wise constant representation or the shear
strain through the thickness of an isotropic plate.
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4. NUMERICAL INTEGRATION AND
COMPl"ATION OF STRESSES

Constitutive equations are used to obtain all six
components of stress at the reduced Gauss points.
The distribution of in-phase stresses (Jx' (J .. and f1S1

is linear through the thickness. The distribution of
inter-laminar stresses (J I: and (Jr: is layer-wise con­
stant. Quadratic interJaminar stresses that satisfy the
shear boundary conditions at the top and bottom
surfaces of the she)) can be obtained by postprocess­
ing (20, 21 t 29]. AU components of stress obtained
at the integration points are extrapolated to the
nodes using the procedure described by Cook [30].
This is done to facilitate the graphic output using a
commercial pre- and postprocessing package.

Selective reduced integration is used on the shear­
related terms. The 3DLC element reduces to FSDT

• 0 u-v nodes
• w nodes

Fig. 6. Element nodal numbering. Nodes 1-18 have two
DOF (u, v) and nodes 19-27 one (M').

During the assembly process, further condensation
is required since the w-displacements of all the
elements that form a laminate are identical at a
particular position on the surface of the shell due to
the incompressibility condition. For example, tbe
nodes on the bottom surface in Fig. 4 were chosen to
be the global w-nodes for aU the elements through the
thickness. Condensation can be efficiently accom­
plished by the usual assembly algorithms by assignina
the same global node number to all of the w-nodes
located on a particular normal to the shell. This
technique has the following advantages:

(a) It eliminates the need for complex bookkeeping
to identify individual sets of elements stacked
to form a laminate.

(b) It allows the front-\\idth or band-width optim­
ization algorithm to take into account the
thickness direction as well as the surface direc­
tion in the search for the optimum element or
node assembly order.

(c) It eliminates the need for elements with large
number of DOF that otherwise result if the
assembly through the thickness is perfonned II

priori [18, 21, 23]. This is particularly useful for
the implementation in commercial FEA codes.

(14)

30LC

30LC

[K'J{cS} = tfl.

or in contracted form

The integration of the element stiffness matrix is
performed as for a standard 18-node element with
three DOF per node (u, t\ w) but with the appropriate
shape functions H; and M; described previously. Since
'"~ is constant through the thickness. the contribution
of ". to the shear stiffness terms must be integrated
over nine nodes only (top or bottom). For the same
reason, the transverse strain i: vanishes. Since the
transverse deflection w is constant through the thick­
ness of the element, the DOF of two nodes aligned
through the thickness can be reduced to a single
DOF. This is done at the element level by rearranging
the element stiffness matrix so that the DOF corre­
sponding to the displacements u and v on the surface
of the shell for aU nodes (e.g., 18 nodes) are con­
sidered first. The remaining OOF corresponding to
M-'-dispJacements are assigned to a new set of nodes
(e.g. nine nodes) called w-nodes in this work. The
M-' -nodes are independent of the original nodes to
facilitate the assembly procedure. However. they can
be any set of nodes located at one of the interfaces
of the laminate. The location of the w-nodes through
the thickness of the laminate does not affect the
results. At the element level, the resulting element has
18 nodes with two DOF (u and t') per node plus nine
additional nodes with one DOF (w) per node (Fig. 6).

f,.. (Bt(D)[B)do{lS} = fa. (N)T{q} do

+ f<'O' (NJT{ P} dA (13)

(Fig. S). As the number of layers increases the error
reduces and no shear correction factor is needed.

If·more than one material layer are encountered in
a single element, the numerical integration of the
element stiffness matrix is performed layer by layer.
Analytical integration of the constitutive equations,
like in classical lamination theory, is not used. There­
Core, material nonlinearities can be easily incorpor­
ated in the analysis.

The element stiffness matrix is obtained by using
the kinematic equations (7) and the constitutive
equations (12) into the equilibrium equations (JO)
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,bd' only one element is used through the thickness.
fberefore. the behavior of the nine-node Lagrangian
fSDT element with selective reduced integration,
(ret of shear locking, is also present in the proposed
ddJ1ent when severa) 3DLC elements are stacked
&brough the thickness. Furthermore, Barbero and
Itcddy [31} successfully used selective reduced inte­
"oon on their LeST element that has the same
kinematics as a stack of 3DLC elements. As shown
bY Averit (32], the nine-node Lagrangian element with
seJeCtive reduced integration does not exhibit locking
as the plate (or in this paper, layer) becomes very thin.

/1bis is a remarkable advantage of 3DLC elements
over conventional 3-D continuum elements with full
,integration.

1be 3DLCelement gives a very good representation
oraD stress components except (1: without the aspect
ratio limitations of conventional 3·0 continuum el­
ements. When transverse stress (1: is needed, either
conventional 3-D continuum elements can be used
(they are fully compatible with 3DLC elements) or
further postprocessing of the 3DLC results can be
done by using the third equilibrium equation

o~i: ~ ~~ + O~cc +P =- 0
~ q'-\ ?t1; t~

5. ~AuDAnoN

"Fhe~ne-wlDLC element was incorporated into
I standard finite element program. A few simple
esamples are presented to validate the program. First,
I cantilever beam is modeled with two elements along
the beam and one element through the thickness. The
resulting model is similar to FSDT and the numerical
results obtained with 3DLC and FSDT are identical.
The rotations in FSDT can be related to the in-plane
displacements (Fig. 6) of 3DLC as follows:

where I is the thickness of the element and
i =1, ... ,9. The effect of the E/G ratio is shown in
Fig. 7 where ~t can be seen that a large value of G

1~ ----------..,

1.4

Fig. 7. Tip deflection of a cantilever isotropic beam under
tip load.

simulates the classical beam theory (Can. The beam
results are obtained by setting the Poisson ratio equal
to UfO. 1De geometry of the beam is such that
s = II" =20 and .'1" = 10 where I is tbe length, h is
the thickness, and w is the width of tbe beam. For
a two-element mesh, the aspect ratio of the elements
is 14 and no locking is observed. The material
properties are E = 30 x lrf psi and v =0.25. The
deflection at the loaded end is nondimensionalized
with the eBT solution.

Next, a quarter of an orthotropic rectangular plate
ofside aand thickness It is modeled with a 2 x 2 mesh
on the plane of the plate and two elements through
the thickness, with a total of eight elements (Fig. 4).
The aspect ratio of an element is r =0.707 a/h, that
for the case of thickness ratio alh = 80 gives r = 57
and no shear locking is observed. The plate is simply
supported and subjected to a concentrated load at its
center (Fig. 4). The eight-element mesh bas a total of
175 DOF before imposition of tbe boundary con­
ditions. 1SO DOF correspond to the II and v displace­
ments at 25 locations x, y and 3 locations through the
thickness. The remaining 25 DOF correspond to the
transverse deflection WI at the nine locations x, y on
the surface of the plate. The transverse deflection w
is constant through the thickness of the plate at eacb
particular location ~ y as represented by a single
w-DOF at each node on the bottom surface (Fig. 4).
The reSults are nondimensionalized With the first-term
Rayleigh-Ritz approximation [2]. For homogeneous
material (not laminated) tbe 3DLC solution coincides
with the FSDT results.

1De effect of the degree oforthotropicity EllE2 and
thickness ratio S = Q lit is shown in Fig. 8 for constant
shear moduli GI2 =~/2 and Gn =£'/5. Shear defor­
mations are correctly accounted for as shown in Fig. 9
for various values of the thickness ratio $ = alh and
aE1IE2 = 30. The present formulation predicts larger
transverse def1ections than CPT due to the effect of
shear defonnation that is neglected in CPT. The
difference is more pronounced for small values of the
thickness ratio.

4.0...----------...,
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Fil. 8. Effect of the orthotropidty ratio and thickness ratio
on the center deftection oraD orthotropic. simple·support~

square plate under center load.
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The third example has the same geometry and
boundary conditions of the previousexamp1e, but
three layers of elements are used to model a [0/90/0]
laminate loaded by a double sinusoidal load. The
exact solution to elasticity theory by Pagano [33]
for alA = 4 is compared to the distribution of the
in-plane displacement u(a /2, 0) in Fig_ 10. The distri-

bution of the in-plane stresses at the nodes where
they are maximum are shown in Figs II and 12.
Interlaminar stresses obtained by postprocessing (21)
are shown in Figs 13 and 14. It can be seen that the
present formulation produces very good represen­
tation or the stresses through the thickness of highly
anisotropic laminated plates. The 3DLC element
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o.s .....------------.

-0·8. o. 5 o. 0 O. 5 O. 0 O. 5
Shear stress "'"

Fi,. 13. Distribution through the thickness of interlaminar
stress t1" in I (0/90/0) square plate. simply-supported under

doubly sinusoidal load.
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Fig. 10. Distribution through the thickness or in-plane
displacement 11(0/2, 0) in a (0/90/0] square plate, simply­

supported under doubly sinusoidal load.
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Fig. II. Distribution through the thickness of in-plane stress
as in a [0:90/01 square plate9 simply-supported under doubly

sinusoidal load.
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Fig. 14. Distribution through the thickness of interlaminar
stress f1u in a (0/90/0] square plate, simply-supported under

doubly sinusoidal load.
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~nts accurately the laminated nature of com­

'le shells. The results obtained from 3DLC are

. ::ncal to those obtained using LCST (obtained

, • special case of the generalized laminated plate

~ry (21)). The \'ersatility of the new element is

~nstrated with a number of exampJes (Fig. 1) by

JIIIlaseshan (34).

6. CONCLUSIONS

"(be continuum-based implementation of layer­

fist constant shear theories for laminated composites

• presented. As a result, a 3-D element is developed

fith the advantages of laminated plate formulations

.... the ftexibitity and compatibility of 3-0 contin­

.... elements. 1be new element can be easily iDear­

~ted into commercial FEA packages and extended

~ bigher-order layer-wise theories. The accuracy of

aile proposed element is demonstrated by standard

ClJDlples used to evaluate laminated composite plate

cJenlents.
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