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AhItnd-A plate beDding element based on the aeneralized lamiDate plate theory (GLPT) is usedto evaluate new composite laminates known as the ARALL-l· Laminates. The plate finite elementaccounts for the traDsverse shear deformation and layer-wile descriptioD of the displacements. Thefinite element is used to evaluate the stresses. vibration and buckling characteristics of 2/t and 3(2ARALL Laminates.

1. BACKGROUND

Laminated composite plates are often modelled using the classical laminate plate theory(CLPT) or the first-order shear deformation plate theory (FSDT). In both cases the laminateis treated as a single-layer plate with equivalent stift'nesses, and the displacements areassumed to vary through the thickness according to a single expression (see Reddy, 1984,1989a,b), not allowing for possible discontinuities in strains at an interface of dissimilarmaterial layers. A laminate made of flexible layers next to stiff layers will experience suchdiscontinuous strains.
Recently, Reddy (1987) presented a laminate plate theory that allows piece-wise rep­resentation of displacements through individual lamina of a laminate. In the generalizedlaminate plate theory (GLPT), the equations of three-dimensional elasticity are reduced todifferential equations in terms ofunknown functions in two dimensions, by assuming layer­wise approximation of the displacements through the thickness. Exact analytical solutionsof the theory were developed by Barbero (1989) and Barbero el ale (1990) to evaluate theaccuracy of the theory compared to the 3-D elasticity theory. The results indicated that thegeneralized laminate plate theory allows accurate determination of interlaminar stresses.
The present paper deals with the application of Reddy's generalized plate theory toARALL Laminates. ARALL Laminates are hybrid laminates in which layers of aramid­epoxy are placed between thin, high-strength aluminium alloy layers (see Bucci et al., 1988).They are produced as sheet materials in a normal autoclave bonding cycle. ARALLLaminates were primarily developed as materials with good damage tolerance properties.They combine low density and high strength properties, and therefore are very attractivefor aerospace applications. The designations 2/1 and 3;2 correspond to (AllAr/AI) and(Al/Ar/AI/Ar/Al), respectively (see Fig. 1). Each aramid layer is modelled as three layers.The middle layer represents the fiber-rich part of the aramid layer, and the layers on eitherside represent resin-rich parts that bond the aramid fiber to the alumini.l1ffi layers. In thisstudy, aluminium layers are taken to be 0.03048 mm thick, fiber-rich layers 0.0144 mmthick and resin-rich layers 0.0072 nun thick. Thus, ARALL 2/1 is modelled as a six-layerlaminate (AI/resin/Ar),. ARALL 3/2 is modelled using 10 layers (Al/resin/Ar/resinjAI)se
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SChem8tlc of ARALL.1

SchematIc of Teet,.....

Fig. 1. The ARALL 2/1 aDd 3/2 Laminates.

In the interest of brevity, only the main equations of the theory are reviewed and the
major steps of the formulation are presented. The analysis is performed using the plate
bending element developed by Reddy et ale (1989). Application of the element to ARALL
Laminates is the main focus of this study.

2. A REVIEW OF GLPT

Consider a laminated plate composed of N orthotropic lamina, each being oriented
arbitrarily with respect to the laminate (x, y) coordinates, which are taken to be in the
midplane of the laminate. The displacements (U., U2, 113) at a point (x, y, z) in the laminate
are assumed to be of the form .
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UI(X,y,z) =u(x,y)+U(x,y,z)

U2(X, y, z) =vex, y) + vex, y, z)

U3(X, y, z) = w(x, y), (1)

where (u, v, M') are the displacement ofa point (x, y, 0) on the reference plane of the laminate,
and U and V are functions which vanish on the reference plane:

Vex, y, 0) = V(x,)', 0) = o. (2)

In order to reduce the three-dimensional theory to a two-dimensional one, we assume
that U and V are approximated as

"Vex, )', z) = L Vj(x, y)tfJi (z)
j-I

"vex, )', z) = L Vj(x, y)</>i (Z),
JE I

·r

(3)

where Vj and Vj are undetermined coefficients, and cJ>i are any continuous functions that



satisfy the condition
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(4)

Note that the transverse deflection here is assumed to be independent of the thicknesscoordinate, an assumption often used in most plate theories. This amounts to the neglectof the transverse nonnal stress.
The approximation in eqn (3) can also be viewed as the global semi-discrete finite­element approximationS of U and V through thickness. In that case til denote the globalinterpolation functions, and ..~ and Jj are the global nodal values of U and V (and possiblytheir derivatives) at the nodes through the thickness of the laminate. For example, a finite­element approximation based on the Lagrangian interpolation through thickness can beobtained fromcqn (3) by setting [if the midplane does not coincide with an interface, it isused as an interface to satisfy eqn (2)], n = pN+ 1, where

N =number of layers through thickness;
P =degree of the global interpolation polynomials, 41(z) ; and

UJt Jj =global nodal values of U and V.

For example, if a piece-wise linear displacement distribution is chosen, the correspondingfunctions t/JJ(z) are

t/I(z) =

Z-Zj_1 •

Zj-Zj_1 '

Zj+l-z .

Zj+l-Zj'

. .where ZJ denote the global thickness coordinate ofthe node between the jth and the U+ 1)thlayers.
The equilibrium equations of the theory can be derived using the principle of virtualdisplacements (see Reddy, 1984),

(Sa)

where

. . 1"/2 dt/l(z)(Q~,Q~) = (a.u,a..-:)-dzdz,
-Jal2

·r

(Sb)



(tin tI" tlqt tlu' tip) are the stresses and q is the distributed transverse load. The virtual.
work statement in eqn (Sa) gives (211+3) differential equations in (211+3) variables
(u, v, w, ~, Jj). The form of the geometric and force boundary conditions is given below:

S88 J. L TEPLY ~I III.

l··'·'·:·:·i';:'.>";.' ..

I
I
!
t

where the strains {e} and {et}, and the matrices [A), [B1] and [D'" are Jiven in Rectdy
(1987); also see the Appendix.

where (lin 11;,) denote the direction cosines ofa unit normal to the boundary of the midplane
n. .~ ....,.. ~...'''..'

The·constitutivc equations of the laminate are liven by

3. FlNITE·ELE~MENT FORMULATION

The displacements (u, v, 'K-., Uj' VJ) are expressed, over each element, as a linear com­
bination of the 2-D shape functions ("'I) and the nodal values (U,'''it Wi' Uj, v.;> as follows:

(6)

(7a)

(7b)

,- .:_-

Force (Natural)

Nz1lz +NzII,
NxY'z+N,n,
Qz1Iz+Q,n,
N~lI:x+N~

.N~"Jt+Nt",

•
{N} == [A]{e} + L [Bil{ei}

i-I

•
{Ni} == (BJ.]{e} + L [D;t]{e.},.

i-I

Geometric (Essential)

u
v
W

VJ
Jj

(

III

(u, v, W, UJ' J.j) == L (Ui, Vi' Wi' UJ, VJ)t/!i
i-I

(8)

where m is the number of nodes per element.
Using eqn (8), the strains can be expressed in the form

{e} == [H] {u}, {ell = [HJ]{UJ} (8a)

where ! .
f

{u} - {:}. {Vi} - {0}' (8b)

The matrices [H] and [Hi] are given in the Appendix.
Using eqns (8) in the virtual work statement, we obtain the finite element model (see

Reddy et al., 1989)

[K]{ U} = {F}. (9)

·f

4. INTERLAMINAR STRESS CALCULATJON

When a piece-wise linear interpolation through the thickness is used, GLPT provides
an excellent representation of the displacements.. and an accurate prediction of the in-
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plane stresses (tI,u, (117' tlq ) as demonstrated by Barbero et al. (1990). Interlaminar stresses
(tlZZJ t11ft tI:J are easily computed from the equilibrium equations of 3-D-elasticity whenexact analytical solutions are available. An approximate technique is used in this study tointegrate the equilibrium equations, usiDS the in-plane stress information provided by thefinite element solution. The scheme as presented by Cbaudhuri (1987), is extended here toquadrilateral isoparametric elements. It approximates the shear stress distribution througheach layer with a quadratic function, thus requiring 3N equations for each of the shearstresses (aUt a,,), where N is the number of layers. Here, N equations are used to satisfythe (N) average shear stresses on each layer. Two equations are used to impose vanishingshear stresses at the surfaces of the plate. Then, (N - 1) equations are employed to satisfycontinuity of the shear stresses at the interfaces between layers. FinallY,the remaining
(N-1) equations are used to compute the jump in aU.,Z (or ap.z) at each interface.

The average·shear stresses on each layer are computed from the constitutive equationsand the displacement field obtained in the finite-element analysis.
In this work, the fonowing eqmlibrium equations /

(10)

are used to compute au.: and ayl.: directly from the finite-element approximation. The in­plane components of the stresses and their in-plane derivatives (O'.u~; antY; 0'xy.x and.a%1")are computed from the constitutive equations for each layer, i.e.

ou + t oU} 4>}
OXj_l ax
ov ~a~ .J,.j-+ ~ -'"ox j_1 ax
au av ~ (a~. a~) A.J-+-+ ~ -+- 'I'ay ax j_ 1 oy ax

(11)

The procedure thus requires computation of second derivatives of the displacements
(u, 0, ~, ~), which can 1;)e obtained from the finite element approximation (see Reddy,1986, Problem 7-2-11, p. 435).

s. DISCUSSION OF THE RESULTS

Bending analysis
The bending behavior of ARALL Laminates under uniform transverse loading isstudied. A simply-supported square laminate is considered. In order to assess the effect ofthe thickness ratio on the response, the following non-dimensionalizations are used :

_ lOOEAj
w = qhs4 W, ( _ _) 100EAI ( )u,v = qhsJ u,v (12)

·rwhere q is the intensity of the uniform transverse load. ARALL 2/1 is modelled as a six-layer laminate (Al/resin/aramid)s. ARALL 3/2 is modelled using 10 layers representing thedifferent materials in the same form as for ARALL 2/1.
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Fig. 2. Through-the-thickness distribution of the transverse shear stress t/a in simply-supported
ARALL 2/1 and ARALL 3{2 plates UDder uniform load.

The material properties used are,

aluminium :
E = 10.4 X 10' psi, v = 0.333;

(

resin-rich aramid :
£. =2.196 x 106ps~ £2 =4.8219 x IO'psi

G I2 == 1.S717x 10'psi, G23 := 1.SS76 x lO'psi

"12 =0.3749, "23 =0.5479;

fi-ber-rieh aramid:
£1 = 1.2549 X 10' psi, £2 = 7.6525 X 10' psi

G I2 =2.8955 x 105 psi, G23 = 2.6462 x 105 psi

"12 =0.3458, "'23 =0.4459. (13)

Due to symmetry, only a quarter (upper right quadrant) of the plate is modelled using a
4 x 4 mesh of eight-node isoparametric elements.

Both in-plane and interlaminar shear stresses can be computed using either the consti­
tutive equations or equilibrium equations. In-plane stresses are linear in each layer and they
approximate closely· the exact solution. Interlaminar shear stresses are constant in each
layer, their value being approximately the average of the exact solution. It is also possible
to obtain the actual distribution of interlaminar shear stresses by a post-processing algo­
rithm (see Section 4). if the solution is obtained using quadratic elements.

For all cases the stresses are presented as a function of the non-dimensionalthickness
zlh. The results shown correspond to values at the Gauss points closest to the points where
the solution has a maximum, i.e. (Ju(ex, ex, z), (J"(ex, ex, z), (1xy(P, P, z), (1xz(ft, cx, z), (Jy:(ex, fJ, z),
with (X = 0.526 Q and fJ = O.973a. The simply-supported boundary conditions used are :

w(O, y) = w(a, t) = v(O, y) = v(a, y) = Jtj(O, y) = Jtj(a, y) = 0,

w(x,O) = w(x, b) = u(x,O) = u(x, b) = Uj(x,O) = UJ{x, b) = O. (14)

The symmetry along the centerline implies that,

u(a/2, y) = Uj (a/2, y) = 0,

v(x, b/2) = Vj (s, b/2) = 0
·r

(IS)

where j = 1, ... ,N, and N is the number of layers in the laminate.
From the distribution of interlaminar, transverse shear stresses (Figs 2 and 3), we can

observe that the maximum occurs in the aluminium layers, either at the outer layers for
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Fig. 3. Through-the-thickness distribution or the transverse shear stress (In in simply-supportedARALL 2/1 and ARALL 3/2 plates under uniform load. .
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Pi•. 4. Through-the-thickness distribution of the in-plane normal stress tIZ1l in simply-supportedARALL 2/1 and ARALL 3/2 plates under uniform load.
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Pia. S. Through-the-thickness distribution of the in-plane normal stress (I" in simply-supportedARALL 2/1 and ARALL 3/2 plates under uniform load.

ARALL 2/1 or at the center layer for ARALL 3/2. This may be an advantageous. factorbecause the matrix material has low strength in shear. The first-order shear deformationtheory (FSDT) predicts even lower shear stresses at the aramid layers. For hybrid com­posites like ARALL Laminates, the shear strain distribution is not a constant, contrary tothe assumption made in FSDT. Therefore, large shear strains do occur in the more compliantaramid layers thus relaxing the shear stresses through the laminate. However, shear stressesdo not reach high values in the compliant layers due to the low shear moduli of the aramid.As a result, an optimization with respect to "shear failure can be accomplish<;d by the useof compliant layers.
'I

Plots of the in-plane stresses, (1xx and (1yy along the fiber direction and perpendicularto the fibers, are shown in Figs 4 and 5, where it can be observed that the resin-rich layers
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Fig. 6. Comparison between t/%Z obtained from constitutive equations and equilibrium equations
using quadratic elements.

are ·subject to very low stresses and that the in-plane stress is carried by the aluminiumlayers for both kind of laminates. The in-plane stresses reported here do not include theresidual. stresses due to· pre-straining of ARALL-l Laminates. The mechanics of the pre­straining of ARALL-} Laminates are described by Teply et ale (1987). Thus, the actualstresses· will be the sum of the residual stresses and stresses shown in Figs 4-5.
The transverse shear stress tiD computed from equilibrium equations (continuouscurves) and those computed from constitutive equations (discontinuous lines) are shownin Fig. 6. Quadratic elements are used to obtain both stress fields. Ofcourse, to obtain thetransverse shear stresses from th~ constitutive equations. one can even use linear finiteelements. Figure 7 contains a comparison of aor: computed from the constitutive-eq-uatio-nsusing-linear firiite elements, with that obtained using equilibrium equations and quadraticelements. It is observed that the discontinuous stress fields, computed from the constitutiveequations, agree closely with the average of those computed from equilibrium.
The maximum transverse deflections versus side-to-thickness ratio are shown in Fig.8. It is clear that the deflections obtained by the FSDT are lower than those predicted bythe GLPT. We can also see from Fig. 9 that there is appreciable difference in the maximumin-plane stresses obtained using the FSDT and GLPT, when the aspect ratio is a/h = 4. Ingeneral, in the GLPT models, the composite laminates are relatively more flexible than byFSDT. The GLPT allows relative flexibility between stiff and less stitrlayers.
A comparison of the response of ARALL Laminates and aluminium is presented inFigs 10-14. The distribution of in-plane stresses (J.u, (Jy,' and azy is shown in Figs 10-12. Itis evident that the stress distributions in the aluminium layers are not much affected by thepresence of the.aramid layers. The· aramid layers are subjected to low stress levels, whichguarantees an extended life for the aramid material. Note that the residual stresses shouldbe- added to the axx and a.V)" stresses (see Teply et al., 1987). The interlaminar shear stresses
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Fig. 8. Transverse deflections \IS side-to-thickness ratio or simply-supported ARALL Laminates
under uniform load.
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Fig. 9. CoIJ1~n of the thro-'lp.thc-thicknessdistributiOD of the iD"!plane normal stress tIu in a
simply-supponed ARALL 2/1 plate under uniform load.
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Fil. 10. Comparison of the througb-the-thickncss distribution of the in-plane normal stress t1u in

simply-supported ARALL Laminates and aluminium plates.

tlu and tlyz are reduced by the presence of the more compliant aramid layers, as shown in
Figs 13 and 14 for both the 2/1 and 3/2 lamination sequences.

Vibration results
The vibration of ARALL Laminates and aluminium plates was investigated using

GLPT and CPT. The effects of rotary and in-plane inertia on the vibration of simply­
supported rectangular plates were investigated. Numerical results are presented for various
values of the aspect ratio alb and thickness ratio a/h. It can be seen from Table 1 that CPT
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.-....,... gives closer results for isotropic materials, while larger differences between CPT and GLPT
can be observed for ARALL Laminates. This is because the hybrid nature of ARALL
Laminates is correctly represented in GLPT, while the different materials are smeared out
in CPT.

Since ARALLLaminates are symmetric, the inclusion of in-plane inertia does not
affect the transverse natural frequency. This is because in-plane and transverse deflections
are uncoupled ror symmetric laminates. The results shown in Tables 1, 2 and 3 can be
explained as follows. The frequency OJ is related to the stiffness K and mass M by the

Table l. Fundamental frequency c:ii - f»~~ for alb - I.

Rotary Inplane ARALL ARALL
alII Theory inertia inertia AI 2/1. 3/2

yes yes 5.84530 5.06894 5.10272

10 GLPT DO yes S.88853 5.08869 5.12564
yes no 5.84530 5.06894 5.10272
DO DO 5.88530 5.08869 5.12564

CPT DO DO 6.04287 6.32473 6.07226

yes yes 5.36859 3.70444 3.78094

5 GLFr DO yes 5.48859 3.12641 3.80310
yes DO 5.36859 3.70444 3.78094
DO DO 5.48859 3.72641 3.80310

CPT DO no 6~04287 6.32473 6.07226

yes yes 5.99115 5.90821 5.77432

20 GLPT DO yes 6.()O313 5.91849 5.78481
yes DO 5.99115 5.90821 5.77432
DO DO 6.00313 5.91849 5.78481

CPT no no 6.04287 6.32473 6.07226

yes yes 6.03448 6.25107 6.02150

SO GLPT DO yes 6.03646 6.25324 6.02356
yes DO 6.03448 6.25107 6.02150
no DO 6.03646 6.25324 6.02356

CPT no DO 6.04287 6.32473 6.07226

yes yes 6.04077 6.30603 6.05974

100 GLPT no yes 6.04126 6.30660 .r 6.06027
yes DO 6.04077 6.30603 6.05974
DO no 6.04126 6.30660 6.06027

CPT no no 6.04287 6.32473 6.07226

-_.- -------- -------
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Gb~Table 2. fundamental frequency Q) - Q)-r £41 for alb - 2.

Rotary ARALL ARALLQIIt Theory iDertia AI 2/1 3/2

GLPT yes 5.89692 3.58746 3.49686
S GLPT DO 6.10834 3.62144 3.51801

CPT DO 7.55369 7.90325 7.49241
GLPT yes 6.98593 5.22132 5.3042310 GLPT DO 1.09747 5.24796 5.33507
CPT DO 7.55369 7.90325 7.49241

GLPT yes 7.39581 6.78216 6.6793320 GLPT DO 7.43135 6.80344 6.70291
CPT no 7.55369 7.90325 7.49241

GLPT yes 7.52759 1.67882 7.34018SO GLPT DO 7.53371 7.68505 7.34617
CPT DO 7.55369 7.90325 7.49241

GLPr yes 7.54714 7.34499 7.45338100 GLPT DO 7.54869 7.84672 7.45499
CPT DO 7.55369 7.90325 7.49241

relation,

OJ-~.

The fundamental frequency of an ARALL Laminate depends on the transverse stiffness(i.e. stiffness coefficients D2.J, which is smaller tb~nthe axial stiffness (i.e. stiffnesseoeftieientD. J). -Because of the specific construction of ARALL Laminates, it can be established thatthe following stiffness and mass inequalities hold:

where subscripts U At", 6621" and "32" refer to aluminium, 2/1 Laminates and 3/2 Laminates,respectively. The above inequalities imply the following two cases of inequalities between2/1 and 3j2 ARALL Laminates:

Caseone: K21 M 32 > K32M 21

CasetwO:K2IM 32 < K32M 21 •

Table 3. Fundamental frequency cil ... CI)~~ for alb ... S.

Rotary ARALL ARALLalh Theory inertia Al 2/1 3/2

GLPT yes 7.8585 4.9407 4.14865 GLPT no 7.8525 2.8837 4.2060
CPT no 15.7120 16.4380 IS.S4S4

GlP! yes 11.6442 6.9430 6.619810 GLPT no 15.0222 7.0256 6.6620
CPT no 15.7120 16.4380 lS.S4S4

GLPT yes 14.2346 10.1474 10.294720 GLPT no 14.5105 10.2031 10.3555
CPT no 15.7120 16.4380 15.5353

GlPT yes 15.4370 14.4124 14.0980SO GLPT no 15.4994 14.4533 14.1423
CPT DO 15.7120 16.4380 15.S4S4 ·f

GlP! yes 15.6415 15.8379 15.1381100 GLPT DO 15.6580 15.8541 15.1538
CPT no 15.71201 16.4380 lS.S454

\"'~~~i{"~_~'l~~>~t«\

t
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Table 4. Bucltlinlload 11- :::'J perpendicular to the fiber direction of ARALL 2/1 and 3/2
compared to aluminium plates

AI ARALL2/1 ARALL3f2Gilt CPT . GLPT CPT GLPT CPT GLPT
10 3.1 2.1924 3.6396 0.1478 3.2685 1.138020 3.1 3.1350 3.6396 0.5923 3.2685 2.111930 3.7 3.4171 3.6396 1.1998 3.2685 2.520640 3.7 3.5334 3.6396 1.7834 3.2685 2.7321SO 3.1 3.5914 3.6396 2.2489 3.2685 2.8622100 3.7 3.6740 3.6396 3.2201 3.2685 3.12411000 3.7 3.7027 3.6396 3.6385 3.2685 3.2692
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Similar inequalities hold for aluminium and 2/1 or 3/2 ARALL Laminates. If Case oneholds then OJ21 > (i)32 (i.e. the· fundamental frequency of2/1 Laminates is greater than thatof 3/2 Laminates), and if Case two holds then OJ21 < Cl)32. Similarly, if we replace K 32 andM32 by K.J and Mu, we arrive at the inequalities:

aJ21 > Wah when Case one holds
and

CO2) < COal, when Case two holds.

In the present study Case one is valid for thin laminates (i.c. alh ~ 20) and Case two isvalid for thick laminates (i.e. alh < 20). For thick laminates, while the mass remains thesame as for thin laminates, the stiffness is reduced due to transverse shear deformation. Ofcourse Case two holds in the classical plate theory for all side-ta-thickness ratios. Tables 2and 3showtha-tthe-differcnees -between the results of GLPT and CPT are more evident asthe aspect ratios alb increase. From the results, it is evident that ARALL Laminates exhibitlower fundamental frequencies than aluminium plates for moderate to large thickness ratios(i.e. a/h < 20). This is because the reduced ftexural rigidity, due to the presence of layerswith low shear moduli, outweighs the effect of the slightly lower density of .A.RALLLaminates. For large thickness ratios (i.e. a/h > 20), both effects cancel out, and thealuminium plates, 3/2 and 2/1 Laminates exhibit increasingly large frequencies.

Buckling results
Buckling loads Nx and N, are presented ·in Tables 4 and 5 for simply supportedaluminium, ARALL 2/1 and 3/2 Laminates. The in-plane load is uniformly distributedalong x =a/2 for Table 4, and along y =b/2 for Table s. The minimum buckling loadcorresponds, at alb = 1, to mode m = 1 for aU thickness ratios from 10 to 1000. The resultsgiven by GLPT are compared with CPT. It is noted that theCPTnon-dimensional valuesare independent·of a/h. The buckling loads predicted by GLPT are smaller for low a/h dueto shear deformation as expected. While there is a good correlation between CPT andGLPT for aluminium plates, the CPT values deteriorate for low alh on the ARALL

Table S. Buckling load II =~~J in the fiber direction of ARALL 2/1 and 3/2 compared to
aluminium plates

AI ARALL2/1 ARALL 3/2alh CPT GLPT CPT GLPT CPT GLPT

10 3.7 2.1924 3.6396 0.4443 3.2685 0.906220 3.7 3.1350 -3.6396 1.1950 3.2685 1.865130 3.7 3.4171 3.6396 1.8023 3.2685 2.336540 3.7 3.5334 3.6396 2.2473 3.2685 2.594450 3.7 3.5914 3.6396 2.5716 3.2685 ·r 2.7553100 3.7 3.6740 3.6396 3.2779 3.2685 3.08261000 3.7 3.7027 3.6396 3.6386 3.2685 3.2682
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Laminates. This is because the deformations through the thicknesses of hybrid materialsdepart from the assumptions used in CPT.
By comparing the results of the two tables we observe that the CPT value does notchange with the di~tion of the load. The critical buckling load predicted by CPT forsimply-supported, generally orthotropic square plates, under a uniform in-plane load is

When the direction ofthe load changes from 0° to 90°, the coefficients D 11 and D22 exchangetheir values and the above expression gives the same buckling load. Furthermore, typicalvalues of these coefficients for ARALL 2/1 Laminates are :

D11 =961261 psi

D22 =958063 psi.

Therefore, even if the load is changed from the fiber direction to an angle different from90°, the buckling load will remain almost constant. The GLPT does not predict identicalvalues due to the consideration of shear deformation, but the results follow the same trend.

6. CONCLUSIONS

The generalized laminate platetbeory of Reddy (1987) is used to evaluate the staticand dynamic response of. ARALL Laminates. The generalized laminate theory yieldsaccurate results for displacements, stresses, natural frequencies and buckling-loads. WhiletheGLPT plate bending element is computationally expensive compared to the FSDT plateelement (or the Minlin plate element), it yields accurate results for all stresses and is lessexpensive compared to a three-dimensional finite element analysis of laminated compositeplates.
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APPENDIX: STRAIN-DISPLACEMENT MATRICES AND LAMINATE STlFFNESSES
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