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Abstract—The layer-wise laminate theory of Reddy is extended to account for multiple delami-
nations between layers, and the associated computational model is developed. Delaminations
between layers of composite plates are modeled by jump discontinuity conditions at the interfaces.
Geometric nonlinearity is included to capture layer buckling. The strain energy release rate dis-
tribution along the boundary of delaminations is computed by a novel algorithm. The computational
model presented is validated through several numerical examples.

1. INTRODUCTION

The objective of this study is to characterize delaminations in laminated composite plates
using a layer-wise theory. We wish to raise the quality of the analysis beyond that provided
by conventional, equivalent single-layer laminate theories without resorting to a full three-
dimensional analysis. A computational model based on the layer-wise theory of Reddy
(1987) is presented, and the model is used in the analysis of plates with delaminations.

The advantages of an equivalent single-layer theory over a 3-D analysis are many. In
the application of 3-D finite elements to bending of plates, the aspect ratio of the elements
must be kept to a reasonable value in order to avoid shear locking. If the laminate is
modeled with 3-D elements, an excessively refined mesh in the plane of the plate needs to
be used because the thickness of an individual lamina dictates the aspect ratio of an element.
On the other hand, a finite element model based on a laminate theory does not have the
same aspect ratio limitation because the thickness dimension is eliminated by integrating
through the laminate thickness. However, the hypothesis commonly used in the con-
ventional (ie., both classical and shear deformation) laminate theories leads to a poor
representation of strains in cases of interest, namely, in thick composite laminates with
dissimilar material layers.

A 2-D laminate theory that provides a compromise between the 3-D theory and con-
ventional plate theories is the layer-wise laminate theory of Reddy (1987), with layer-wise
continuous representation of displacements through the thickness. Although this theory is
computationally more expensive than the conventional laminate theories, it predicts the
interlaminar stresses very accurately (Reddy er al., 1989; Barbero et al., 1990a,b). Fur-
thermore, it has the advantage of all plate theories in the sense that it is a two-dimensional
theory, and does not suffer from aspect ratio limitations associated with 3-D finite element
models.

The layer-wise representation of the displacements through the thickness has proven
to be successful. Yu (1959) and Durocher and Solecki (1975) considered the case of a three-
layer plate. Mau (1973), Srinivas (1973), Sun and Whitney (1972), and Seide (1980) derived
theories for layer-wise lincar displacements. Reissner's mixed variational principle was used
by Murakami (1986) and Toledano and Murakami (1987) to include the interlaminar
stresses as primary variables. Both continuous functions and piece-wise linear furctions
were used. Reddy’s theory is chosen in this work because of the generality it o%ers in
modeling delaminations.

Delaminations between laminae are common defects in laminates, usually devzloped
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cither during manufacturing or during operational life of the laminate (¢.g., fatiguc, impact).
Delaminations may buckle and grow in panels subjected to in-plane compressive loads.
Delaminated panels have reduced load-carrying capacity in both the pre- and post-buckling
regimes. However, under certain circumstances, the growth of dclaminations can be
arrested. An efficient use of laminated composite structures requires an understanding of the
delamination onset and growth. An analysis methodology is necessary to model composite
laminates in the presence of delaminations.

Self-similar growth of the delamination along an interface between layers is suggested
by the laminated nature of the panel. It was noted by ObreimofT (1980) and Inoue and
Kobatake (1959) that axial compressive load applied in the dircction of the delamination
promotes further growth in the same dircction. Onc-dimensional and two-dimensional
models for the delamination problem were proposed by Chai (1982), Simitses et al. (1985),
Kachanov (1976), Ashizawa (1981), and Sallam and Simitses (1985). According to these
models, the delamination can grow only after the debonded portion of the laminate buckles.
However, the delamination can also grow due to shear modes II and III.

The spontaneous growth of a delamination while the applied load is constant is called
“unstable growth”. If the load has to be increased to promote further delamination, the
growth is said to be “‘stable growth™. The onset of delamination growth can be followed
by stable growth, or unstable indefinite growth or even unstable growth followed by arrest
and subsequent stable growth.

In most studies the buckling load of the debonded laminate is calculated using bifur-
cation analysis (see Chai, 1982; Simitses er al., 1985; Webster, 1981 ; Bottega and Maewal,
1983). Bifurcation analysis is not appropriate for debonded laminates that have bending-
extension coupling, as noted by Simitses et al. (1985). Even laminates that are originally
symmetric, once delaminated, experience bending-extension coupling. In general, delami-
nations are unsymmetrically located with respect to the midplane and the resulting dclami-
nated layers become unsymmetric. Therefore, in-plane compressive load produces lateral
deflection and the primary equilibrium path is not trivial (w # 0). Furthermore, bifurcation
analysis does not permit computation of the strain energy release rate.

Nonlinear plate theories have becn used to analyze the post-buckling behavior of
debonded laminates. Bottega and Macwal (1985), Yin (1985). and Fei and Yin (1985)
analyzed the problem of a circular plate with concentric, circular delamination. The von
Karman type of nonlinearity has been used in these studies.

Most of the analyses performed have been restricted 1o relatively simple models. The
material was assumed to be isotropic in most cases and orthotropic in a few, thus precluding
the possibility of analyzing the influence of the stacking sequence and bending—cxtension
coupling.

The Rayleigh-Ritz method has been used by Chai (1982), Chai et al. (1981), and
Shivakumar and Whitcomb (1985) to obtain approximate solutions to simplc problems.
Orthotropic laminates were considered by Chai and Babcock (1985) and circular dclami-
nations by Webster (1981).

The finite element method was used by Whitcomb (1981) to analyze through-width
delaminated coupons. Plane-strain elements were used to model sections of beams, or plates
in cylindrical bending. The analysis of delaminations of arbitrary shape in panels requires
the use of three-dimensional elements, with a considerable computational cost. A three-
dimensional, fully nonlinear finite element analysis was used by Whitcomb (1988), where
it was noted that *... plate analysis is potentially attractive because it is inhcrently much
less expensive than 3D analysis.” Plate elements and multi-point constraints (MPC) have
been used by Whitcomb and Shivakumar (1987) to study delamination buckling and by
Wilt ez al. (1988) to study free-edge delaminations. This approach is inconvenicnt in many
situations. First, the MPC approach requires a large number of nodes to simulate actual
contact between laminae. Second, a new plate element is added for cach delamination. The
MPC approach becomes too complex for the practical situation of multiple delaminations
through the thickness. Third, all plate elements have their middle surface in'the same plane,
which is unrealistic for the case of delaminated laminae that have their middle surface at
different locations through the thickness of the plate.
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The layer-wise theory of Reddy (1987) is extended here to model the kinematics of
multiple delaminations. The theory is applied to embedded delaminations that are entirely
scparated from the base laminate after buckling. Numerical results are presented for a
number of problems and the results are compared to existing solutions.

2. THE LAYER-WISE LAMINATE PLATE THEORY

Increased use of laminated composite plates has motivated the development of refined
plate theorics to overcome certain shortcomings of the classical laminate theory. The first-
order and higher-order shear deformation theories (see Reddy, 1984, 1989, 1990) yield
improved global response, such as maximum deflections, natural frequencies and critical
buckling loads. Conventional theories based on a single continuous and smooth dis-
placement field through the thickness of a composite laminate give poor estimation of the
interlaminar stresses. Since important modes of failure are related to interlaminar stresses,
refined plate theories that can model the local behavior of the plate more accurately are
required. The layer-wise plate theory is shown to provide excellent predictions of the local
response, i.e., interlaminar stresses, in-plane displacements and stresses, etc. (Barbero,
1989). This is due to the refined representation of the laminated nature of composite plates
provided by the theory and to the consideration of shear deformation effects. Before we
present the theory for delamination modeling, a review of the basic elements of the theory
is first presented.

Consider a laminated plate composed of N orthotropic laminae, each being oriented
arbitrarily with respect to the laminate (x, y) coordinates, which are taken to be in the
midplane of the laminate. The displacements (u,, 11, u3) at a point (x, ,z) in the laminate
are assumed to be of the form (see Reddy, 1987),

uy(x, 3,2) = u(x, )+ U(x, y,2)
uy(x, 3, 2) = v(x, )+ V(x, 3, 2)
uy(x, 3,2) = w(x. y), ¢}

where (i,v,w) are the displacements of a point (x, »,0) on the reference plane of the
laminate, and U and V are functions which vanish on the reference plane:

U(x,5,0) = V(x,»,0) =0. 2)

In order to reduce the three-dimensional theory to a two-dimensional one, Reddy
(1987) suggested layer-wise approximation of the variation of U and V with respect to the
thickness coordinate, -

U(x, 3.2) = i w(x, )¢ (2)

Jj=1

V(x.y2) = i (x, )@ (2), 3

1=

where w’and ¢’ are undetermined coefficients and ¢’ are any piece-wise continuous functions
that satisfy the condition

$'(0)=0 forall j=1,2,....n 4)

The approximation in eqn (3) can also be viewed as the global semi-discrete finite-
element approximations (Reddy, 1984). through the thickness. In that case ¢’ denote the
global interpolation functions, and «’ and  are the global nodal values of U and V (and
possibly their derivatives) at the nodes through the thickness of the laminate.
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3. A MODEL FOR THE STUDY OF DELAMINATIONS

3.1. Introduction

Delamination buckling in laminated plates subjected to in-plane compressive loads is
well recog nized as a limiting factor on the performance of composite structures. While the
accuracy ¢f the analysis is of paramount importance to the correct evaluation of damage
in composites, the cost of analysis precludes the use of three-dimensional models. This
section devls with the formulation of a laminated plate theory that can handle multiple
delaminations in composite plates.

3.2. Formul..tion of the theory

Modeling of delaminations in laminated composite plates requires an appropriate
kinematical description to allow for separation and slipping. This can be incorporated into
the layer-wise theory by proper modification of the expansion of the displacements )
through the thickness. The layer-wise theory can be extended to model the kinematics of a
layered plate, with provision for delaminations, by using the following expansion of the
displacements through the thickness of the plate:

N D
Ui, 2) = ule, 3) + Y ¢ () (. )+ Z' HI@EU (v, )
j= i
N [
ur(x, 5,2) = 0(x, )+ ¥ ¢/ (v, y) + Z. HI(2)V/(x, y)
s i=
]
uy(x, y,2) = w(x, y) +IZ' Hi(2)Wi(x, y) (%)

where the step functions H are computed in terms of the Heaviside step functions A as:

H@)=HAE-z)=1 for 223
Hi(@)=AiE-:)=0 for :<;,

(6)

Ineqn (5) ¢/(2) are linear Lagrange interpolation functions, N is the number of layers used
to model the laminate and D is the number of delaminations. The jumpsin the displacements
at the jth delaminated interface are given by U, V/ and 147, Using the step functions H/(z),
we can model any number of delaminations through the thickness ; the number of additional
variables is equal to the number of delaminations considered. At delaminated interfaces,
the displacements on adjacent layers remain independent, allowing for separation and
slipping.

Although nonlinear effects are important, rotations and displacements are not expected
to be so large as to require a full nonlinear analysis. Only the von Karman nonlinearity
in the kinematic equations needs to be considered.

The linear strains of the theory are

ou & o 2 ;ev’
c‘=6x+;¢ 6.\'+‘;H éx .
¢

éx

Lféu v\ 1X & &Y
=t 2y o[
=3 (a * ax)*z‘,‘:"’ (f‘_r * c'.\')+

-

€. =0 because C.—’i=0
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where the underlined terms are due to the introduction of the delamination variables U/,
VI, wi,
The nonlinear portion of the strains are:

Lfaw)} 122/ ,6”"3”") we
n=1(G) e S (e B )

I foaw) 12 "( ow! aW’) owl ow!
= — - HH — — |+ '
K 2(5)')+2;; 8y;H dy

ow
ox

dy dy
10w dw lo D( ‘ I?anl) lawp( /awl) _l_a__”'p( W \
=3 oy T2 I\ 555 Yimi\ i i\H g ®)
"x:=’1;:=’1:=0-
The virtual strain energy is now given by
oU = 6Uc[_ +6UCNL+6UDL+6UDNL (lOa)

where

6Uc, is the contribution of the classical linear terms
6Ucy, is the contribution of the von Karman classical nonlinear terms
6Up, is the contribution of the new linear terms [underlined in eqn (8))
6Upw, is the contribution of the new nonlinear terms [underlined in eqn (9)]. (10b)

The contribution of the conventional displacements to linear terms is :

ad W l ou 86
6U€L=J {M“—"+ZN£%6_—+N a‘s"+ZN,{a—iv—/+N,,.( "+3x—v)
1] - J= i .

ix & T oy éy
ad cuw  ov ow X 6w X
7N il cow j hadid 1o — abw
+/)-:. N,,.(ay + 6.\'>+Q' 3 +/-§ Qi +0Q, 3 +,§:, o qéu}dA. (1)

The contribution of the von Karman nonlinear terms is
4

Cw déw Ow 86w Ow 3w Cow ow
60""‘=J;{N’$§T+N’5;E+N"($E+Ea—):')}u' (12)
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The contribution of the new linear terms is

& ([ W asw esur , 28V! ,(aau' aw)
o= £, [ {050 ay Mg YM G t MG+ Ty ey

(13a)
where
42 ,
(0. 0)) = f . OO () dz
. . h:z
MM M) = j (050,,0,,)H (2)dz. (13b)
-&2
The contribution of the new nonlinear terms is
21 . . [owesW' 28w aw! [Ow dSW'  dbw ow!
*Uom = f {Z[’”‘ (R )*“f(a Bt )
. [Ow oW 35w W' Sw 5W' @aéw aW! o b y
+M"(5; oy tox dy + 3y ox + dy dx )]+z,: E,:iM’
N (aw" asw! W aw1)+ W,,.(aw"-aau'f L G a;w)
ox 0x ox ¢éx "\ay ady dy dy
(eW eSW! oW’ eswr
if
+M”( dy Ox + dx Oy )} (142)
where
) A2
ML M} MY) = f (0:,0,,0,)H (2)H () dz. (14b)
-a2
The boundary conditions of the theory are given below:
Geometric Force
u N.n,+N_n,
v Nyn.+Nn,
w Q.n.+Q;n,
W Nin.+Nin,
i Nin +Nn,
v’ Min .+ M/.n,
v’ Min+AMin,
Wi Qun+Qin,. (15)

The laminate constitutive equations can be obtained in the usual manner (sece Reddy,
1988 ; Barbero, 1989).

3.3. Fracture mechanics analysis :

The deformation field obtained from the layer-wise theory is used to compute the strain
energy release rates along the boundary of the delamination. Delminations usually exhibit
planar growth, i.e., the crack grows in its original plane. However, the shape of the crack




Dclamination in composite laminates 379

may vary with time. For example, a crack shape initially elliptic usually grows with variable
aspect ratio. Therefore, the crack growth is not self-similar. However, a self-similar virtual
crack extension will be assumed in order to compute the distribution of the strain energy
release rate G (s) along the boundary of the delamination.

The virtual crack extension method postulates that the strain energy release rate can
be computed from the strain energy U and the representative crack length g as:

G(s) = dU/da. (16)

In the actual implementation of the virtual crack extension method, however, eqn (16) is
approximated by a quotient AU/Aa that in the limit approximates the vahue of the strain
energy relcase rate G. In the Jacobian derivative method (Barbero and Reddy, 1990), the
G (s) is computed without approximating the derivative, so it does not require that we
choose the magnitude of the virtual crack extension Aa.

The boundary of a delamination is modeled as boundary conditions on the delami-
nation variables U’, V7, and W/, by setting them to zero. A self-similar virtual crack
extension of the crack (delamination) is specified for the nodes on the boundary of the
delamination, i.e., the two components of the normal to the delamination boundary are
specified for each node on the boundary. The JDM is then used at each configuration (or
load step) to compute G(s) from the displacement field.

3.4. Finite-element madel

The generalized displacements (u,o0,w,/, o/, U/, V7, W’) are expressed over each
element as a linear combination of the two-dimensional interpolation functions y; and the
nodal values (u,.¢,, w,. u/, vf, U, V', W) as follows :

(“, oW, lll. l'l. Ul' Vl- ",i) = z (uh Vi, Wi, ll,!, vll9 U{v V{v W{)¢l (17)

where m is the number of nodes per element. Using eqn (17) in eqn (10a), we obtain the
following finite element equations :

[k ok kR k] (8] [ {q})
kit ki kR OKR L kB {a"} {¢'}
kP OkH kv k3 ki | (8" = {{¢")} (18a)
kY kN kv k3 ki | [{&") {g"}
L R N Y B OV
where
{A})T = {u,‘v,,w,....,u,,,v,,,w,,}
(AT = {uf o), il 00}
(B} = (U Vi Wy, .. UL Vi, wi) (18b)

and the submatrices [&'"']. (&), [k]'), k33, (k2), [k22), [k3’) with i, j=1,...,N and
r.s=1,...,D are given in Barbero (1989). The load vectors {q}, {g'}...{¢"}, and
19'}.-.-.{¢"} are analogous to {A}, a'},...,{A"} and {3'},..., {A®}, respectively [see
eqn (18b)]. The nonlinear algebraic system is solved by the Newton-Raphson algorithm.
The components of the Jacobian matrix are also given in Barbero (1989).

The nonlincar equations are lincarized to formulate the eigenvalue problem associated
with bifurcation (buckling) analysis:
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((Ko]l=ilKs]) @ =0 (19)

where [K)] is the linear part of the direct stiffness matrix and [Kg) is the geometric stifTness
matrix.

4. NUMERICAL RESULTS

Several examples «re presented in order to validate the proposed formulation. Ana-
lytical solutions can be Jeveloped for simple cases and they are used for comparison with
the more general approach presented here.

4.1. Square thin flm deluomination

A thin layer delamiated from an isotropic square plate (flexural rigidity, D) by a
concentrated load P at iis center is considered. The delamination is also assumed to be
square with side 2a. The base laminate is assumed to be rigid with respect to the thin
delaminated layer. An aralytical solution for the linear deflection and strain energy relcase
rate can be derived assuming that the dclaminated layer is clamped to the rigid base
laminate. Due to the biaxial symmetry, a quadrant of the square delamination is analyzed
using 2x 2and 5x 5 meshes of nine-node elements. Either the clamped boundary condition
is imposed on the bounda'y of the delamination or an additional band of elements with a
closed delamination is placed around the delaminated area to simulate the nondelaminated
region. Both modzls produce consistent results for transverse deflections and average strain
energy release razs. A fine mesh is necessary to obtain a smooth distribution of the strain
energy release rais G along the boundary of a square delamination. The linear solution for
P = 10 compares well with the analytical solution (see Fig. 1). The linear and nonlinear
maximum delamination opening W and average strain energy release rate G,. as a function
of the applied load P are shown in Fig. 2. It is evident that the membrane stresses caused

10.0
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— — Nonlinear P=S0
8.0 < - - = = Nonlineor Pw100
90600 Closed-form P=10

700 01 02 03 os 0%
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Fig. L. Distributon of the strain energy release rate along the boundary of a square delamination
due to concentrated load.
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Fig. 2. Maximi= delamination opening M’ and average strain encrey release rate according to
nonlincar analysis of a square dclamination.




-3

Dclamination in composite laminates 381

by the gcometric nonlincarity reduce the magnitude of the average strain energy release
rate considerably (Whitcomb and Shivakumar, 1987).

4.2. Thin film cylindrical buckling

In this example we consider an isotropic thin layer delaminated from a thick plate in
its entire width. Due to symmetry, only one half of the length of the plate strip is modeled
with the cylindrical bending assumptions and a nonuniform mesh of seven elements. The
cylindrical bending assumption is satisfied by restraining all degrees of freedom in the y-
direction. The base laminate is considered to be much more rigid than the thin delaminated
layer so that it will not buckle or deflect during the postbuckling of the delaminated layer.
First, an eigenvalue (buckling) analysis is performed to obtain the buckling load and
corresponding mode shape. Then a nonlinear solution for the postbuckling configuration
is sought. Excellent agreement is found in the jump discontinuity displacements U and W
across the delamination. The values of delamination opening W and strain energy release
rate G are shown in Figs 3 and 4 as a function of the applied load, where ¢., is the critical
strain at which buckling occurs for a delamination length of 2a (see Yin, 1988).

4.3. Axisymmetric circular delamination

Axisymmetric buckling of a circular, isotropic, thin-film delamination can be reduced
lo a onc-dimensional boundary-value problem by means of the classical plate theory (CPT).
One quadrant of a square plate of total width 2b with a circular delamination of radius a

§‘ 1.0
»
3
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i 0.8 4
3
E 3
e 0.6
L
3
= 0.4
3 Mo
-]
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2
= 0.0
Tro 12 16 1.8 20

1.4
N:/N-o

Fig. 3. Maximum delamination opening 1’ for a thin film buckled delamination.
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Fig. 4. Strain cnergy release rate for buckled thin film delamination.
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is modeled. The layer-wise elements are capable of representing discontinuities of the
displacements at the interface between layers. The symmetry boundary conditions used are:

u(0,y) =u'(0. ) = U'(0,y) =0
t(x,0) = '(x,0) = ¥'(x,0) =0

withi=1,....Nandj=1,...,D; where V is the number of layers and D is the number
of delaminations through the thickness; in this example, we have D = 1. The boundary of
the delamination is specified by setting the jump discontinuity variables U’, ¥/ and W’ 10
zero on the boundary of the delamination and wherever the plate is not delaminated. The
boundary of the plate is subjected to the following boundary conditions, which produce a
state of axisymmetric stress on the circular delamination :

‘/(b.)’ = U/(b.)') =0; N:(b-)') = —'N‘
v (x,b) = V/(x,0) = 0; N,(x,b)=—N

where N is a uniformly distributed compressive force per unit length. The same material
properties are used for the delaminated layer of thickness 7 and for the substrate of thickness
(h—1). To simulate the thin-film assumptions, a ratio h/r = 100 is used. First an cigenvalue
analysis is performed to obtain the buckling load and corresponding mode shape. Then a
Newton-Raphson solution for the post-buckling is sought. The Jacobian derivative method
(see Barbero and Reddy, 1990) is used at equilibrium solution to compute the distribution
of the strain energy release rate G(s) along the boundary of the delamination. For this
example, G(s) is a constant. Its value, shown in Fig. 5 as a function of the applied load, is
in excellent agreement with the approximate analytical solution (see Yin, 1985).

4.4. Circular delamination under unidirectional load

In this example we analyze a circular delamination, centrally located in a square plate
of total width 2¢ and subjected to a uniformly distributed in-plane load N,. The example
is considered because results of a three-dimensional analysis are available (Whitcomb, 1988)
in the literature. Compared to the last example, this problem does not admit an axisymmetric
solution. Therefore, the distribution G(s) varies along the boundary of the delamination.
A quasi-isotropic laminate [+45/0/90] of total thickness & = 4 mm and a circular delami-
nation of diameter 2a located at = = 0.4 mm is considered. The material properties used
are those of AS4/PEEK : E, = 134 GPa, E, = 10.2 GPa, Gy =5.52GPa, G,, = 3.43 GPa,
viz =0.3. As is well known, the quasi-isotropic laminate exhibits equivalent isotropic

1.2 4 —— 1=-D model
coooo Present study
(-]

12.0

Fig. 5. Strain cnergy release rate for a buckled thin film, axisymmetric delanunation as a function
of the in-plane load.
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behavior when loaded in its plane. The bending behavior, however, depends on the orien-
tation. To avoid complications in the interpretation of the results introduced by the non-
isotropic bending behavior, an equivalent isotropic material is used by Whitcomb (1988),
where the equivalent stiffness components of the 3-D elasticity are found from the relation :

R
8.5,

Due to the transverse incompressibility used in this work, it is more convenient and
customary to work with the reduced stifTness. Equivalent material properties can be found
dircctly from the A-matrix of the quasi-isotropic laminate as follows. First, compute the
equivalent reduced stiffness coefficients

Qij = A,/h,

where h is the total thickness of the plate and A, are the extensional stiffnesses. Next, the
equivalent material properties can be found as:

E, = Qu —Qn

Ey = Q:z(l—g:—:)
G|z= Qu

Gz) =st

, 01E-E},
Vig = ————.

QIIEII

An cigenvalue analysis reveals that the delaminated portion of the plate buckles at
N.=286816 Nm~' for a =15 mm and at N, = 73,666 N m~' for a = 30 mm. The
maximum transverse opening of the delamination as a function of the applied in-plane
strain ¢, is shown in Fig. 6. The differences observed with the results of Whitcomb (1988)

solution. The differences are more important for g = 30 mm, as indicated by the dashed
line in Fig. 6, which represents the transverse deflection w of the midplane of the plate. The
square symbols denote the total opening (or gap) of the delamination, while the solid line
represents the opening reported by Whitcomb (1988) with w = 0. The differences in the

1.6
~——— 3=D elerments
141 900500 Coening ¥
124 ---- Ceflection w
- L]
E 1.0 1 o
= 0.8 =3
& 0.6 4
3 0.4 4 / o=1s
0.2 4 ]
00 fp---emen . c=30
%% 10 20 30 <o S0

8 strain ¢,

Fig. 6. Maximum transverse opening W’ of a circular delamination of diameter 22 in a square plate
subjected to in-plane load N, as a function of the in-plane uniform strain.
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Fig. 7. Distribution of the strain energy release rate along the boundary of a circular delamination
for various values of the applied in-plane axial strain.

total opening W and trar sverse deflection w have an influence on the distribution of the
strain energy release rate, as can be seen in Fig. 7. Both solutions (i.c., solutions of 3-D
elements and the present 2-D elements) coincide for the small delamination of radiusa = 1§
mm, as shown in Fig. 8. For the larger radius a = 30 mm, the assumption w = 0 is no
longer valid, and differences can be observed in Fig. 8, although the maximum values of G
coincide and the shapes of the distributions of G are quite similar. Mesh refinement, with
at least two elements close to the delamination boundary, must be used to account for the
sudden changes in deflections and slope in a narrow region close to the delamination
boundary, similar to the phenomena described by Bodner (1954). Distributions of the strain
energy release rates G(s) along the boundary of the delamination are shown in Figs 7 and
8 for the different delamination radii, @ = 15 mm and a = 30 mm, respectively. The value
s = 0 corresponds to (x = a, y = 0) and s = an/2 to (x =0, = a). Negative values of G(s)
indicate that energy should be provided to advance the delamination in that dircction.
Negative values are obtained as a result of delaminated surfaces that come in contact, thus
eliminating the contribution of mode I of fracture but not of modes II and II1. The present
analysis does not include contact constraints and therefore layers may overlap. As noted
by Whitcomb (1988), the strain energy release rate G(s) in the region without overlap is
not significantly affected by imposing contact constraints on the small overlap arca.

4.5. Unidirectional delaminated graphite-epoxy plate
A circular delamination of radius @ = § in. in a square plate of side 2¢ = 12 in.. made
of unidirectional graphite—epoxy. is considered next. The thickness of the platcis h = 0.5

4000 ,; €,=0.CC5
300.0 §
200.0 €,=0.004
G(s)
100.0 3 £,=0.CC3
3 £,=0.062
0.0 1
3 ——— Present study
-=-- 3-D elements
3 g=15
-100.0_ 3~

00 50 100 150 200 250
s = op [mm) (O<gen/2)

Fig. 8. Distibution of strain energy relcase rate along the boundary of a circular delamination for
various values of in-planc avial strain.
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Fig. 9. Buckling load versus the ratio of in-plane loads N, and N, for a circular delamination,

in., and the delamination is located at a distance ¢ = 0.005 in. from the surface. An
cigenvalue analysis is used to obtain the magnitude of the in-plane load under which the

The magnitude of the buckling load as a function of the load ratio r,with -l <rc¢ 1,
is shown in Fig. 9. The distribution of the strain energy release rate G (s) along the boundary
s=ap, 0 < ® < n/2 is plotted in Figs 10-12 for the load ratjos ofr=-1,0, and 1, and
for several values of the applied in-plane load, in multiples Z of the buckling load N,,. For
r=1 (i.e., N.= N and N, =0) it is clear that (see Fig. 10) the delamination is likely to
propagate in a the direction approximately perpendicular to the load direction. Introduction
of load in the direction perpendicular to fibers causes the maximum value of G to align
closer to the x-axis. Note that both the magnitude and the shape of the distribution of G(s)
change as the load ratio changes (see Fig. 13). The plots suggest that the propagation or

arrest of delaminations is greatly influenced by the anisotropy of the material and the
dominant load.

10.0
A=5.0
T 50-
<
2
~~
2
S 0.0 4
r=1
o A = N/N,
0.0 1.0 2.0 30 40 50 60 70 8.0

s = aop [mm] (O<pen/2)

Fig. 10. Distribution of the strain encrey release rate along the boundary of a circular delamination
for various values of applied load V.
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Fig. 11. Distribution of the strain energy release rate along the boundary of a circular delamination
: for the ratio r = 0.

G(s) (ib/in)

0.0 1.0 2C 3.0 40 SO 60 7.0 8.0
s = 0p (mm) (O<pen/2)

Fig. 12. Distribution of the strain energy release rate along the boundary of a circular delamination
for the ratior = —~ 1.
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Fig. 13. Distribution of the strain energy release rate aleng the boundary of a circular delamination
of radius a = § in. for various values of the load ratio, r.
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) 5. SUMMARY AND CONCLUSIONS

A laycr-wise theory and associated finite-element model for the study of delaminations
in laminated composite plates is developed. The same displacement distribution in the
individual layers is capable of representing displacement discontinuity conditions at inter-
faces between layers. The finite element model predicts accurate distributions of strain
cnergy release rates along the boundary of delaminations of arbitrary shape. The model
can be used to study multiple delaminations through the thickness of the plate.

The layer-wise laminate plate theory provides an adequate framework for the analysis
of laminated composite plates. Particularly, the layer-wise linear approximation of the
displacements through the thickness and the use of Heaviside step functions to model
dclaminations prove to be an effective approach for an accurate analysis of local effects in

proposed analysis makes it unattractive for prediction of global behavior when compared
with conventional theories, For the prediction of local effects (i.c., delaminations, inter-

as an alternative to three-dimensional analysis. The model can also be used in a global-
local analysis scheme wherein the local regions are modeled using the layer-wise theory and
global regions are modeled using less refined theories, say the first-order laminate theory.
Transition elements must be developed to join regions modeled by the layer-wise theory to
regions modeled by less expensive theories in global-local analysis procedures.

It is expected that accurate stress distributions obtained with this type of analysis,
along with meaningful failure theories, will enable realistic prediction of failure initiation
and propagation in composite laminates. Also, the layer-wise plate theory can be used as
a post-processor to enrich the stress prediction of the first-order shear deformation theory.

Acknowlcdgementis—The support of this work by NASA Langley Research Center and the U.S. Army through
Grant NAG-1-1030 and by NSF International Programs (U.S.-India Cooperative Science Program) through
Grant INT-8908307 is gratefully acknowledged.

REFERENCES

Blacksburg, VA.

Barbero, E. J. and Reddy, J. N. (1990). The Jacobian derivative method for three-dimensional fracture mechanics.
Commun, Appl. Numer. Moeth. 6(7), 507-518.

Barbero, E. J., Reddy. J. N. and Teply, J. L. (1990a). A general two-dimensional theory of laminated cylindrical
shells. A14A J. 28(3), 544-552.

Barbero, E. J., Reddy, J. N. and Teply, J. L. (1990b). An accurate determination of stresses in thick laminates
using a generalized plate theory. Int. J. Numer. Meth, Engng 29, 1-14.

Bodner. S. R. (1954). The post-buckling behavior of a clamped circular plate. Q. Appl. Marth. 12, 397401.

Bottega, W. J. and Macwal, A. (1983). Delamination buckling and growth in laminates. J. Appl. Mech. 50, 184~
189.

Chui, H. (1982). The growth of impact damage in compressively loaded laminates. Thesis, California Institute of
Technology.

Chai. H. and Babcock, C. D. (1985). Two-dimensional modclling of compressive failure in delaminated laminates.
J. Compos. Mater. 19, 67-98.

Chai. H., Babcock, C. D. and Knauss, W. G. (1981). One dimensional modelling of failure in laminated plates
by delamination buckling. Int. J. Solids Structures 17, 1069-1083.

Durocher, L. L. and Solecki, R. (1975). Steady-state vidbrations and bending of transversely isotropic three-layer
plates. Developmenis in Mechanics, Proc. 141h Midwestern Mech, Conf., Vol. &, pp. 103-124.

Fei. Z. and Yin, W..L. (1985). Axisymmetric bucklirg and growth of a circular delamination in a compressed
laminate. Int. J. Solids Structures 2 1, 503-514.

Inoue, I. and Kobatake, Y. (1959). Mechanics of adhesive joints, part IV: Peeling test. Appl. Scient. Res. 8A,
321

Kachanov, L. M. (1976). Separation failure of composite materials. Polymer Mech. 12, 812-815.

Mau, S. T. (1973). A refined laminated plate theory. J. Appl. Mech. 40, 606-607.

Murakami, H. (1986). Laminated composite plate theory with improved in-plane responses. J, Appl. Mech. 53,
661-666.

Obreimoff, J. W. (1980). The splitting strength of Mica. Proc. R. Soc. A127, 290.

Reddy, J. N. (1984). Energy and Variational Methods in Applied Mechanics. John Wiley, New York.

SAS 28:3-1



388 E. J. BarBEro and J. N. Revvy

Reddy. J. N. (1987). A 3eneralization of two-dimensional theories of laminated plates. Commun, Appl. Numer.
Meth. 3, 113-180.

Reddy. J. N. (1988). Mec hanics of composite structures. In Finite Element Analysis for Engineering Design (Edited
by J. N. Reddy. C. S. Krishna Moorthy and K. N. Seetharamu), Chap. 14, pp. 338-359. Springer, Berlin.

Reddy, J. N. (1989). On refined computational models of composite laminates. /nt. J. Numer. Meih, Engng 27,
361-382.

Reddy, J. N. (1990). A rev ew of refined theories of laminated composite plates. Shock Vibr. Digest 22(7), 3-17.

Reddy, J. N., Barbero, E. J. and Teply. J. L. (1989). A plate bending element based on a generalized lar:zate
plate theory. Int. J. Nun:er. Meth. Engng 28, 2275-2392.

Sallam, S. and Simitses, Gi. J. (1985). Delamination buckling and growth of flut, cross-ply laminates. Comspos.
Struct. 4, 361-381.

Seide, P. (1980). An imprcved approximate theory for the bending of laminated plates. Mech. Tuday 8, 451466,

Shivakumar, K. N. and Whitcomb, J. D. (1985). Buckling of a sublaminate in a quasi-isotropic composite
laminate. J. Compos. Mater. 19, 2-18.

Simitses, G. J., Sallam, §. and Yin, W. L. (1985). Effect of delamination of axially loaded homogeneous laminated
plates. 4144 J. 23, 1437- 1440,

Srinivas, S. (1973). Refined . nalysis of composite laminates. J. Sound Vibr. 30, 495-507.

Sun, C. T. and Whitney, J. 4. (1972). On theories for the dynamic response of laminated plates. AIAA Paper
No. 72-398.

Toledano, A. and Murakami, H. (1987). A composite plate theory for arbitrary laminate configurations. J. Appl.
Mech. 54, 181-189,

Webster, J. D. (1981). Fiaw critically of circular disbond defects in compressive laminates. CCMS Report 81-03.

Whitcomb, J. D. (1981). Finite element analysis of instability related delamination growth. J. Conipos. Marer.
18, 113-180.

Whitcomb, J. D. (1988). Instability-related delamination growth of embedded and edge delaminations. NASA
TM 10065S.

Whitcomb, J. D. and Shivakumar, K. N. (1987). Strain-energy release-rate analysis of a laminate with a post-
buckled delamination. NASA TM 89091.

Wilt, T. E., Murthy, P. L. N. and Chamis, C. C. (1988). Fracture toughness computational simulation of general
delaminations in fiber composites. AIAA Paper 88-2261, pp. 391-401.

Yin, W.-L. (1985). Axisymmetric buckling and growth of a circular delamination in a compressed laminate. /nr.
J. Solids Structures 21, 503-514. .

Yin, W.-L. (1988). The effects of laminated structure on delamination buckling and growth, J. Compos. Mater.
22, 502-517.

Yu, Y. Y. (1959). A new theory of elastic sandwich plates—one dimensional case. J. Appl. Mech. 26, 415421,




