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ABSTRACT

This paper addresses the prediction of engineering prop-
erties of pultruded structural shapes (e.g,, EXTREN™),
PULTREX™) based on the processing description used by
the pultrusion industry. Since the strength-to-stiffness
ratio of composites is much larger than that of steel or
concrete, deflections are of major concern to the structural
designer. In this paper, it is shown how to predict axial,
bending, and shear stiffnesses of the structural shapes
based on the fiber and resin properties and their arrange-
ment in the cross section. Correlations between proper-
ties predicted by this method and measured by full size

ssting of commercially available structural shapes
(PULTREX“‘) are shown. Intermediate steps in the anal-
ysis by comparison to material testing data from samples
of the same pultruded section were validated. This work
also serves as the basis for more complex analysis of the
behavior of pultruded structural shapes that are addressed
in companion papers. Recommendations as to how the
pultrusion industry may use this model to optimize the
performance of new structural shapes are presented.

INTRODUCTION

Cooling towers, antenna enclosures, chemical plant
structures, and other applications (1-4) show the useful-
ness of pultruded structural members. Advanced compos-
ite beams and columns have been used successfully by the
aerospace industry over the years (5-7). Recent advances
in pultrusion process modelling (8-9) and control (10)
anticipate improved quality on a variety of larger shapes
pultruded with new fiber and resin systems. .

Composite materials have many advantages over conven-
tional construction materials like steel and reinforced con-
erete. Light weight, corrosion resistance, lower

stallation cost, no electromagnetic interference, are a
tew examples. Most prominent is the possibility of creat-
ing the best material for each particular application. The
full potential of composites cannot be realized unless the
material is designed concurrently with the structure. An
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example of such an approach is the design of structures
with reinforced concrete. However, composites give much
more latitude to the designer. In this work we develop
some of the tools required to perform such a concurrent
design of the material tailored for the specific application
at hand.

Characteristics of interest to the structural engineer are
stiffness, strength, buckling resistance, etc. These struc-
tural properties depend of the material system (compos-
ite) and the shape of the cross section of the members,
which are variables controlled by the manufacturer. As
with steel I-beams, the shape can be optimized to increase
the bending stiffness without compromising the maximum
bending strength. In contrast to steel, with composite
beams, we can optimize the material itself by choosing
among a variety of resins, fiber systems, and fiber orienta-
tions. Changes in geometry can be easily related to
changes in the bending stiffness through the moment of
inertia. However, changes in the design of the material do
not produce such an obvious result because composites
have properties that depend on the orientation of the
fibers, the fiber volume fraction, etc.

The strength-to-stiffness ratio of composites is much
larger than that of steel or concrete. Therefore, deflections
usually control the design with composite structural
shapes. Axial stiffness governs the design of trusses, stay
cables, etc. Bending stiffness and shear stiffness control
the bending behavior of beams. Shear deformation plays
a significant role in the transverse deflection of composite
beams. Although the stiffness of existing pultruded mem-
bers can be measured experimentally, the analytical pre-
diction of stiffnesses from the properties of the material
constituents allows optimizing of the structural shapes
(11). The model presented will predict buckling (12) and
bending strength (13).

This paper addresses the prediction of stiffness proper-
ties from the product description used for manufacturing.
This includes the material properties of the constituents
(fiber and matrix), the orientation and volume fraction of
the fibers at different locations on the section (web or
flanges), and the shape of the cross section. Data is pro-
vided to favor a laminated idealization of pultruded mate-
rials.
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MODELING OF
PULTRUDED STRUCTURAL SHAPES

-~ Fiber reinforced composite beams and columns are in-
}mogeneous for two reasons. First, the fiber reinforced
composite material is inhomogeneous and anisotropic due
to the presence of the fiber (glass, kevlar™, graphite).
Second, different portions of the cross section are built
with different orientation of the fibers, different fiber vol-
ume fractions, different fiber systems, etc. The in-
homogeneity is evident not only from one point to another
in the material (e.g., roving, nexus, continuous strand lay-
ers) but also at a macroscopic scale, since, for example, the
flanges and webs are usually built with different fiber com-
binations.

Although pultruded beams are not manufactured by lam-
ination, they do contain different material combinations
through the thickness, thus justifying the use of lamination
theory. Micromechanics is employed to model each layer
as a homogeneous equivalent material behaving macro-
scopically similar to the fibrous composite (Section 3.1).
Next, lamination theory (Section 3.2) is used to model an
entire flange or web again as an equivalent homogeneous
material. Finally, flanges and webs are assembled into a
structural shape (Section 3.3) to obtain useful structural
design properties.

Micromechanical Model for
Pultruded Composite Beams

-y using micromechanics the material properties for a
lamina (E1, E, v12, G12) are determined from the material
properties of the fiber (Ef, vf) and the matrix (Ep, vm). The
elasticity approach to micromechanics seems to provide
the best predictions for pultruded composite materials.

In the elasticity solutions with contiguity, it is assumed
that either a) fibers are contiguous (i.e., fibers touch each
other) or b) fibers are isolated (i.e., fibers are completely
separated by resin). If C denotes the degree of contiguity,
then C=0 corresponds to isolated fibers and C=1 corre-
sponds to perfect contiguity. For pultruded composites
with low fiber volume fraction, C=0 is used. Due to the
high tension that pultrusion exerts on the fibers, a fiber
misalignment factor K=1 has been adopted. Using Egs.
3.69, 3.66, and 3.67 from Ref. (14), we obtain the material
properties of each lamina (E1, Ej, and v12).

The fiber volume fraction V¢ is the ratio of the volume of
fiber to the total volume of the final product. Vfhasbeen
calculated as the quotient of the area of fibers in the cross
section to the total area of the cross section. The area 4
of fibers in the cross section depends of the number of
rovings n, and their yield y 0.9144 m (number of yards) of
roving weighing 0.454 kg (1 Ib), and thei density. Finally,
the area as 4=W(2.016 y p), with 4 in m&-p in keg/m?, and
y in (yards/Ib) is computed.

: the determination of the shear modulus, we use the
elasticity solutions with contiguity ((14), Eq. 3.68). The
predicted value did not correlate well with experimental
data (15), and the experimental value was used instead in
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our analysis. Currently improved micromechanical mod-
els are being investigated for shear of pultruded composites.

Macromechanical Model of
Pultruded Structural Shapes

The kinematic equations for laminated composite beams
used in this work are those of Timoshenko’s beam theory
(16). In this theory, the constitutive equations of a com-
posite beam with thin laminated flanges are developed
under the assumption that the following stress compo-
nents are negligible (Figure 1).

070y =0y, =00 (1]
Therefore, the material constitutive equations are
ox = Eze
X_ XX [2]
Oz = GrrYer

where Ex is the equivalent axial stiffness and Gyg is the
equivalent shear stiffness of the material. For an isotropic

‘material, the modulus of elasticity Ex=FE, and the shear

modulus Gxz=G. Ex and Gy, are apparent properties in
the structural coordinate system (Figure 1). By rotation
from the material coordinate system (Figure 2) to the
structural coordinate system, we obtain

E=0Qu+ an + 016 Q26012 - Qz_z_@us (3]

022 0 — 0% On Qss - Q%
and .
ck -
Gg ===+ Cs;s [4]
. Ca
for the flange (Figure 2) and
Gy = —Q-66 . [5]

for the web (Figure 3), where the over-line indicates a
rotated quantity (14). Here, Oij ((14), Eq. 2.80 and 2.62)
and Cjj ((15), Eq. 4.3.14) are the lamina stiffness, which are
a function of the lamina material properties. Ej is the
modulus of elasticity along the fiber direction (Figure 2).
Ez is the modulus of elasticity in the direction perpendic-
ular to the fibers. Giz is the shear modulus in the plane of

— o
t
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Figure 1. Typical structural shape and coordinate system.
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Figure 3. Typical web lay-up and coordinate system.

the laminate and G23 the out-of-plane shear. Each layer is
assumed to be transversely isotropic (14). Therefore,
E3=E2and G13=G23. Asan example, if 8=0then Ex=E;.
Similarly if 6=/2 then Ex=Ea.

The constitutive equations of a laminate (flange or web),
the so called laminate constitutive equations, are derived by
integrating the expression of the stress resultants Nx, My,
and Qx as a function of the in-plane strains €%, curvature
Kx, and shear strain vy to give

N, = Aed + Bk,
M, = Bexo + Dy (6]
Ox = Fyy;
where A is the extensional stiffness, D is the bending stiff-
ness, F is the shear stiffness, and B is the bending-extension

coupling for unsymmetrical laminates. For the flange, the
following equations hold

N
A=b > Eky
k=1
N
B =b 2 E’;tkzk
k=1 (7
- 3
D =62 EF e &+ 15)
N
F=b3 Gk
k=1

SAMPE Journal, Vol. 27, No. 1, January/February 1991

where §is alocal coordinate attached to the flange (Figure
1), & is the position of the middle surface of the k-th layer
in the local coordinate system, b is the width of the flange,
and Nf is the number of layers of the flange. GXy is the
out-of-plane shear modulus of the k-th layer in the flange
(Eq. 4). For the web, the following equations hold

NW
A¥=d > Efy
k=1
BY =0
va
4 k 8
DW=E2 Es []
k=1
NW
F*=d >, GFy
k=

where d is the depth of the web and NV is the number of
layers of the web. G¥ is the in-plane shear modulus of the

k-th layer in the web (Eq. 5).

Beam Stiffness

To obtain the stiffness of the whole section, the contribu-
tion of the flanges (Eq. 6) and the webs (Eq. 7) is combined
using the parallel axis theorem ((18), Section 6, Chapter
6) with respect to the axis of symmetry of the cross-section.

A=24+ 1" |
B = e(A"P — A%"Y + B'P 4 gbo! -[9]
F=F"

Note that the contribution of the flanges to the shear
stiffness is omitted in Eq. 9. For unsymmetrically lami-
nated beams, we compute the location of the neutral axis
is computed as

0= (10]

Next, we compute the bending stiffness D with respect to

the neutral axis using the parallel axis theorem (Figure 1)
as

D= Dweb + D!Op + DbOt +AlOp (e _ 20)2
- A% (e + 20)* + A2 [11]

This completes the prediction of structural properties
from the basic information about the composition of the
pultruded structural shape. While our analysis is general,
it coincides with the three-dimensional elasticity solution
for the particular case of laminated beams with trans-
versely isotropic lamina (19). Based on the exact elasticity
solution, Chen (19) concludes that Euler-Bernouli beam
theory yields excellent results for normal stress at the i-th
layer using
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E.
o = _MzEi [12]

2 Ej(by)j
j J
and transverse deflections using
3, Ei () i [13]
i

instead of EI in the flexure formula. Unlike our analysis,
Chen (19) is not concerned with monoclinic lamina (i.e.,
off-axis fiber reinforced composite lamina) in complex
pultruded shapes nor with the problem of low shear mod-
ulus. In this paper, we generalize Eq. 13 for arbitrarily
laminated beams, calling it bending stiffness D, and propose
its use in the deflection formula of Timoshenko’s beam
theory. A general procedure for the computation of
stresses that resembles and generalizes Eq. 12 is presented
in Ref. 20.

APPLICATION TO
CURRENT STRUCTURAL SHAPES

As an example, consider a pultruded 20.3 x 20.3 cm (8"x
8") wide-flange I-beam of E-Glass-Vinylester composite.
A typical layer has 20 roving of 61 yield distributed over 2.5
cm? (1.25 mm thick by 20.3 cm wide) of the flange. Follow-
ing Section 3.1, this layer has a fiber volume fraction Vi =
0.25. For the material under study, we use:~Ef = 72.349

©a, Em = 3.378 GPa (21) and vf = 0.22, vm = 0.335 (14).
_sing the elasticity approach, we obtain: E1 = 20.632
GPa, Ez = 4.872 GPa, v12 = 0.313, and G12 = 1.986 GPa.

All the layers are next considered in the flange and web
according to the processing specifications used by the
pultrusion manufacturer. Using the macro mechanical
analysis of Section 3.2, we obtain the following values: the
equivalent modulus of elasticity for the flange is Ex = 20.5
GPawhich compares very well with the experimental value
of Ex = 20.2 GPa (15); the equivalent modulus of elasticity
for the web is Ex = 15.9 GPawhich compares very well with
the experimental value of Ex = 15.2 GPa (15).

The stiffness of the whole section is computed following
Section 3.3 and obtains a bending stiffness of the beam D
= 761.1 KNm? as obtained in Ref. (13) following the
procedure introduced by Ref. (22). This value, along with
the shear stiffness F, can be used directly in the equations
for deflections derived from Timoshenko’s beam theory
(16).

BUCKLING AND CRIPPLING ANALYSIS

Common structural columns have open or closed sec-
tions of thin composite walls. Column buckling and crip-
_pling are the main considerations in their design. In this
stion, we present design charts with failure envelopes for
uifferent buckling modes of some commercially available
structural shapes along with selected experimental data for
comparison of predicted and observed behavior.
Micromechanical models and lamination theory are uti-
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lized to model the pultruded composite material along the
lines of Sections 3.1 and 3.2.

For long columns, the Euler equation is modified to

- account for the anisotropic nature of the material. For

intermediate column lengths, local buckling occurs first,
which triggers the global buckling of the column. For short
columns, material crushing occurs, possibly preceded by
micro-buckling of the fibers in the composite. Using the
results of Section 3, the long column buckling problem can
be easily solved replacing the modulus of elasticity E by the
bending stiffness D in the equations presented in Refs.
(12,23):

I T
Local buckling occurs on the compression flange of box-
and I-beams in bending or in columns under axial compres-
sion. The flanges can be modelled as a plate elastically
supported by the webs (and possibly free at the edges,
depending of the shape of the section). The elastically
clamped edge can be modelled (12) as: flexible flange-web
connection, rigid flange-web connection, or hinged flange-
web connection.

Figure 4 shows local and global buckling loads for a 15 x
15 cm (6" x 6") I-beam as a function of the length of the
column. For ashort length, the flanges buckle in mode one
(m=1). The critical load reaches a minimum for a length
of 15 cm. For a longer length, the mode number increases
but the minimum critical load is constant. This implies
that the local buckling of the flanges is independent of the
length of the beam and only dependent on the axial load
applied, which agrees with the observed behavior in the full

_scale experimental program. The predicted wave length of

cm for an I-beam in bending. In Figure 6, the local and
global buckling load for a 10 x 10 cm (4" x 4") box-beam as
a function of the length of the column is shown.

\{g\cgm agrees with the measured wave length (Figure 5) of
1

As it is demonstrated by the experiments reported in Ref.
(13), local buckling of the compression flanges initiates a
process that leads to the collapse of the member. Predic-

400 Hinged
\ 277 Hastie \
Y = — Rigid
i Euler strong \
E\ Euler weak
300 1\ ®» Experimental \
1
z \
6200-
°§
1004
(] - s

Length (m)
Figure 4. Failure envelope for an I-beam.
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Figure 5. Post-buckling shape of the top flange of an I-beam.

200

Figure 6. Failure envelope for a box-beam.

tion of local buckling is therefore crucial for the prediction
of ultimate bending strength of the pultruded beams in
bending. Also, local buckling precipitates global (Euler)
column buckling for columns of intermediate length.
Therefore, it is possible to increase the bending strength
and column buckling resistance of pultruded structural
shapes by optimizing the material system.

OPTIMIZATION OF LT
THIN-WALLED COMPOSITE SECTIONS

Experimentally, it was observed (Figure 5) that the com-
pression flange of composite beams buckle in local modes
when the beam is subjected to bending. The post-buckling
deformations are large, which precipitate failure. Buck-
ling of the compression flange was the first failure event on
the three-point bending testing of several sizes of I-beams
of various lengths. The prediction of material properties
and the buckling analysis presented in Ref. (12) has been
correlated experimentally only for laminates with 0° rov-
ing, nexus, and continuous strand layers. The model is
applied in this section to other lamination schemes where
the 0° layers remain unchanged (Figures 7 and 8). The
thicknesses previously occupied by nexus and continuous
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Figure 7. Optimization of the lamination angle for an I-
beam.
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Figure 8. Optimization of the lamination angle for a box-
beam.

strand are replaced by angle ply layers. Since actual fiber
volume fraction achievable with angle ply layers in the
pultrusion process is not known, results for several volume
fractions from 20% to 50% are shown in Figures 7 and 8.
The fiber volume fraction of the 0° layers represents the
actual value of currently produced sections. Figure 7, for
a box-beam with elastic flange-web connections, indicates
that, according to this model, a [+45°] lamination gives the
largest critical load possible regardless of the fiber volume
fraction. Either 0° or 90° lamination gives the lowest
possible critical load for the buckling of the compression
flange. Figure 8, for an I-beam with elastic flange-web
connection, indicates the same trend..

CONCLUSIONS

This paper presents a complete, step by step, predictive
analysis of the stiffness properties of pultruded structural
shapes. The method starts with the process description of
the pultruded shape used by the pultrusion manufacturer
and successfully predicts the properties of interest to the
structural designer. Predicted properties for a

29



PULTREX™ structural shape coincide with full size test
results. Intermediate results also correlate well with cou-
~Jon testing on the same material. This is the first com-

prehensive treatment of the; prediction of structural
properties available to the pultrusion manufacturer. As
such, it is useful for development of new structural shapes
or improvement of existing ones. It is also useful for
estimation of structural properties of a large variety of
existing structural shapes, for which, a comprehensive ex-
perimental program may prove to be an extenuating task.
However, a selective experimental program may serve to
further validate and/or improve the methodology pre-
sented in this paper. The tools presented in this paper are
also useful for the prediction of strength, buckling, and
crippling, which are briefly presented here. The stiffnesses
predicted by the methodology of this paper are directly
applicable to structural design with pultruded structural
shapes.
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