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ABSTRACT: This paper deals with glass-fiber-reinforced plastic (GFRP) beams
produced by the pultrusion process. Pultruded composite members are being used
extensively as beams for structural applications. Widespread use is motivated pri
marily due to the light weight and corrosion resistance of composite materials. Low
cost, mass-produced pultruded beams are becoming competitive with conventional
materials like steel and reinforced concrete. Common structural shapes have open
or closed sections of thin composite walls. The ultimate bending strength of pul
truded composite beams is limited by various failure mechanisms. Most failure
modes arc precipitated by local buckling of the thin walls. Analytical models for
several local huckling modes are used in this work to model observed hehavior in
commercially available composite beams. Experimental data (or composite heams
are presented for comparison. Local buckling initiates a failure mode that eventually
results in material degradation and total failure of the beam. Due to the large
elongation to failure of the composite material, only postbuckling deformations
can subject the material to deformations large enough to produce failure. Exper
imental results are shown to sustain these arguments. Analytical models for local
buckling are developed and correlated with observed behavior.

INTRODUCTION

Conventional composite materials (e.g., reinforced concrete) have been
used in the construction industry for many years because they perform better
than the constituents themselves and better than competing homogeneous
materials. Advanced composite materials like fiber-reinforced plastics (FRP)
have been used primarily for aerospace applications. They offer many ad
vantages over conventional materials, such as light weight and resistance to
corrosion. Recently, low-cost polyester resins and glass-fiber-reinforced
plastics (GFRPs) are being considered for infrastructural applications. Other
constituents of relatively high cost (e.g., carbon fibers and thermoplastic
resins) can also be used in limited quantities.

From a broad range of manufacturing techniques available for the pro
duction of advanced composite materials, pultrusion appears to be the best
suited for infrastructural applications. In the pultrusion process, fibers are
pulled through a bath of resin, then'through a heated die that provides the
shape of the cross section to the final product (Fig. 1). Pultrusion is a
continuous process with an average output of 2 ftlmin (61 cm/min) of pris
matic sections of virtually any shape. Currently available shapes include 1
beams up to 12 in. by 6 in. (30 cm by 15 cm), 6 in. by 4 in. (15 cm by 10
cm) box beams, and a variety of other shapes. The resin system can be
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FIG. 1. Schematic of Pultruslon Process

tailored to requirements, such as corrosion resistance, and can include fire
retardance and ultraviolet. resistance.

Composite materials offer many advantages for the construction of public
works: light weight, corrosion resistance, energy absorption, tailoring of the
material to specific applications, modular construction, and ease of instal
lation. However, the application of composite materials to infrastructures
has been limited due to the lack of material properties, design methods,
and allowable stresses. Some of the aspects of the design and the associated
member properties have been addressed in the literature (Bank 1989). This
paper addresses the ultimate load capacity of composite beams manufac
tured by the pultrusion process with glass fibers and polyester resins, also
known as glass FRP (GFRP).

OBSERVED BEHAVIOR

Investigation of the bending behavior of FRP beams shows that the bend
ing stiffness is low compared to that of steel sections of the same shape. It
also indicates that shear deformation effects are important. This is a con
sequence of the relatively low modulus of elasticity of the glass fibers (when
compared to steel) and the low shear modulus of the polyester resin. Most
significantly, due to the large elongation to failure allowed by both the fibers
(4.0%) and the resin (4.5%), the composite material remains linearly elastic
for large deflections and strains (Fu et al. 1990). This is in contrast to the
cracking of concrete and plasticity of steel that occur usually with small
deflections and strains.

As a consequence of the large strains to failure that can be admitted by
the composite material, theoretical prediction of ultimate bending strength
based on linear bending theory grossly overestimates the load-carrying ca
pacity of the members (Barbero and Sonti 1991). However. this study shows
that local buckling of the compression flange of box and I-bearDS occurs in
the linear range of the material (top flange in Fig. 2). As a consequence of
local buckling, large strains are induced during postbuckling. These large
strains ultimately lead to the failure of the material (Figs. 3 and 4) and
subsequent total failure of the member.
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FIG. 2. Bending of FRP Beam Showing Buckled Top Flange

EXPERIMENTAL RESULTS

Coupon Testing
Limited coupon testing is performed to verify the accuracy of the micro

mechanical models used to predict composite properties from the material
properties of the constituents (fibers and resin). The samples were obtained
from the flanges and webs of the beams and tested in tension (Barbero and
Sonti 1991). The composite material is idealized as a laminated structure
(Fig. 5); each layer approximates a portion of the cross section characterized
by a particular orientation of the fibers. Even though the pultruded material
is not truly laminated, it does have different fiber syst.ems through the
thickness of the flanges and webs, which justifies the laminated modeling.

Each fiber system has a particular orientation (e.g., along the axis of the
beam for unidirectional roving; see Fig. 5), which influences the material
properties at that particular layer, with the maximum modulus of elasticity
being along the direction of the fibers. ·Each fiber system has also a different
fiber volume fraction Vt , Le., the percentage weight of fibers per unit weight
of the composite. The fiber volume fraction also has an influence on the
material properties, which can be computed using the rule of mixtures (Jones
1975) as:

£1 = VtEt + VmEm (1a)

E - EmE[
J2-·'E VE (lb)

m ...If + f m

G - GmG[ (1 )
12 - V G V G C

m f + f m

V12 = Vfvf + VmVm ••••••••••••••••••••••••••••••••••••••••• (1d)

I)QA

FIG. 3. First Failure of Top Flange

FIG. 4. Failure Propagation to Web

V,n = I - Vf . . . . . . . . . . . . . . . . . . . . . . . (Ie)

By considering the material to be transversely isotropic on each layer
(Jones 1975), only four material properties per layer are needed. £. and £2
are the modulus of elasticity of the lamina along the fiber direction and
transverse to it, respectively (Fig. 6). G12 is the in-plane shear modulus and
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FIG. 7. Structural Coordinate System and Sample Locations
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Case E)[msi (GPa)) E2 [msi (GPa)) VI2

(1 ) (2) (3) (4)

I-beam (measured) 2.9 (19.98) 0.85 (5.86) 0.26
I-beam (predicted) 2.74 (18.88) 0.72 (4.96) 0.27
Box beam (measured) 4.0 (27.56) 1.55 (10.68) 0.28
Box beam (predicted) 3.9 (26.87) 2.2 (15.16) 0.27

Note: These values do not necessarily represent actual properties ofmaterials currently
produced by a particular manufacturer.

Similarly, for the box-bealn, four longitudinal and four transverse specimens
cut from different locations along the axis of the beam are used to obtain
the same quantities. The experimental and predicted results are summarized
in Table 1. The predicted material properties of the walls of the composite
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to the stiffness of the composite .wall are added .together using classical
lamination theory (Jones 1975). Finally, equivalent material properties for
the entire composite wall are obtained. These equivalent material properties
correspond to an equivalent homogeneous, orthotropic material that in pure
tension behaves similarly to the original laminated composite.

In Table 1 we present a comparison of predicted (Barbero 1991a,b) and
measured values of the equivalent properties E1 and E2 for the flanges of
box and I-beams considered in this study. Five longitudinal specimens are
cut, four from the flanges and one from the web (as shown in Fig. 7) at
different positions along the length of an I-beam. They are instrumented
with a 0/90 rosette for determination of £1 and V12. Similarly, five transverse
specimens are used for the determination of E2 and V12. The following
analytical relationship between these values is used to check for consistency
in the experimental data:

E E2- = - (2)
V12 V21

TABLE 1. Measured and Predicted Values of Equivalent Properties of Flanges of
4 x 4 box and 8 x 8 I-Beams

y
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000000 roving 0
0 MAT
0
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" 0
0
0
0
0

MAT 0
000 roving 00'0 0

MAT

FIG. 5. Composition of FRP I-Beam

FIG. 6. Material and Structural Coordinate Systems

V12 the in-plane Poisson ratio. The subscripts f and m denote fiber and
matrix (resin) properties respectively.

The material properties of each layer (Fig. 5) are predicted in the material
coordinate system; i.e., on a coordinate system with the one-axis oriented
along the direction of the fibers, the two-axis perpendicular to the fibers,
and the three-axis transverse to the thickness of the composite wall (Fig.
6). Next, the material properties for each layer are transformed to a common
or global coordinate system (denoted by x,y,z in Fig. 6) with the x-axis
oriented along the axis of the beam (Fig. 7). The contribution of each layer
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Note: These values do not necessarily represent actual properties of materials currentlyproduced by a particular manufacturer.

Cross-section
dimensions I Eb[msi (GPa)] I Gb[msi (GPa)]

(1) (2) (3)
10 x 10 x 0.43-cm box 2.71 (18.67) 0.0
10 x 10 x 0.64-cm WFI 2.86 (19.71) 0.16 (1.10)
15 x 15 x 0.64-cm WFI 3.06 (21.08) 0.14 (0.96)
20 x 20 x 0.95-cm WFI 2.70 (18.60) 0.17 (1.17)

6
6
6

4.0

Four-point test
(3)

*

8
10
18
10

Three-point test
(2)

FIG. 9. Experimental Load-Deflection Data

TABLE 3. Equivalent Moduli

1.0 -i+ 0 D 0 0
0 *

~ *
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cP
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10 x 10 x 0.43-cm box
10 x 10 x O.64-cm WFI
15 'x 15 x 0.64-cm WFI
20 x 20 x 0.95-cm WFI

TABLE 2. Test Samples: Dimensions, Number of Tests, and Type of Tests
, i

Cross-section
dimensions

(1) ,

Inaterial properties and as a consequence, the stiffness of the member cannotbe varied by simply changing the moment of inertia of the section. It isproposed in this work that the moment of inertia and the equivalent modulusbe combined in a single parameter for each section. The bending stiffness
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FIG. 8. Experimental Setup for Full-Scale Beam Bending
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Full-Scale Testing
Three-point and four-point tests have been conducted on GFRP box andI-beams using the setup'shown in Fig. 8. The specimen is supported on twoconcrete blocks through cylindrical rollers that simulate simply supportedboundary conditions. The bending load is applied at the midspan by aremotely controlled hydraulic jack. The level of the applied load is monitored with a load cell. Dial gauges are used to measure deflections. Straingauges are used on the top and bottom flanges as well as on the web of thebeam to measure the longitudinal strains. Lateral deflections are preventedby the fixture shown in the Figs. 2, 3, 4, 8, and 10.
'"[he test specimens are pultruded box and I-beams manufactured by Creative Pultrusions Inc., Alum Bank, Pennsylvania. They are composed of Eglass fibers and vinylester resin (Creative Pultrusions 1988). A total of 64tests on I-beams and 8 tests on box beams are reported as summarized inTable 2. Typical plots of applied load versus measured deflection at thecenter of the beam are shown in Fig. 9 for three-point bending tests of boxand I-beams of various lengths. The behavior is linear over the full rangeof interest. The basic structural properties that can be computed from thisset of data are the equivalent bending modulus Eb and shear modulus Gb(Yu and Kincis 1985). The results are summarized in Table 3. A detailedtheoretical prediction of stiffness and comparison with experimental results

is presented by Barbero (1991a,b).
The equivalent moduli depend on the· cross-sectional size, shape, andarrangement of the fibers. Therefore, Eb and Gb cannot be considered

sections used in this work allows us to use analytical models developed inthis work to explore alternative material configurations and to proposeimprovements for currently produced pultruded materials. The analyticalmodels also allow us to get a better insight into the mechanisms of deformation and failure of pultruded composite members.



D = Eb • I completely characterizes the behavior of the member in bending.
Similarly, to account for shear deformation, the shear stiffness F = k· Gb • I
can be used, where k is the shear correction factor.

The experimental results showed that the composite beams can experience
large deformations and strains with the material remaining in the linear
range. Thus, stress analysis using an appropriate failure criterion for lam
inated composites (Barbero and Sonti 1991) over-predicts the ultimate bend
ing strength of the I-beams.

A 20-ft (6.1-m) I-beam shown in Fig. 8 experiences deflections beyond
the capacity of the testing setup without any material degradation. However,
at 1,500 lb (680 kg), the compression flange buckled in the region of max
imum bending moment. The buckling wave propagates as the load increases,
as shown in Fig. 2 for 2,500 lb (1,134 kg). The material remains linearly
elastic up to 3,300 Ib (1,496 kg) (Fig. 10), at which level the buckling
wavelength of 6 in. (15 cm) is measured. With a reduced span of 11 ft (3.35
m), the postbuckling deformations become very large at 4,000 lb (1~814 kg),
as shown in Fig. 3. The ultimate strain to failure of the fibers is reached at
the top surface of the compression flange. Then the material fails as indicated
in Fig. 3. The failure propagates for constant load to the web after a short
period of time (Fig. 4).

LOCAL BUCKLING ANALYSIS

I-Beam Analysis
Bending of an I-beam produces compression on the top flange. When the

critical buckling load is reached, the top flange buckles in a local mode.
Each half of the flange can be modeled as a plate elastically supported by
the web and free at the edge. Due to the periodic form of the buckling
wave along the length of the beam, the flange can be assumed to be simply
supported at any of the inflection points of the buckling wave. Three cases

FIG. 10. Postbuckllng Shape of Top Flange
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of the elastically clamped edge are examined here: flexible flange-web con
nection, rigid flange-web connection, and hinged flange-web connection.

For a laminated composite plate without bending-extension or bending
twisting coupling; the governing equation (Jones 1975) is

a4
w a4 w a4 w a2 w

D ll -4 + 2(D12 + 2D66 )~ + D22 -4 + Nx -2 = 0 (3)ax ux ayay ax

where w(x ,y) = the deformed shape of the plate of length a, when buckling
occurs, and can be represented by the function

w(x,y) = f fm(y) sin~ (4)
m-l a

which, when substituted into (3) for a specific mode number m, gives

( )

2
~& m~ a2&D22 --4 - 2(D12 + 2D66 ) - --2
ay a ay

+ [(:1TfD Il - Nx (:1Ty]fm = 0 (5)

The characteristic equation of (5) is

r - 2D2 (:1TYJ2 + [D3(:1Tf - k(:1T)] = 0 (6)

where

(D 12 + 2D66 ) Du N
xD2 = D ; D3 = -D; k = -D (7)

22 22 22

Since the critical load for a plate supported on one side is always larger than
the critical load for a wide column (Brush and Alnlroth 1975), we can take

k > D3(:7r)2 (8)

Therefore, (6) has two real and two imaginary roots:

f = ±a, ±J3 (9a)

{ ( ) 2 ( ) [ ()2 ] tl2} 1/2_ m1T m1T 2 _ m1T
a - D2 a + a (D 2 D3 ) a + k (9b)

'13 = { -D2 (:1TY + (:1T) [(D~ - D3 ) (:
1Tf + krnr

n
(9c)

Therefore, fm(Y) in (4) becomes

fm(Y) = A sinh ay + B cosh ay + E sin J3y + F cos J3y (10)

Plate Elastically Supported at y = 0
The boundary conditions for the flange, elastically supported at the web

are
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w(O,y) = 0; w(a,y) = 0; MAO,y) = 0; Mx(a,y) = 0 .. (l1a)

dW
W(X,O) = 0; Mix,O) = -d ay; My(x,b) = 0;

Qy(x,b) = 0 (lIb)

where d = the elastic constant of the support; Mx and My = the bending
moments; and Qy = toe shear force at the support. The first boundary
condition yields B + F = 0, which, when substituted in the second boundary
condition, yields

daA4 - D~2(a2 + ~2)B + d~E = 0 (12)

The third boundary condition yields

A [ D22 ex'2 - (m
a
7T)

2

D12] sinh exb + B [ D22(ex 2 cosh exb + ~2 cos ~b)

_ D12(':7TY(COSh exb - cos 13b)] - E[D12 (ma7TY

+ D22132] sin I3b = 0 (13)

The fourth boundary condition yields

A [(l3D22 - (D12 + 4D66 ) (ma7T)
2

(l] cosh (lb + B[Dzz«l3 sinh ay

_ 133 sin I3Y) - (D12 + 4D66 ) (ma7TY (ex sinh exb + 13 sin 13b)]

- E[D22 133 cos ~b + I3(D12 + 4D66 ) (ma7Trcos ~b] = 0 (14)

Eqs. (12), (13), and (14) form a linear homogeneous system of three equa
tions. For a nontrivial solution we set the determinant to zero, which gives
an eigenvalue problem from which we can obtain the buckling load and
buckling shape.

Plate Clamped at y = 0
In this case the elastic constant d approches infinity. Therefore, we divide

all the terms of (12) by d, which leads to

cxA + I3E = 0 : (15)

Plate Simply Supported at y = 0
In this case, the elastic constant of the support is d = 0, which simplifies

even further the system of (12), (13), and (14).

Box-Beam Analysis
Due to the symmetric construction of a box beam, any side can be sub-

jected to compression during bending. The flange can be modeled as a plate
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elastically supported by two webs. Due to the periodic form of the buckling
wave along the length of the beam, the flange can be assumed to be simply
supported at any of the inflection points of the buckling wave. Three cases
of the elastically clamped edge are examined here: flexible flange-web con
nection, rigid flange-web connection, and hinged flange-web connection.
The boundary conditions are

w(x,O)' = ° (16a)

w(x,b) = ° ' (16b)

iJw
Mv(x,O) = -d1 - •••••••••••••••••••••••••••••••••••••••• (16c)

. iJy

dW
M\.. = d2 - •••••••••••••••••••••••••••••••••••••••••••••• (16d)

. ay

where d 1 and d2 = the stiffness of the webs. The solution is taken in the
form of (4) and (10). The first boundary condition gives B + F = O. The
second boundary condition gives:

A sinh ab + B(cosh ab - cos ~b) + E sin ~b = 0 (17)

The third boundary condition gives

dlaA - D22 (a2 + (32)B + dl f3E = 0 (18)

and the fourth boundary condition gives

A[D22a 2 sinh ab + d2a cosh ab]+ B[D22(a2 cosh ab + ~2 cos ~b)

+ d2(a sinh ab + f3 sin fib)] - E[D22 fi 2 sin fib
- d2~ cos ~b] = 0 (19)

Eqs. (17), (18), and (19) form a linear homogeneous system of three equa
tions. For a nontrivial solution, we set the determinant to zero, which gives
an eigenvalue problem from which we can obtain the buckling load and
buckling shape.

CORRELATION WITH OBSERVED BEHAVIOR

The analytical solutions so far developed are used to model the members
for which full-scale testing in bending is reported. We used predicted equiv
alent properties for the material of the flanges and webs of the Inembers.
However, we could as well have used the measured properties obtained by
coupon testing, because the predicted and measured values correlate very
well (Table 1). It is significant that by using predicted properties, we can
use the· analytical model to predict the behavior of all currently produced
sections (in excess of 250 for one manufacturer alone) without extensive
coupon testing. We can also predict the behavior of suggested material
combinations not being produced yet, to evaluate the merits of different
options (Barbero and Raftoyiannis 1990; Fu et al. 1990).

In Fig. 11 we show the critical buckling load of the compression flange
of a 6 x 6 I-beam as a function of the wavelength. For a short wavelength,
the flange buckles in mode one (m = 1), i.e., in the shape of sin (m7r/a).
The critical load reaches a minimum for a wave length of 6 in. (15 em)
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(dashed line in Fig. 11). For a longer wavelength, the mode number increases
but the minimum critical load is constant. This implies that the wavelength
is irrelevant, which supports our assumption of a simply supported boundary
at the inflection points along the length of the beam. It also implies that
the local buckling of the compression flange is independent of the length
of the beam and only dependent on the maximum bending moment applied.
All these observations agree with the observed behavior in the full-scale
experimental program. The predicted wavelength of 6 in. (15 cm) agrees
with the measured wavelength of 6 in. (15 cm) in Fig. lO.

Three different boundary conditions were used to simulate the support
provided to the flange ~y the web. The clamped boundary condition seems
to model the observed behavior more accurately than a hinged or elastically
supported flange. This is because the web thickens near the intersection
with the flange. For the elastic support we use the bending stiffness D22 of
the web.

The critical load reported in Fig. 11 is the stress resultant value acting on
the flange. This value translated to actual bending moment on the beam
overpredicts by 15% (for clamped flange), the value for which buckling
initiation was observed (Fig. 11). The elastically supported boundary pre
diction correlates better. However, the influence of initial imperfections are
certainly the cause for this minor discrepancy.

In Fig. 12 we show the critical buckling load of the compression flange
of a 4 x 4 box beam as a function of the wavelength. Three different
boundary conditions were used to simulate the support provided to the
flange by the webs. For the elastic support we use the bending stiffness D22
of the webs.

Even though the model used for the box and I-beam are entirely different,
both predict the same type of results; namely, that the local buckling load
is independent of the wavelength. As the experiments demonstrate, local
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buckling of the compression flanges initiates a process that l~ads to the
collapse of the member. Prediction of local buckling is therefore crucial for
the prediction of ultimate bending strength of the pultruded beams in bend
ing.

CONCLUSIONS

Excellent correiation between analytical and experimental results are ob
tained. 't is demonstrated that the ultimate bending strength of GFRP beams
is reached as a consequence of local buckling of the compression flange.
The buckling load can be accurately estimated by the analytical models
developed here. The usefulness of micromechanical analyses is demon
strated. Application of the analytical model to optimization of the material
will be presented in a related paper.
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NEW METHOD·."OR MEASURING·PORE SIZE

DISTRIBUTIONS IN CONCRETE

By Brett W. Gunnink,l Associat.e Member, ASCE

ABSTRACT: A new method for measuring the pore size distributions (PSDs) of
saturated porous materials has been developed. With this new methodology, re
fe'rred to as conductometric phase transition porosimetry (CPTP), the changes in
electrical conductance and temperature of saturated porous materials that have
been subjected to a cycle of capillary freezing and melting are measured and used
to calculate PSD. Based on this methodology, a porosimeter was constructed.
Methods and procedures for determining the PSD of 4-in. (lO.6-cm) diameter by
4-in. (lO.6-cm) high portland cement mortar and concrete cylinders are introduced.
The CPTP method has been found to be free of the problems of entrapment of
mercury inherent to mercury porosimetry. Also, the pressures a sample is subjected
to during testing are much less than those necessary with. mercury porosimetry.
Therefore, deformation or destruction of pores is less. It is well known that for
many geomaterials, pore structure is dependent on moisture content. With CPTP,
samples do not have to be dried prior to testing as with other techniques.

INTRODUCTION

A new method for measuring pore volume-pore size relationships (pore
size distributions) of. porous materials has been developed. This new meth
odology has been referred to as conductometric phase transition porosimetry
(CPTP). The inventors of this new methodology have previously identified
(Gunnink etal. 1988) two significant advantages that CPTP has over other
available porosimetry methods. These include the minimal sample prepa
ration necessary with CPTP, which results in less disturbance of the sample's
pore structure during testing,· and the ability to determine pore size distri
butions of large samples, much larger than those other porosimeters can
test, which minimizes sampling errors. Because of these advantages, CPTP
is especially well suited for the analysis of heterogeneous water-sensitive
materials including soils, aggregates, and concretes. The purpose of this
paper is to introduce an experimental method that has been developed for
the determination of the pore size distribution (PSD) of portland cement
concrete cylinders.

"fhe determination of PSD is important in the characterization of a wide
variety of materials. Two independent methods have found large-scale ap
plication for PSD analysis. The first is mercury porosimetry. Two problems
associated with this method have not been solved satisfactorily: (1) The
mercury/matrix contact angle; and (2) the entrapment of mercury during
extrusion. The second method, the capillary condensation method, makes
use of the well-known Kelvin equation. It is an elaborate and time-consum
ing method, and results vary with the adsorbate used. With each method,
it is necessary to dry samples as part of the test. Also, each is capable of
testing small-size samples only (lor 2·g).

Recently, several methods have been introduced that allow the testing of
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