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Nonlinear Analysis of Composite Laminates
Using a Generalized Laminated Plate Theory

E. J. Barbero·
West Virginia University, Morgantown, West Virginia 26506

and
J. N. Reddyt

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

The nonlinear version of the generalized laminated plate theory of Reddy is presented, and it is used to
investigate nonlinear effects in composite laminates. A plate-bending finite element based on the theory is
developed, arid its accuracy is investigated by comparison with exact and approximate, solutions to conventional
plate theories. The. element has improved description of the in-plane as well as tbe transverse deformation
response. The theory is further applied to study various aspects of the geometrically nonlinear analysis of
composite plates. It is shown that inclusion of the geometric nonlinearity relaxes stress distributions and that
composite laminates with bending-extensional couplhig do not exhibit any bifurcation (i.e., no apparent critical
buckling load exists).

Formulation of the Theory

The principle of virtual displacements is used to derive a
consistent set of differential equations governing the equi-

Displacements and Strains
The displacements (u I ,U2,U3) at a point (x ,y ,z) in the lami­

nate are assumed to be of the form2

where (u ,v, w) are the displacements of a point (x ,Y ,0) on the
reference plane of the laminate, and U and V are functions
that vanish on the reference plane:

(2)

(1)

avow
2E v• =- +-." oz ay

U(x,Y,O) = V(x,Y,O) = 0

Ul(X ,y ,z) = u(x ,y) + u(x ,y ,z)

U2(X,Y,Z) = v(x,y) + V(x,y,z)

U3(X,Y,Z) = w(x,Y)

au aw
2E,.- =- +-,." az ax

The displacement field in Eq. (1) forms the basis of the present
theory.

The von Karman strains associated with the displacements
in Eq. (I) are given by

E . = au + au +! (aw)2, i = av +av +! (OW)2
.\ ax ax 2 ax Y ay oy 2 oY

2E
rv

= (au + av) + (au + OV) + ow ow (3)
'. ay ox oy ox ox oy

element ~odelt 'and to utilize the m~el to investigate the
effects of geometric nonlinearity on stresses and load-deflec­
tion behavior of composite laminates. The finite element
model developed herein accounts for the von Karman nonlin­
ear strains. A series of numerical examples are presented that
provide insight into certain interesting behavior of laminated
composite plates. Stress relaxation and stiffening of' trans­
versely loaded laminates during nonlinear bending is demon­
strated. The usefulness of bifurcation analysis in compres­
sively loaded asymmetric laminates is investigated.

l#~j, ~

f':,-}~ Introduction
~":AMINATED composite plates are relatively weak in shear
Lcompared to their metallic counterparts because of their
lOw transverse shear moduli. The single-layer classical' and
shear deformation theories based on a continuous displace­
ment field through thickness are adequate for predicting
alobal response characteristics, such as maximum deflections
stresses and fundamental natural frequencies. The first-order
and higher-order shear deformation theories l yield improved
,Iobal response over the classical laminate theory because the
(ormer account for transverse shear strains. Both classical and
refined plate theories based on a single continuous displace­
ment field through thickness give poor estimation of interlam­
inar stresses. The fact that some important modes of failure
are related to interlaminar stresses motivated researchers to
search for refined plate theories that can model the layer-wise
kinematics appropriately and predict interlaminar stresses ac­
curately.2-5 For example, a study of localized damage (e.g.,
delaminations) requires a more precise representation of the
laminate deformation than that allowed by the equivalent
single-layer laminate theories.

The generalized laminate theory proposed by Reddy2 and
advanced by him and his colleagues" 7 allows layer-wise repre­
sentation of the displacement field and results in an accurate
determination of stresses. With the choice of linear approxi­
mation of the in-plane displacements through the thickness of
each layer, continuous interlaminar stresses can be recov­
ered.5- 7 Analytical solutions of the linear theory were devel­
oped for plates' and cylindrical shells7 to evaluate the accuracy
of the theory compared to the three-dimensional elasticity
theory. The results indicated that the generalized laminate
plate theory allows accurate determination of interlaminar
stresses. Furthermore, this theory provides a detailed descrip­
tion of the laminated nature of the plate, adequate for the
study of localized damage.

The~tesent study is an extension of Reddy's theory2 to
illSlude geometric nonlinearity, to develop its nonlinear finite
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librium of a laminate composed of N constant-thickness or­
thotropic lamina; the material axes of each lamina are arbi­
trarily oriented with respect to the laminate coordinates.

n

V(x ,y ,z) = E yJ(x ,y)cI>J(z) (4b)
J= 1

where uJand vJare undetermined coefficients and ~J are any
continuous functions that satisfy the condition

Governing Equations

The nonlinear equations relating u, y t w, uJ, and yi can be
derived using the virtual work principle. Substituting Eqs. (4)
intolnevirtualwotk principle (see Ref. I), we obta.in the weak
(or variational) statement of the present theory,

Thickness Approximation

In order to reduce the three-dimensional theory to a two-di­
mensional theory, it is necessary to make an assumption con­
cerning the variation of U andiV with respect to the thickness
coordinate z. To keep the flexibility of the degree of variation
of the displacements through thickness, we assume that U and
V are approximated as

(8)

Force (natural)
Nxnx + Nxyny

Nxynx + Nylly

Q~nx + Q/'y
N0x + N~>!,y
N~yflx + NJ,ny

Ox Qll Ql2 Ql6 0 0 Ex

Oy Ql2 Q22 Q26 0 0 Ey

Oxy Q16 Q26 Q66 0 0 2EXY (9)
0y: 0 0 0 Qss Q4 2Exl

°Xl. (k) 0 0 0 Q4S Q (k) 2Ey: (k)

Geometric (essential)
u
v
w
uJ
yi

where (nx,ny) denote the direction cosines of a unit normal to
the boundary of the midplane O.

Substitution of Eg. (9) into Eq. (6b) gives the following lami­
nate constitutive equations:

Constitutive Equations

The co"nstitutive equations of an orthotropic lamina in the
laminate coordinate system are given by

where N(w) is due to the inclusion of the von Karman nonlin­
earity in the theory

N(w) =~(Nxaw + Nx ow) + ~(Nx aw + N aw) (7b)ax ax Y ay ay Y ax y ay

There are (2n + 3) differential equations in (2n + 3) variables
(u,y,W,Ui,yi). The form of the geometric and force boundary
conditions is given below

(4a)
n

U(x ,y ,z) = E uJ(x ,y)cI>J(z)
J = 1

~J(O) = 0 for all j = 1,2,...• n (5)

The approximation in Eqs. (4) can also be viewed as the
global semidiscrete finite element approximations of Uand V
through thickness. In that case, 4»j denotes the global interpo­
lation functions, and uJ and vJ are the nodal values of U and
V at the nodes through the thickness of the laminate. A
number of other well-known theories can be obtained from
the present theory. 1.2.9

o= f (Nx(aou + aw aow) + N (aoy + aw aow) + N
xJot ax ax ax Y ay ay ay "Y

x (aou + Bay + aw aow + aaw aw) + Qx ac5w + Q aow
ay ax ax ay ax ay ax y ay

+, f; [Ni aoui + Ni aO,yJ + Ni ,(ao,u
j
+ aoyj)

j = I x ax Y ay xy ayax

+ QixUi + Q1vi] - pow) dA (6a)

where p is the distributed transverse load, and

(6b)

The Euler-Lagrange equations of the theory are

Nx,x + N xy" =0

Nxy,x + N.v" = 0

Qx,x + Q", + N (w) + P =0

N{,x + N{v,.v - ~ = 0

N.f:v.x + ~~,.v - Q:t = 0; j = 1,2,... , n (7a)

N x All A l2 A l6 0 0

Ny A I2 A 22 A 26 0 0

Nxy A 16 A 26 A 66 0 0

Qx 0 0 0 Ass A 4S

Q, 0 0 0 A 4s A 44

au +! ewy
ax 2 ax

av +!eW)2
ay 2 ay

au av awaw
x -+-+--ay ax ax ay

ow-ax

aw-ay

B{I B{2 B{6 0 0
auJ
-ax

B~2 B~2 B~6 0
avJ

0 ay

" auJ ayJ
+ E B{6 B~6 B~ 0 0 -+-

J&l ay ax

0 0 0 Bss B~s uJ

0 0 0 B4S B~ yi (lOa)
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(12a)

(12c)

(12b)

IE) = (8)14)

(ti J = [11) I~ )

. T ., .,
(AI I = Iu1,vtt ... ,u~, v1" )

where

(13)

[k II) [kl 2)

[k;IJ [k;;]

The finite element model is given by

Finite Element Formulation
The generalized displacements (u, v, w,ui , vi) are expressed

over each element as a linear combination of the two-dimen­
sional interpolation functions t/li and the nodal values
(Uu Vi, wi,ul, vI) as follows':

Similarly, the nonlinear component of the strains can be writ­
ten in the form

where m is the number of nodes per element. Using Eqs. (3)
and (4), the linear components of the strains can be expressedin the form

m

(u, v, W.U i , vi) = E (Ui, Vi' Wi.Ut, V{}1/I; (II)
i. I

The matrices (B), [11), and (BNLJ are given in Appendix A.
Using Eqs. (12) in the virtual work statement of Eq. (6a), we
obtain

o= 10 (16.:1) T[B)T[A ][B](.:1) + 16.:1) 'lB)T~A )[BNLJl.:1)

+ 2164 JT(BNL]T(A )(B) (4 J + 2( 641 T(BNL]T[A )[BNLJ 14 J
N

+ E 1I64)T[B)T(BjJ(b](~1 + 2(6~IT[BNl]T(B1[1I)(~)
j

+ (6Ai JT(B) T{8J) (8) (4 J + (6t.i IT(b) T(BiJ[BNL)(4)
N

+ E (18~JT[B]T(Di'][1I]14'))J -p8w) cIA,

(lOb)
Uk

auk
ax

av k

ay

auk 8vk
-+-By ayx

J \ ..'
"

B{. B/2 B{, 0 0

B{2 B~ B~ 0 0

Bf6 B~6 Btt, 0 0

0 0 0 B~s B~s

0 0 0 B~s B~

au +! ewyax 2 ax

clv +! eW)2ay 2 By

au 8v awawx -+-+--ay ax ax ay
aw-ax
8w-ay

Df~ D(~ Df: 0 0

Df: ~~ ~ 0 0
n

+E D{: ~: ~ 0 0
Ie. I

0 0 0 D" ~~

0 0 0 D4, ~

[k~I] [k~~J

where

(JOe)

where the submatrices (k II), (k}2], [k]I), [kjf) with iJ = I, ... ,
N are given in Appendix B. The load vectors (q) •
(ql) ••. (qNJ are analogous to 14), 1411, ... (4N J in Eq.
(12b). The nonliner algebraic system is solved by the Newton­
Raphson algorithm. The components of the Jacobian matrix
are given in Appendix B.

The in-plane components of the stresses (ox,a)',aXY ) and
their inplane derivatives (ax•x ; o,"'.v: ox)'.:; OX,",)') are computedfrom the constitutive equations for each layer, Le.•
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x

au +! (aW)2 + f; iJu
j

t/;j

ax 2 ax j= I ax

av +! (aw)2 + f; iJv
j

t/;j

ay 2 oy j= I ay

au avow ow , ;, (ou j aVj
) .1.-+-+--+i.I -+-. 'Y.ay ax ax ay j =• oy ax J

(14)

Figure 2 contains the transverse deflection as a function of
the load parameter, which compares well with that of Ref. 10.
For isotropic plates, the distribution of stresses and displace­
ments through the thickness is linear, as shown in Fig. 3. :The
maximum stress, at the surface of the plate, is due to bending.
The effect of the nonlinearity is to reduce the value of stress at
the top and bottom surfaces and to increase it at the middle
surface of the plate. The stress results presented in Fig. 3
correspond to the point: x = 0.9730, y = 0.5270.

0xz.z = - (ox.x + Oxy,y)

Next, the interlaminar shear stresses (0.\4 and Oyz) are recov­
ered6 from the equilibrium equations

The nonlinear equations are also linearized to formulate the
eigenvalue problem associated with bifurcation (buckling)
analysis,

(17)

u =cP. =0 at x = 0

v = cP2 =0 at y = 0

E1 = 250 GPa, £2 = 20 GPa, 0 12 = 0'-3 = 10 GPa

v = w = tP2 = 0 at x = Q /2

u = w = cP. =0 at y = Q /2

0 23 =4 GPa, "12 =0.25

Cross-Ply [0/90] Simply Supported Plate under Uniform Load

A simply supported cross-ply [0/90) laminate under uni­
form transverse load is analyzed. The geometry used is the
same as in the preceding example. The following material
properties and boundary conditions are used:

(15)

(16)([KD ) - X[KG )) • 4> = 0

where [KD ] is the linear part of the direct stiffness matrix (13),
and [KG) is the geometric stiffness matrix obtained from the
nonlinear part of Eq. (13) by perturbation of the nonlinear
equations around the equilibrium position. 13

Numerical Examples
The first couple of sample problems are intended to validate

the nonlinear finite element model developed herein. The
problems of composite .laminates are seleGted to illustrate cer­
tain aspects of the solution that are not often seen in isotropic
plates or even symmetric laminates.

where cPl(X,y) and cP2(X,y) are the rotations about the y and x
axes, respectively. These rotations can be expressed in terms of
the uj and vj at the nodes. For example, tP2(X,y) = 0 is satis­
fiedby -setting all vi =0 through the thickness at· that (x,y)
location.

- - - Unear
__ Nonlinear

DDDDD Ref. 10
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Fig. 1 Load-deOection curve for a clamped Isotropic plate under
tnnsverse load; results from GLPT compared to those of Ref. lO~

Clamped Isotropic (" = 0.3) Plate

Consider a clamped square plate of side 0 = 1000 mm,
thickness h = 2 mm, and subjected to uniformly distributed
transverse load p = Apo (Po = lOO N/m2). Figure 1 shows the
variation of uxxlp at the top, bottom, and middle surface of
the plate as a function of the load parameter X. A 2 x 2 mesh
of nine-node quadratic elements is used in a quarter plate. The
stress is obtained at the Gauss point, x = O.973a,...,y =
0.5270. It is clear that the effect of the geometric nonlinearity
is to reduce the maximum stress from the value predicted by
the linear theory. As can be seen from Fig. 1, the membrane
effects dominate over the bending effects as the load is in­
creased. The linear theory overestimates the stress at the sur­
face and underestimates it at the middle surface. Composite
materials, usually stronger in tension than in shear, can be
used more efficiently in situations where membrane forces are
significant.
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.~il. I Maximum stress as a function of the load for a clamped
Isotropic plate under uniformly distributed transverse load shows the
stress relaxallon as the membrane effect becomes dominant.

.~i&. 3 DlstribuUon of the in-plane normal stress lIu for a clamped
isotropic plate under traDsverse load for several values of the load
showing the slress relaxalion as the load Increases.
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Fil.4 Simply supported cross-ply (0/90) plate under transverse load;
both theories. GLPT and FSDT, and botb models. 2 x 2 quarter plate
and 4 x 4 lull plate, product tbe same transverse denectlons.

Fil. 6 Through the thickness distribution of the in-plane normal
stress flu for a simply supported cross-pi, [0/90) plate for several
values of the load.
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Fla. 5 Through the thickness distribution of the in-plane norma'
stress flu for a simp" supported cross-pi, (0/90) p'ate for several
values of tilt load. I

Fia. 7 Load-denKtion CU"fS for a simply supported angle-ply (45/
-45) plate under trans\'erse load. obtained from a 2 x 2 quarter-plate
model and a 4 x 4 full-plate model using GLPT and FSDT.

In order to investigate the effect of the symmetry boundary
conditions, results.on both a 2 x 2 quarter-plate and a 4 x
4 full-plate model are reported in Fig. 4. For cross-ply plates,
the symmetry boundary conditions used in the quaner-plate
model are found to be identical to the correspondina values
obtained from the full-plate model. Therefore, the maximum
transverse deflections as a function of the load parameter ~,
shown in Fig. 4, are identical for both models. This turns out
not to be the case for angle-ply laminates as we shall see in the
next example. Note that both the first-order shear deforma­
tion theory (FSOn and the generalized laminated plate theory
(OLPT) predict identical values of the transverse deflection w
in Fig. 4 because the shear deformation effects are negligible
for the thickness ratio (a/h = 5(0) considered in this exam­
ple. The distribution of the in-plane normal stress au at x =
y = O. '26a is shown in Fig. S, and the distribution of the
interlaminar shear stress ax:. at x = 0.9730, y = 0.5260 is
shown in Fig. 6. The values of stresses reduce with the increas­
ina load. The reduction of interlaminar stresses is of definite
significance for composite materials, usually stronger in ten­
sion than in shear.

Simply Supported Anl~·PI, (45/ - 45) Plalf under Uniform Load
In order to investigate the effect of the symmetry boundary

conditions for angle-ply laminates. we consider a 2 x 2 mesh
to model a quarter of a plate and a 4 x 4 mesh to model the
full plate. The nine-node quadratic element is used. The mate­
rial properties, load, and geometry are the same as in the
preceding example. Load-deflection curves obtained from
both models are shown in Fig. 7. A discrepancy between the
load-deflection curves of the two models is observed; the full
model is more rigid. In order to explain this discrepancy, it
must be noted that the symmetry boundary conditions used in
the quarter-plate model were derived II using the exact solution

to the linear problem formulated in terms of the FSDT. For
the angle-ply case, the assumed GLPT solution is

• XT yru = USln-cos-
Q b

v = V cos~ sin y r
Q b

w = W sin xr sin yr
o b

. 1. xr. yr
vJ = VJ cos - sin -

Q b

ui = Vi sin~ cos yT (18)
Q b

which satisfies both the displacement and stress symmetry
boundary conditions at the centerlines ( x = Q /2 and y =b /2)
of the plate for the linear case:

V(Q /2.y) = uJ(o12,)1) = 0; NI(a /2.)') =N~(Q /2,y) = 0

u(x .bI2) = vi{x .bl2l =0; N2(x ,b12) = N{(x .b/2) =0 (19)

However, once the nonlinear terms are incorporated into the
stress resultants of Eq. (J Oa), the force boundary conditions
are no longer satisfied:

rw2
N I(Q/2.y) = A,l 2b 2 cos2(Yrlb);II! 0

rw2
N2(x,bI2)=A I2 2Q 2 cos2(yr/Q)~O (20)
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-0.50 -t-r--+-+-....,...~r--r-.....-+-~.........-r-~
0.0 0.5 1.0 1.5

Inplane displacement u(z)

Fig. 8. In-plane displacements U(4) = (u (4) - uoJO.201Vmall' at x
11/2, y = 3bl4 for a (45/-45] laminated plate under uniformly
distributed transverse load, where Uo is the middle surface displace­
ment.

_ GLPT [+45/-45)
eeeee FSOT [+45/-45]
___ GLPT ORTHOTROPIC

66666 F'SOT ORTHOTROPIC

Buckling and Postbuckling of Angle-Ply [451 - 45] and Cross-Ply
[0190] Laminates under In-Plane Load

A plate with a =b =1000 mm, h =2 mm is used to analyze
a [45/ - 45) simply supported laminate under uniform in-plane
compressive load Ny = ANyO (NyO = 10.85 N/m). The material
properties used are E}/£2 =40; £2 =6.25 GPa; 0 12/£2 =0.82;
0 13 =0 12; 0 23/£2 =0.52; JlI2 =0.24. Although an exact solu­
tion of the eigenvalue problem associated with the buckling
equations exists for this case,}2 the boundary conditions used
to obtain that solution cannot be used for the nonlinear anal­
ysis. For the nonlinear analysis, the boundary conditions have
to allow an applied load t Nx =0 and Ny ="AN)(). The nonlinear
response is shown in Fig. 10, normalized with respect to the
critical load obtained by an analytical solution. It is evident
that the nonlinear analysis estimates the critical load accu­
rately. An excellent correlation between GLPT- and FSDT­
predicted·deflections is observed.

l'heeigenvalue problem, which leads to an accurate predic­
tion of the critical load for laminates without bending-exten­
sion coupling, is formulated with the assumption that pre­
buckling deformations do not include nonzero transverse
deflections. This assumption is not satisfied in the next exam­
ple.

."Ig. 10 Load·d,nectlon~u"es for angle-ply (45/ -45] and or­
thotropl~ simply supported plates under in-plane load N).•

0.00.0 2.0 4.0 6.0
Maximum deflection w [mm J

2.0 _-----.....o--- ~

effect of the aluminum layers that contribute to the averaged
~hp~r ~tiffnpc-<: nf thp plate with their hhzh shear modulus.

TheGLPT assumes a constant value of the shear strain AyZ

on each individual layer. Consequently, GLPT predicts large
shear strains in the Aramid layers that lead to the correct value
of the shear stress uy;, as shown by solid lines in Fig. 9. The
integration of the equilibrium equationss.6 that takes into ac­
count the layer-wise constant value of.ayZ produces a parabolic
distribution of a.,z on each layer as shown in Fig. 9. Further
comparisons of fnterlaminar stress distributions with three-di­
mensional elasticity solutions and various plate theories can be
found in Refs. 5, 6, and 13.

\ +45 __ A • 1 linear
,~ ~ , - - - A - 1 nonnneo
\ , - - A == 10 nonlinear
\\ ',---- A == 20 nonlinear
\\ ", ,
"\ ", ,, ,

.c
~
I) 0.25
"0c
~,8-0•00

UJ
UJ
Q).i -0.25
o
:E
t-

Since. the force boundary conditions are automatically set to
zero in a finite element model in which corresponding dis­
placements are not specified, the problem solved is not the one
in which Eq. (20) is valid. Since a plate with nonzero in-plane
forces is stiffer than with zero in-plane forces, the associated
transverse deflections will be different with the quarter-plate
model yielding larger defleQtions. Note that the transverse
deflections predicted by GLPT compare very well with FSDT
in Fig. 7.

I t can be shown that the normal to the middle plane does
not remain straight after deformation, as is assumed in FSDT.
The distribution of in-plane displacements of the point x = 0,
y =30/4 (relative to the middle surface displacement) through
the thickness of the laminate is shown in Fig. 8. With increas­
ing load, the bending effect reduces and so also the departure
of the distribution of in-plane displacements from a straight
line.

Hybrid Composite Laminates

This exampl.e is included to compare the prediction of inter­
laminar shear stress obtained with the FSDT and the GLPT
presented in this work. Consider a five-layer laminated plate
composed of aluminum and Aramid layers. Each aluminum
layer is 0.03048 mm thick, and each Aramid layer is 0.0288
mm thick (see Fig. 9). The plate is simply supported and
subjected to a uniformly distributed transverse load. The dis­
tribution through the thickness of uY4 = [(h/po Q») uY:' is shown
in Fig. 9.

The FSDT assumes a constant value of the shear strain 1'Y1.

through the entire thickness of the plate. Consequently, FSDT
pr04u~~_~ a layer-wise constant value of uY1.predicting a low
value of ayZ in the Ai-amid layers due to their small shear
modulus and to the fact that the shear strain is small due to the

A.

A. : [oleo)
B·: [0/801.
C : [o/eOl s
o : [0/901.
_GLPT
00000 F'SDT
+++++ Eivenvalue

1.0

3.0 .,....--~--"lIIlt---...,....-----r.....

~
Z
~
Z

2.0
"'0
o
.3

O.oo't!..........""!'~.O!"'"""""!2~.0!"""".".3t."'1.0~""'"':"4.~O ~"!"15.0
Maximum deflection w [mm]

.r;

~ 0.3
I)

'0
.5 0.1
"f
oo
C)_o.,

=I)c:
~-0.3

~

-0·8.

0.5 ....-c::~----.....----__-...

Fig. 9 Through the thickness distribution of the intertamlnar stress
iT)': =(hIPolI»)C1).: In a simply supported plate under uniformly dis­
tributed transverse load po.

.'Ia. II Antlsymmetric cross-ply simply supported. subjected to in"
plane load NJ.; the crUicailoads from a closed form solution (eigenval..
ues) are "hown on the correspondina load-deflection curves.
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An antisymmetric cross-ply iminate under in-plane load The matrices (B), (bl, and (BNd appearing in the strain-dis-Ny =).N,o (iv,o=6.2S N/m) is4Pnsidered next. In this case the placement relations of Eqs. (12) areprebucklingtransverse deflections are important. The geome-
try and material properties are the same as· in the preceding
example. The simply supported boundary conditions of cross-
ply laminates [see Eq. (17) and 55-1 in Ref. II) are used for
the 4 x 4 full-plate model (although the 2 x 2 mesh in a
quarter plate would be aU right in this case). In order to assess
the effect of the number of layers. four laminates are analyzed
as shown in Fig. JJ where (0/90) is a two-layer laminate.
(0/90)2 is a (our-layer laminate. etc. The values of the critical
buckling load given by the exact. solution of the eigenvalue
problem 12 are depicted on the corresponding load-deflection
curves for comparison. It is evident that in this case the
eigenvalues are not representative of any bifurcation points of
the structure. The structure behaves nonlinearly for all values
of the load. 13

a,pi
0ax

0
a1/li
ay

(ll] = 8t/i; a.;;
ay ax

(5 x 2 m)
t/ij 0

0 tit;

Conclusions
The nonlinear version of the OLPT and its associated finite

element models are developed. The OLPT proves to be an
accurate theory for the nonlinear analysis of laminated com·
posite plates. It provides the correct global response and
highly accurate prediction of stress distributions. which are of
paramount importance for the assessment of damage and life
of composite structures. The model is validated with a variety
of examples that also Serve to highlight certain interesting
features of certain laminated composite plates. The effect of
symmetry boundary conditions on the nonlinear analysis and
the effect of bending extension coupling on the buckling anal­
ysis of laminated plates are also investigated. Stress relaxation
dy~ J~noj}linear_~ffectsjs-shown-to--be-aJ1--im-pefla-nlfactorin
the design of composite plates. An extension of this theory to
model buckling of delaminated plates is reported ·in Ref. 13.

Appendix A: Strain-Displacement Matrices
The strains Ie It 1'1 J t and IeJ J appearing in Eqs. (12) are

o o

au aui
ax ax
8v 8vJ- -ay ay

Ie) = au av
leiJ = aui avJ-+- , -+-ay ax ay ax

aw
uJax

aw
vi-ay

0 0 aw 8",
ax ax '.-

0 0
awat/t;
ayay

I
0 0

awat/t; aWaVti[BNl) =- --+--2 ax ay ay ax
(S x 3 m)

0 0 0

0 0 0

with (i = 1,.. Of m).

!ewy
2 ax

!ewy
2 ay

I,,) = awaw--ax ay
0

0

Appendix B: Stiffness Matrices
[k II) =.\u«B]T(A HBl + (B]T[A )(BNll + 2[BNl )T(A ][B)

+ 2[BNI .lT(A J[BNI~l)dO

[k}2) = JU(IB)T(Bi][B] + 2[BNJ T(Bi][8])dO

(k}') =Ju(8)T(Bi)[B) + [11] T[Bj) [BNl))dO

[kJ;2] = Ju«B) ~(Di1 (8])dO
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The Jacobian matrix is
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