et

ind YoV

¢ March 1990, Vol. 28, No. 3, AIAA Journal

Voo e Ny AL LS S N

u
«
C

General Two-Dimensional Theory of Laminated
Cylindrical Shells

E. J. Barbero® and J. N. Reddyt
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

and

J. L. Teplyt
Alcoa Technical Laboratory, Alcoa Center, Pennsylvania

A general two-dimensional theory of laminated cylindrical shells is presented. The theory accounts for a
desired degree of approximation of the displacements through the thickness, thus accounting for any disconti-
nuities in their derivatives at the interface of laminae. Geometric nonlinearity in the sense of the von Kirmsin
strains is also included. Navier-type solutions of the linear theory are presented for simply supported boundary

conditions.

Introduction

AMINATED cylindrical shells are often modeled as

equivalent single-layer shells using classical, i.e., Love-
Kirchhoff shell theory in which straight lines normal to the
undeformed middle surface remain straight, inextensible, and
normal to the deformed middle surface. Consequently, trans-
verse normal strains are assumed to be zero and transverse
shear deformations are neglected.!-> The classical theory of
shells is expected to yield sufficiently accurate results when the
lateral dimension-to-thickness ratio s/A is large, the dynamic
excitations are within the low-frequency range, and the mate-
rial anisotropy is not severe. However, application of such
theories to layered anisotropic composite shells could lead to
as much as 30% or more errors in deflections, stresses, and
natural frequencies.*$

As pointed out by Koiter,” refinements to Love’s first ap-
proximation theory of thin elastic shells are meaningleéss unless
the effects of transverse shear and normal stresses are taken
into account in a refined theory. The transverse normal stress
is, in general, of order h/a (thickness-to-radius) times a bend-
ing stress, whereas the transverse shear stresses obtained from
equilibrium conditions are of order /¢ (thickness-to-length
along the side of the panel) times a bending stress. Therefore,
for a/¢> 10, the transverse normal stress is negligible com-
pared to the transverse shear stresses.

The effects of transverse shear and normal stresses in shells
were considered by Hildebrand et al.,® Luré,® and Reissner, '°
among others. Exact solutions of the three-dimensional equa-
tions and approximate solutions using a piecewise variation of
the displacements through the thickness were presented by
Srinivas, ! where significant discrepancies were found between
the exact solutions and the classical shell theory solutions.

The present study deals with a generalization of the shear
deformation theories of laminated composite shells. The the-
ory is based on the idea that the thickness approximation of
the displacement field can be accomplished via a piecewise
approximation through each individual lamina. In particular,
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the use of polynomial expansion with compact support (i.e.,
finite-element approximation) through the thickness proves to
be convenient. This approach was introduced recently for
laminated composite plates by Reddy.'? It is shown that the
theory gives very accurate results for deflections, stresses, and
natural frequencies.'’ The theory is extended here to lami-
nated composite cylindrical shells.

Formulation of the Theory

Displacements and Strains

The displacements (u,, 4y, 4, ) at a point (x, 6,z) (see Fig. 1) in
the laminated shell are assumed to be of the form

Ue(x,0,2,t) = u(x,0,t) + U(x, 8,z,t)

uyx,0,2,1) = v(x,0,t) + V(x,0,z,t)

u,(x,0,z,t) = w(x,0,t) + W(x,0,z,t) (1)
where (4,v, w) are the displacements of a point (x, 8,0) on the

reference surface of the shell at time ¢, and U, V, and W are
yet arbitrary functions that vanish on the reference surface as

U(x,0,0) = V(x,6,0) = W(x,0,0) =0 )

In developing the governing equations, the von K4drman type
of strains are considered,? in which strains are assumed to be
small, rotations with respect to the shell reference surface are
assumed to be moderate, and rotations about normals to the
shell reference surface are considered negligible. The nonlinear

Fig. 1 Shell geometry and coordinate system.
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stra.in-displacemem equations in an orthogonal Cartesian co-
ordinate system become

aux l,z du
b= ox T3P0 b= -

ey =

1 au, 1 2
@+2) W-ﬁuz +§,3,

'm=(-a-—:_—5%%’+%% + BBy
o= iy () o 2 o

where a is the radius of curvature of the shell. Introducing
Donnell’s approximation,® i.e., z € g, strains ey, v,9, and Yoz
can be simplified as

1 (ou _1ou,
) (30 +“:>+250» By = peT)
1 3u du
To=7 35! +3 Y + BBy
_ 1fdu, L)
Yo = a(ﬁ Mo) + % 4

Substituting for u,, uy, and u, from Eq. (1) into Egs. (3) and
(4), we obtain

e —a_u+ja.£.7+iﬁz
=T 9x  az 2%
1fov dV 1
e,.-;<36+30-+w+n’)+-z—ﬁi
L4

_.a_£+a_lf+l ?—!4.?2 +BB
'Yﬂ"ax 30 T 3 xPe

ax a
U ow W

Ll "I P ™

13w oW 14
7"=Z(733+"35'”'V>+3?
b= ‘5(%*%) ®)
Variational Fomnln(_l:on

The Hamilton variational principle is uséd to derive the
equations of motion of a cylindrical laminate composed of N
constant-thickness orthotropic lamina, whose principal mate-
rial coordinates are arbitrarily oriented with respect to the
laminate coordinates. The principle can be stated, in the ab-

TWO-DIMENSIONAL THEORY OF LAMINATED CYLINDRICAL SHELLS 545

sence of body forces and specified tractions, as'6

T
0= ‘0[[V(0,6eu + gpdep + a,6€,, + 026V

. v

+ 0950 + 0pdy )V — qéu.d
Ja

- \ PlityBtly + isgbity + i, bi2,)dV)de )

PV 4

where 0., 0y, 0,, 0,5, 0y, etc., are the stresses, q the distributed
transverse load, p the density, V the total volume of the lami-
nate, Q the reference surface of the laminate (assumed to be the
middle surface of the shell), (*) the differentiation with respect
to time, and 6 the variational symbol.

Substituting the strain-displacements relations {Eq. (%)} into
Eq. (6), we obtain

([ (a2 dbu  AsU
0= L U M(s; % T Bx”x)
+23(95_"+?£K
a\30 " 30
AW dw U W
ax a9z dax
(0 + B gy )
+ (60 ov + 3 oV + %

L) aau+a_a£+
ax a0

+ow + W + B,&B,)

dV U
L + Tl + a6y + aﬁﬁﬁz)

—p[(il+ Coda+ Uy + (0 + Mdo + V)

+(W+ Wis(w + W)BdAdz

—J qd(w + W)dAJdt U

where the following additional approximation, consistent with
the Donnel approximation, is used:

ro A2 z
jf(X. 9,2)dz = E Sfrdrdﬂ = j-m,‘ f- (1 + E)dZdA

h/2 .
zj jf«isz forz €a @®

-h2]),

where 7; and 7, denote the inner and outer radius, respectively,
of the cylindrical shell and z is a coordinate measured along
the normal to the shell surface with origin at the reference
surface.

Approximation through Thickness

In order to reduce the three-dimensional theory to a two-di-
mensional one, we use a Kantorovich-type approximation, 116
where the functions U, V, and W are approximated by

Ux,0,2,1) = i Ul(x, 8,t)¢/(z)

i=

L4 . .
Vix,8.2,t) = ¥ Vi(x,0,0)¢/(2)
i=1
Wix,8,2,0) =} Wix,0,0¥/(z) ©®
i=
where U/, ¥/, and W/ are undetermined coefficients and ¢/(z)
and ¥/(2) are any continuous functions that satisfy the condi-
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tions [cf Eq. (2)]
¢/(0) = 0; J=12,...n

V0 =0, j=12,...m 10)

Governing Equations

To complete the theory, we derive the equations relating the
(3 + 2n + m) variables (u, v, w, U’, v/, W), Substituting Eq. (9)
into Eq. (7) and integrating through the thickness, we obtain

Tl déu 0w66w) 1 (aév
O—}O]n{[Nx<3; +-a;—5;- +21V9 W+6w

lawia.! +.l.N 360+9_6_u+6_!§§1
W N VAT "R AT
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PREAr Pl ao]
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n . O L

= | I°(udu + vdir + wow) + El’(l’l&UJ + vV’
J=l

+ Ulia + Vigi) + 32 D(ws W + Wisiv)
j=1
+ PUBU* + Vigye

n n
/=

lk=l

> f;rka.ku] —q&w}dAdt (1

J=lk=l
Here N,, N, etc., denote the stress resultants,
A2

(Nonthv’QwQO:) = j _ h/Z(U’ 09,0:9,0x, 05, )dZ

) ) ) . a2 )
(MiM{ My M},) = j _m(o» 09,0,9,05;)/dz

A2

S de¢/
(0% Ok) = j_m(ama.z) &

h/2

(M, 58,8, 81, M8),) = j ) m(ap 09,059,057, Op, Yz

. h/2 dw
Q= j w2t dz dz

o a2 .
(L L L% = j ) h/z(a,, 08, 0p)Y ¥ dz
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and I°, [, and ? are the inertias,

A2 ¥
1° = \ -h/zde) ([’,p) = }p(W: W)dz

19 = | oo, yyaz (12)

Equations of Motion

The Euler-Lagrange equations of the theory are obtained by
integrating the derivatives of the varied quantities by parts and
collecting the coefficients of du, 8v, 6w, 8U7, 8V/, and 6 W as

1 "

Ny + 2 Ny =% +j;‘1/U' (13a)
SV N = 1% + S i

g Mootz Qs + Ny = v+j§1 (13b)

1 1 ow 1 ow
aN’+Qm+aQn'+<Nxa_x).x+(FN';0->0

1 w 1 aw m oW/
* <a Neo ax>.9 * <a Na 30)_,\— +j§ [(m _Bx_>,x

L o W 1., AWi 1o, oWl
. —_— — -My — - My ——
(e ) o), (o))

m .o
=W+ E Wit -q (13¢)
i
Mix= Ol +2 Miyy= i+ 32 PV (13d)
k=1

T T S,
7 Miag+ = M = Qfe + My = Iiv +kz.:|p Ve (13e)

1 o e | ~ ;0w
=2 My - QL+ M, +;Mlaz.o+ <M4 5;)}

1 . dw 1 .. dw 1 .. ow
— i L v il ~ K, 2
* <a2 My 60>,o * (a My ax),o * (a e O)J

where underscored terms denote the nonlinear terms due to
the von Kdrman strains.

Boundary Conditioas
The virtual work principle gives the following geometric and
force boundary conditions for the theory: :

Geometric (essential) Force (natural)

u - ANy + Ny = 0

k aNgn, + Nyny =0

w aQ.n, + Qozny =0

v aMin, + Misn, = 0

Z aMin, + Miny = 0
Wi b, + Ming=0  (14)
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where (n,, ny) denote the direction cosines of a unit normal to
the boundary of the reference surface 9.

Further Approximations

The theory can be easily simplified for linear behavior and/
or zero normal strain (e, = 0). The term (1/a)Qs. in Eq. (13)
is neglected in Donnell’s quasishallow shell equations'*!$ and
it can be neglected here. To be consistent, the term (1/a)Mj,
should also be neglected simultaneously in this theory.

Consistent with the assumptions made in the derivation of
the kinematic equations for the intermediate class of deforma-
tions, we can assume that the transverse normal strain is small
and neglect the products of the derivatives of the interface
transverse displacements,

j '}
%’{-%-0 witha, 8=x, 0

(15)
In this form, we keep a nonlinear coupling between the trans-
verse deflection of the middle surface (w) and the transverse
deflections of the interfaces. All remain unchanged but Eq.
(13f), which reduces to
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Len_o +mu+1&f’.§.+<m§1-')
a a ox/ x
(G, (Lo,
. (5 it ?T:L =T+ sz;l Desie (16)

In addition, we can assume that the normal strains in the
transverse direction dW7/3x are very small and neglect the
products (9w /3a)(3W//3B). In this case, the third and sixth of
Egs. (13) reduce to

1 1 aw 1 ow
aN'+Q”"'+5Q""+<N‘F£)J+(57N'33>,3

1 aw 1 aw LA
(@3, (), - o LW -

| g 1 . ,
—;m-Qi+MQx+;Mm=PW+ﬁP*W" an

k=1
Obviously, there is a range of applicability for each of the
cases discussed above.

Constitutive Equations

The constitutive equations of an arbitrarily oriented, or-
thotropic laminae in the laminate coordinate system are

(] [ ] fau 1 [aw\? )
Ox Cu C2 C3 0 0 Cg * +§ T
13v w 1/10aw)?
(/] C:z sz Cz; 0 0 ng ; % - ; + E (; 5?)
o, Ciy Cy Gy 0 0 Cy 0
< > = <
I 0 0 0 Cs Cs O %E [
1aw v
Oz 0 0 0 C45 C“ 0 ; % - ;
dv 10u dwl dw
Oxs Ces Cy Cs 0 0 Cg 3;+;-33+sz30-
. J L 4 - J
o 3 r 3
W LE L
ax ax dx
1oV/ 1 . lawowr\ .
- —— - ] - ——
a 30 a<W+a30 ao)
0 Wi av
n m dz
+ : + .
Flue AERELD [
dz ax
(d¢/ 1 10w/
N— — - - —
v (dz a d) a 0
LLLAW Ywaw waw)
a d ox a\dx 30 30 ox
- 7 - J
| (18)
where C;; denote the elastic constants. Here the nonlinear strains used are those consistent with an intermediate class of

deformations and correspond with the simplifications made to arrive at Eq. (16).
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Substitution of Eqs. (18) into Eq. (12) gives the following laminate constitutive equations:

) fau 1 [aw\? )
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A/ ! N ——— = -
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where A, B, F, etc., are the laminate stiffness defined by

D
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Analytical Solution of the Linear Equations

The theory presented so far is general in the sense that the
interpolation functions ¢/ and y/ can be chosen arbitrarily as
long as they satisfy the conditions in Eq. (10). In order to
produce an actual solution, we choose here linear Lagrange
polynomials for both ¢/ and ¢/. In this particular case, the
coefficients U/, ¥/, and W/ are identified as the displacements
of each jth-interface between layers. In order to be able to
obtain an analyti.al solution and to compare the results with
existing solutions of the three-dimensional elasticity theory,
we must restrict ourselves to the linear equations obtained by
eliminating the underscored terms in Eqgs. (13). The solution
of equations of even the linear theory is by no means trivial.
These equations of motion combined with the constitutive
relations are solved exactly for the case of orthotropic, simply
supported laminated shells. Using a Navier-type solution
method (see Refs. 11 and 16), a set of kinematically admissible
solutions is assumed, as follows

ux,0,t) = f;)’:xm cosm cosax T, (t)
m n
vix,0,t) = i il",,,. sinm@ sinax T, (t)

w(x, 0,¢)

e cosmO sinax T, ()

Ulx,8,1) = Yinn €OSMB OSQX Thna(t)

Viix,0,t) = Unn sinm@ sinax T, (¢)

Wnn cosm sinax Ting(f)

3098 alJe 30ge 3 qe 2

3
3
—~ 3

Mﬂ :Mn :Mn ams a

Wix,6,t)
1) = glom (25)

where a = nx/b and b is the length of the cylinder.

After substitution into the constitutive equations and equa-
tions of motion, we get a system of 3N + 3 equations that
relate the 3V + 3 unknowns {£) = (Xpn e Mons Yirns Eomo
W) j=1,..., Nas

(K1(§) = wha M1 (£) (26)

for each of the modes (m,n). The solution of the eigenvalue

problem [Eq. (26)] gives 3N + 3 frequencies for each mode
(m,n).
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Table 1 Noadimeasional frequencies for a three-layer thin laminate

First Second Third
frequency frequency ’ frequency
b/na m Exact® GLST® Exact GLST Exact GLST
1 0 0.32461 0.32706 1.8186 1.8074 3.0037 2.9666
i 0.33631 0.33855 1.7031 1.6939 3.1438 3.1003
2 0.36737 0.36917 1.4689 1.4629 3.4615 3.4020
3 0.40447 0.40603 1.2612 1.2571 3.8451 3.7631
4 0.42507 0.42687 1.1822 1.17873 . 4.2502 4.1407
2 0 0.28282 0.28354 0.91614 0.91301 1.5441 1.5389
| 0.30591 0.30649 0.73938 0.73762 1.7807 1.7725
2 0.30838 0.30897 0.60419 0.60273 2.20M 2.1913
3 0.21959 0.22066 0.80118 0.79792 2.6748 2.6466
4 0.20414 0.20527 1.1467 1.1396 3.1559 3.1098
8 (1] 0.20999 0.20989 0.22904 0.22898 0.51742 0.51708
1 0.07054 0.07052 0.41957 0.41930 0.84128 0.83941
2 0.03594 0.03638 0.78928 0.78801 1.3559 1.3476
3 0.06940 0.06966 1.1956 1.1900 1.9113 1.8887
4 0.12237 0.12254 1.6058 1.5909 2.4841 2.4354

sExact results from Srinivas.!! "GLST = generalized laminate shell theory (present).

Table 2 Nondimensional frequencies for a three-layer thick laminate

First Second Third
frequency ‘ frequency frequency
b/na m Exact? GLST® Exact GLST Exact GLST
1 0 0.40438 0.40838 1.6205 1.5064 1.7475 1.9271
1 0.42140 0.42401 1.5294 1.4333 1.7530 1.9478
2 0.46495 0.46524 1.3354 1.2710 1.7633 1.9850
3 0.50904 0.51186 1.1742 1.1233 1.7626 2.0148
4 0.52631 0.53482 1.1540 1.1003 1.7309 1.9960
2 0 0.31807 0.32042 0.89129 0.87015 1.4316 1.3733
1 0.35573 0.35501 0.71061 0.69823 1.4242 1.5282
2 0.33947 0.34297 0.62782 0.61531 1.3608 1.5689
3 0.28099 0.28233 0.85051 0.84972 1.5134 1.7085
4 0.33070 0.32851 1.1398 1.1460 1.7260 1.9032
8 0 0.21844 0.21680 0.22955 0.22916 0.54260 0.53637
1 0.06638 © 0.06696 0.46207 0.46070 0.86049 0.85054
2 0.08773 0.08718 0.82383 0.82943 1.3288 1.2941
3 0.18459 0.18276 1.1547 1.1553 1.6937 1.6713
4 0.28616 0.28404 1.3692 1.3842 1.9282 1.9686

sExact results from Srinivas.'! ®GLST = generalized laminate shell theory (present).

Table 3 Nondimensional frequencies of a two-ply graphite-epoxy cylinder

First frequency Second frequency Third frequency
Rotary inertia No rotary Rotary intertia No rotary Rotary inertia No rotary
__included = ___inertia included inertia included inertia

b/na m %0 e =0 e #0 e, =0 e; =20 e;=0 e;#0 e =0 e =0 e;=0 e =0 e;=0
1 0 06370 0.6370 06353 0.6353 0.7716 0.7809 0.7725  0.7838 2.2094 22102 2.1558  2.1594
1 0.4153  0.4163 0.4152 04170 1.202 1.212 1.195 1.207 2.2208  2.2219  2.1657  2.1698

2 02936 0.2938 0.2937 0.2947 1.818 1.834 1.788 1.804 2.2582  2.2619  2.1978  2.2052

3 02666 0.2660 0.2667 0.2673  2.272 2.268 2.214 2.210 2.5134  2.5444  2.4253  2.4612

4 03109 0.3092 03111 03115 2.357 2.355 2.287 2.289 3.1302  3.1670  2.9841  3.0258

2 0 0318 03185 0.3186 0.3186 0.7606 0.7692  0.7610 0.7700 1.1360 1.1360  1.1273  1.1277
1 02133 0.2135 0.2133 0.2136 1.108 1.112 1.104 1.108 1.1678  1.1748  1.1579  1.1667

2  0.1397 0.1398 0.1397 0.1400 1.211 1.209 1.200 1.199 (1.7587 1.7785 1.7314 1.7524

3 0.1518 0.1510 0.1518 0.1515  1.302 1.300 1.287 1.286 2.4325 2.4602  2.3586  2.3879

4 02313 0.2291 0.2314 0.2303 1.419 1.418 1.399 1.398 3.0777  3.1126  2.9432 - 29816

8 0 0.0797 0.0797 0.0798 0.0977 0.2864 0.2863  0.2863 0.2862 0.7601 0.7684  0.7603  0.7685
1 0.0439 0.0439 0.0439 0.0439 0.3585 0.3583 03582 0.3580 | 0958  1.1078  1.0923  1.1045

2 0.0454 0.0451 0.0454 0.0451 0.5145 0.5144 0.5134 0.5132 1.7338 1.7530 1.7086  1.728S5

3 0.1147 0.1133  0.1147 0.1136 0.701S  0.7014  0.6984 0.6983  2.4132 2.4404 23421 2.3706

4 02133 02105 02133 0.211S  0.9004 09003 0.8937  0.8936 3.0623 3.0968 29310 2.9686

sExact results from Srinivas.! ®GLST = generalized laminate shell theory (present).
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As an example, a three-ply laminate with orthotropic layers
is analyzed. The stiffnesses of the inner layer are assumed to
be: Cu =0.08,Ci2= 0.0S, CU =0.07, Cs = 0.19, Cz; =0.32,
Cy; = 1.0, Cyu=0.04, Css = 0.03, and Ces = 0.34; the outer
layers are assumed to have stiffnesses 20 times those of the
inner layer. The results are presented in terms of a nondimen-
sional parameter A as

12

N . R
Ep‘(ri.¢l -r)
(=1

N

.El Cly (rhe = 1?)

@n

\=wr,

where r; is the radius of the ith interface and r, is the outer
radius of the cylinder.

Results for a thin laminate (r, =0.95r, 7= 0.955r,,
ry = 0.995r,) are presented in Table 1. Similar results for a
thick laminate (r, = 0.87,, r,=0.82r,, 13 = 0.98r,) are pre-
sented in Table 2. The exact results using three-dimensional
elasticity are taken from Srinivas.!! In Table 3, results for a
two-ply cylindrical shell are presented. The material properties
used are those of a graphite-epoxy material (E, = 19.6 msi,
Ez =1.56 msi, v2= 0.24, vy = 0.47, Gp= 0.82 misi,
Gy = 0.523 msi) and the thickness of each layer is 0.05 r,. The
three lowest frequencies are presented in Table 3 in nondimen-
sional form as before. While neglecting the rotary inertia, the
in-plane inertia still needs to be considered for cylindrical
shells because the displacements tangential to the reference
surface, mainly u,, play an important role in the behavior of
the shell. This is in contrast to plate theory, where the in-plane
inertia are usually neglected along with rotary inertia. Results
obtained for zero transverse normal strain are also presented.
They were obtained using the reduced stiffness matrix's in-
stead of the three-dimensional stiffness matrix. The present
results are, in general, in good agreement with those presented
by Srinivas.'!

Conclusions

A general two-dimensional shear deformation theory of
laminated cylindrical shells is presented. The theory allows for

_the inclusion of a desired degree of approximation of the

displacements through the thickness. Geometric nonlinearity
in the von Kirman sense is also considered. Exact solutions of
the linear equations for simply supported cylindrical shells are
presented. The results correlate very well with the three-di-
mensional exact solutions. The validity of Donnell’s approxi-
mations and the applicability of various simplifications made
for the nonlinear equations are to be investigated further. The
finite-element models of the theory are to be developed in
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qrder to sqlve ‘cylindrical shells with general boundary condi-
tions, lamination scheme, loading, and geometric nonlinear-
ity.
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